1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com> 5 // Copyright (C) 2009 Ricard Marxer <email (at) ricardmarxer.com> 6 // 7 // This Source Code Form is subject to the terms of the Mozilla 8 // Public License v. 2.0. If a copy of the MPL was not distributed 9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11 #include "main.h" 12 #include <iostream> 13 14 using namespace std; 15 16 template<typename MatrixType> void reverse(const MatrixType& m) 17 { 18 typedef typename MatrixType::Index Index; 19 typedef typename MatrixType::Scalar Scalar; 20 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; 21 22 Index rows = m.rows(); 23 Index cols = m.cols(); 24 25 // this test relies a lot on Random.h, and there's not much more that we can do 26 // to test it, hence I consider that we will have tested Random.h 27 MatrixType m1 = MatrixType::Random(rows, cols); 28 VectorType v1 = VectorType::Random(rows); 29 30 MatrixType m1_r = m1.reverse(); 31 // Verify that MatrixBase::reverse() works 32 for ( int i = 0; i < rows; i++ ) { 33 for ( int j = 0; j < cols; j++ ) { 34 VERIFY_IS_APPROX(m1_r(i, j), m1(rows - 1 - i, cols - 1 - j)); 35 } 36 } 37 38 Reverse<MatrixType> m1_rd(m1); 39 // Verify that a Reverse default (in both directions) of an expression works 40 for ( int i = 0; i < rows; i++ ) { 41 for ( int j = 0; j < cols; j++ ) { 42 VERIFY_IS_APPROX(m1_rd(i, j), m1(rows - 1 - i, cols - 1 - j)); 43 } 44 } 45 46 Reverse<MatrixType, BothDirections> m1_rb(m1); 47 // Verify that a Reverse in both directions of an expression works 48 for ( int i = 0; i < rows; i++ ) { 49 for ( int j = 0; j < cols; j++ ) { 50 VERIFY_IS_APPROX(m1_rb(i, j), m1(rows - 1 - i, cols - 1 - j)); 51 } 52 } 53 54 Reverse<MatrixType, Vertical> m1_rv(m1); 55 // Verify that a Reverse in the vertical directions of an expression works 56 for ( int i = 0; i < rows; i++ ) { 57 for ( int j = 0; j < cols; j++ ) { 58 VERIFY_IS_APPROX(m1_rv(i, j), m1(rows - 1 - i, j)); 59 } 60 } 61 62 Reverse<MatrixType, Horizontal> m1_rh(m1); 63 // Verify that a Reverse in the horizontal directions of an expression works 64 for ( int i = 0; i < rows; i++ ) { 65 for ( int j = 0; j < cols; j++ ) { 66 VERIFY_IS_APPROX(m1_rh(i, j), m1(i, cols - 1 - j)); 67 } 68 } 69 70 VectorType v1_r = v1.reverse(); 71 // Verify that a VectorType::reverse() of an expression works 72 for ( int i = 0; i < rows; i++ ) { 73 VERIFY_IS_APPROX(v1_r(i), v1(rows - 1 - i)); 74 } 75 76 MatrixType m1_cr = m1.colwise().reverse(); 77 // Verify that PartialRedux::reverse() works (for colwise()) 78 for ( int i = 0; i < rows; i++ ) { 79 for ( int j = 0; j < cols; j++ ) { 80 VERIFY_IS_APPROX(m1_cr(i, j), m1(rows - 1 - i, j)); 81 } 82 } 83 84 MatrixType m1_rr = m1.rowwise().reverse(); 85 // Verify that PartialRedux::reverse() works (for rowwise()) 86 for ( int i = 0; i < rows; i++ ) { 87 for ( int j = 0; j < cols; j++ ) { 88 VERIFY_IS_APPROX(m1_rr(i, j), m1(i, cols - 1 - j)); 89 } 90 } 91 92 Scalar x = internal::random<Scalar>(); 93 94 Index r = internal::random<Index>(0, rows-1), 95 c = internal::random<Index>(0, cols-1); 96 97 m1.reverse()(r, c) = x; 98 VERIFY_IS_APPROX(x, m1(rows - 1 - r, cols - 1 - c)); 99 100 /* 101 m1.colwise().reverse()(r, c) = x; 102 VERIFY_IS_APPROX(x, m1(rows - 1 - r, c)); 103 104 m1.rowwise().reverse()(r, c) = x; 105 VERIFY_IS_APPROX(x, m1(r, cols - 1 - c)); 106 */ 107 } 108 109 void test_array_reverse() 110 { 111 for(int i = 0; i < g_repeat; i++) { 112 CALL_SUBTEST_1( reverse(Matrix<float, 1, 1>()) ); 113 CALL_SUBTEST_2( reverse(Matrix2f()) ); 114 CALL_SUBTEST_3( reverse(Matrix4f()) ); 115 CALL_SUBTEST_4( reverse(Matrix4d()) ); 116 CALL_SUBTEST_5( reverse(MatrixXcf(3, 3)) ); 117 CALL_SUBTEST_6( reverse(MatrixXi(6, 3)) ); 118 CALL_SUBTEST_7( reverse(MatrixXcd(20, 20)) ); 119 CALL_SUBTEST_8( reverse(Matrix<float, 100, 100>()) ); 120 CALL_SUBTEST_9( reverse(Matrix<float,Dynamic,Dynamic,RowMajor>(6,3)) ); 121 } 122 #ifdef EIGEN_TEST_PART_3 123 Vector4f x; x << 1, 2, 3, 4; 124 Vector4f y; y << 4, 3, 2, 1; 125 VERIFY(x.reverse()[1] == 3); 126 VERIFY(x.reverse() == y); 127 #endif 128 } 129