/external/eigen/lapack/ |
slarfg.f | 21 * SUBROUTINE SLARFG( N, ALPHA, X, INCX, TAU ) 25 * REAL ALPHA, TAU 46 *> H = I - tau * ( 1 ) * ( 1 v**T ) , 49 *> where tau is a real scalar and v is a real (n-1)-element 52 *> If the elements of x are all zero, then tau = 0 and H is taken to be 55 *> Otherwise 1 <= tau <= 2. 88 *> \param[out] TAU 90 *> TAU is REAL 91 *> The value tau. 107 SUBROUTINE SLARFG( N, ALPHA, X, INCX, TAU ) [all...] |
clarft.f | 21 * SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) 28 * COMPLEX T( LDT, * ), TAU( * ), V( LDV, * ) 104 *> \param[in] TAU 106 *> TAU is COMPLEX array, dimension (K) 107 *> TAU(i) must contain the scalar factor of the elementary 164 SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) 176 COMPLEX T( LDT, * ), TAU( * ), V( LDV, * ) 207 IF( TAU( I ).EQ.ZERO ) THEN 224 T( J, I ) = -TAU( I ) * CONJG( V( I , J ) ) 228 * T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i [all...] |
dlarft.f | 21 * SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) 28 * DOUBLE PRECISION T( LDT, * ), TAU( * ), V( LDV, * ) 104 *> \param[in] TAU 106 *> TAU is DOUBLE PRECISION array, dimension (K) 107 *> TAU(i) must contain the scalar factor of the elementary 164 SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) 176 DOUBLE PRECISION T( LDT, * ), TAU( * ), V( LDV, * ) 206 IF( TAU( I ).EQ.ZERO ) THEN 223 T( J, I ) = -TAU( I ) * V( I , J ) 227 * T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i [all...] |
slarft.f | 21 * SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) 28 * REAL T( LDT, * ), TAU( * ), V( LDV, * ) 104 *> \param[in] TAU 106 *> TAU is REAL array, dimension (K) 107 *> TAU(i) must contain the scalar factor of the elementary 164 SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) 176 REAL T( LDT, * ), TAU( * ), V( LDV, * ) 206 IF( TAU( I ).EQ.ZERO ) THEN 223 T( J, I ) = -TAU( I ) * V( I , J ) 227 * T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i [all...] |
zlarft.f | 21 * SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) 28 * COMPLEX*16 T( LDT, * ), TAU( * ), V( LDV, * ) 104 *> \param[in] TAU 106 *> TAU is COMPLEX*16 array, dimension (K) 107 *> TAU(i) must contain the scalar factor of the elementary 164 SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) 176 COMPLEX*16 T( LDT, * ), TAU( * ), V( LDV, * ) 207 IF( TAU( I ).EQ.ZERO ) THEN 224 T( J, I ) = -TAU( I ) * CONJG( V( I , J ) ) 228 * T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i [all...] |
clarf.f | 21 * SUBROUTINE CLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK ) 26 * COMPLEX TAU 42 *> H = I - tau * v * v**H 44 *> where tau is a complex scalar and v is a complex vector. 46 *> If tau = 0, then H is taken to be the unit matrix. 48 *> To apply H**H (the conjugate transpose of H), supply conjg(tau) instead 49 *> tau. 80 *> TAU = 0. 89 *> \param[in] TAU 91 *> TAU is COMPLE [all...] |
dlarf.f | 21 * SUBROUTINE DLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK ) 26 * DOUBLE PRECISION TAU 41 *> H = I - tau * v * v**T 43 *> where tau is a real scalar and v is a real vector. 45 *> If tau = 0, then H is taken to be the unit matrix. 76 *> TAU = 0. 85 *> \param[in] TAU 87 *> TAU is DOUBLE PRECISION 88 *> The value tau in the representation of H. 125 SUBROUTINE DLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK [all...] |
slarf.f | 21 * SUBROUTINE SLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK ) 26 * REAL TAU 41 *> H = I - tau * v * v**T 43 *> where tau is a real scalar and v is a real vector. 45 *> If tau = 0, then H is taken to be the unit matrix. 76 *> TAU = 0. 85 *> \param[in] TAU 87 *> TAU is REAL 88 *> The value tau in the representation of H. 125 SUBROUTINE SLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK [all...] |
zlarf.f | 21 * SUBROUTINE ZLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK ) 26 * COMPLEX*16 TAU 42 *> H = I - tau * v * v**H 44 *> where tau is a complex scalar and v is a complex vector. 46 *> If tau = 0, then H is taken to be the unit matrix. 48 *> To apply H**H, supply conjg(tau) instead 49 *> tau. 80 *> TAU = 0. 89 *> \param[in] TAU 91 *> TAU is COMPLEX*1 [all...] |
clarfg.f | 21 * SUBROUTINE CLARFG( N, ALPHA, X, INCX, TAU ) 25 * COMPLEX ALPHA, TAU 46 *> H = I - tau * ( 1 ) * ( 1 v**H ) , 49 *> where tau is a complex scalar and v is a complex (n-1)-element 52 *> If the elements of x are all zero and alpha is real, then tau = 0 55 *> Otherwise 1 <= real(tau) <= 2 and abs(tau-1) <= 1 . 88 *> \param[out] TAU 90 *> TAU is COMPLEX 91 *> The value tau [all...] |
dlarfg.f | 21 * SUBROUTINE DLARFG( N, ALPHA, X, INCX, TAU ) 25 * DOUBLE PRECISION ALPHA, TAU 46 *> H = I - tau * ( 1 ) * ( 1 v**T ) , 49 *> where tau is a real scalar and v is a real (n-1)-element 52 *> If the elements of x are all zero, then tau = 0 and H is taken to be 55 *> Otherwise 1 <= tau <= 2. 88 *> \param[out] TAU 90 *> TAU is DOUBLE PRECISION 91 *> The value tau. 107 SUBROUTINE DLARFG( N, ALPHA, X, INCX, TAU ) [all...] |
zlarfg.f | 21 * SUBROUTINE ZLARFG( N, ALPHA, X, INCX, TAU ) 25 * COMPLEX*16 ALPHA, TAU 46 *> H = I - tau * ( 1 ) * ( 1 v**H ) , 49 *> where tau is a complex scalar and v is a complex (n-1)-element 52 *> If the elements of x are all zero and alpha is real, then tau = 0 55 *> Otherwise 1 <= real(tau) <= 2 and abs(tau-1) <= 1 . 88 *> \param[out] TAU 90 *> TAU is COMPLEX*16 91 *> The value tau [all...] |
/external/chromium_org/chrome/common/extensions/docs/examples/api/downloads/download_manager/ |
background.js | 24 Math.TAU = 2 * Math.PI; // http://tauday.com/tau-manifesto 39 var segArc = Math.TAU / segments; 49 var clocktop = -Math.TAU/4; 50 drawProgressArc(ctx, clocktop, clocktop + (stage * Math.TAU)); 108 ctx.arc(s*75, s*75, s*15, 0, Math.TAU, false);
|
/external/fonttools/Lib/fontTools/ |
agl.py | 283 03A4;Tau;GREEK CAPITAL LETTER TAU 641 03C4;tau;GREEK SMALL LETTER TAU
|