Home | History | Annotate | Download | only in doc

Lines Matching full:matrix

16 <tr><td>\link Core_Module Core \endlink</td><td>\code#include <Eigen/Core>\endcode</td><td>Matrix and Array classes, basic linear algebra (including triangular and selfadjoint products), array manipulation</td></tr>
24 <tr class="alt"><td>\link Sparse_modules Sparse \endlink</td><td>\code#include <Eigen/Sparse>\endcode</td><td>%Sparse matrix storage and related basic linear algebra (SparseMatrix, DynamicSparseMatrix, SparseVector)</td></tr>
30 \section QuickRef_Types Array, matrix and vector types
33 \b Recall: Eigen provides two kinds of dense objects: mathematical matrices and vectors which are both represented by the template class Matrix, and general 1D and 2D arrays represented by the template class Array:
35 typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyMatrixType;
40 \li \c RowsAtCompileTime and \c ColsAtCompileTime are the number of rows and columns of the matrix as known at compile-time or \c Dynamic.
41 \li \c Options can be \c ColMajor or \c RowMajor, default is \c ColMajor. (see class Matrix for more options)
43 All combinations are allowed: you can have a matrix with a fixed number of rows and a dynamic number of columns, etc. The following are all valid:
45 Matrix<double, 6, Dynamic> // Dynamic number of columns (heap allocation)
46 Matrix<double, Dynamic, 2> // Dynamic number of rows (heap allocation)
47 Matrix<double, Dynamic, Dynamic, RowMajor> // Fully dynamic, row major (heap allocation)
48 Matrix<double, 13, 3> // Fully fixed (usually allocated on stack)
55 Matrix<float,Dynamic,Dynamic> <=> MatrixXf
56 Matrix<double,Dynamic,1> <=> VectorXd
57 Matrix<int,1,Dynamic> <=> RowVectorXi
58 Matrix<float,3,3> <=> Matrix3f
59 Matrix<float,4,1> <=> Vector4f
69 Conversion between the matrix and array worlds:
73 m1 = a1 * a2; // coeffwise product, implicit conversion from array to matrix.
74 a1 = m1 * m2; // matrix product, implicit conversion from matrix to array.
75 a2 = a1 + m1.array(); // mixing array and matrix is forbidden
76 m2 = a1.matrix() + m1; // and explicit conversion is required.
82 \li <a name="matrixonly"></a>\matrixworld linear algebra matrix and vector only
85 \subsection QuickRef_Basics Basic matrix manipulation
136 matrix.rows(); matrix.cols();
137 matrix.innerSize(); matrix.outerSize();
138 matrix.innerStride(); matrix.outerStride();
139 matrix.data();
155 matrix.resize(nb_rows, nb_cols);
156 matrix.resize(Eigen::NoChange, nb_cols);
157 matrix.resize(nb_rows, Eigen::NoChange);
158 matrix.resizeLike(other_matrix);
159 matrix.conservativeResize(nb_rows, nb_cols);
169 matrix(i,j)
177 matrix.coeff(i,j)
178 matrix.coeffRef(i,j)
193 <th>Fixed-size matrix or vector</th>
194 <th>Dynamic-size matrix</th>
331 matrix/vector \n products \matrixworld</td><td>\code
369 <tr><th>Matrix API \matrixworld</th><th>Via Array conversions</th></tr>
434 All reduction operations can be done matrix-wise,
455 s = matrix.maxCoeff(&i, &j); // s == matrix(i,j)
467 or a \link DenseBase::row(Index) row \endlink of a matrix (or array):
492 <td>the \c rows x \c cols sub-matrix \n starting from position (\c i,\c j)</td></tr>
503 <td>the \c rows x \c cols sub-matrix \n taken in one of the four corners</td></tr>
522 Vectors, rows, and/or columns of a matrix can be reversed (see DenseBase::reverse(), DenseBase::reverseInPlace(), VectorwiseOp::reverse()).
539 (matrix world \matrixworld)
546 view a vector \link MatrixBase::asDiagonal() as a diagonal matrix \endlink \n </td><td>\code
550 Declare a diagonal matrix</td><td>\code
554 <tr><td>Access the \link MatrixBase::diagonal() diagonal \endlink and \link MatrixBase::diagonal(Index) super/sub diagonals \endlink of a matrix as a vector (read/write)</td>
577 TriangularView gives a view on a triangular part of a dense matrix and allows to perform optimized operations on it. The opposite triangular part is never referenced and can be used to store other information.
598 Conversion to a dense matrix setting the opposite triangular part to zero:
622 Just as for triangular matrix, you can reference any triangular part of a square matrix to see it as a selfadjoint
623 matrix and perform special and optimized operations. Again the opposite triangular part is never referenced and can be
632 Conversion to a dense matrix:
637 Product with another general matrix or vector:
672 \link MatrixBase::asDiagonal() make a diagonal matrix \endlink \n from a vector </td><td>\code
676 Declare a diagonal matrix</td><td>\code
680 <tr><td>Access \link MatrixBase::diagonal() the diagonal and super/sub diagonals of a matrix \endlink as a vector (read/write)</td>
690 <tr><td>View on a triangular part of a matrix (read/write)</td>
697 <tr><td>View a triangular part as a symmetric/self-adjoint matrix (read/write)</td>