1 //===-- DNB.cpp -------------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Created by Greg Clayton on 3/23/07. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "DNB.h" 15 #include <inttypes.h> 16 #include <signal.h> 17 #include <stdio.h> 18 #include <stdlib.h> 19 #include <sys/resource.h> 20 #include <sys/stat.h> 21 #include <sys/types.h> 22 #include <sys/wait.h> 23 #include <unistd.h> 24 #include <sys/sysctl.h> 25 #include <map> 26 #include <vector> 27 #include <libproc.h> 28 29 #include "MacOSX/MachProcess.h" 30 #include "MacOSX/MachTask.h" 31 #include "CFString.h" 32 #include "DNBLog.h" 33 #include "DNBDataRef.h" 34 #include "DNBThreadResumeActions.h" 35 #include "DNBTimer.h" 36 #include "CFBundle.h" 37 38 39 typedef std::shared_ptr<MachProcess> MachProcessSP; 40 typedef std::map<nub_process_t, MachProcessSP> ProcessMap; 41 typedef ProcessMap::iterator ProcessMapIter; 42 typedef ProcessMap::const_iterator ProcessMapConstIter; 43 44 size_t GetAllInfos (std::vector<struct kinfo_proc>& proc_infos); 45 static size_t GetAllInfosMatchingName (const char *process_name, std::vector<struct kinfo_proc>& matching_proc_infos); 46 47 //---------------------------------------------------------------------- 48 // A Thread safe singleton to get a process map pointer. 49 // 50 // Returns a pointer to the existing process map, or a pointer to a 51 // newly created process map if CAN_CREATE is non-zero. 52 //---------------------------------------------------------------------- 53 static ProcessMap* 54 GetProcessMap(bool can_create) 55 { 56 static ProcessMap* g_process_map_ptr = NULL; 57 58 if (can_create && g_process_map_ptr == NULL) 59 { 60 static pthread_mutex_t g_process_map_mutex = PTHREAD_MUTEX_INITIALIZER; 61 PTHREAD_MUTEX_LOCKER (locker, &g_process_map_mutex); 62 if (g_process_map_ptr == NULL) 63 g_process_map_ptr = new ProcessMap; 64 } 65 return g_process_map_ptr; 66 } 67 68 //---------------------------------------------------------------------- 69 // Add PID to the shared process pointer map. 70 // 71 // Return non-zero value if we succeed in adding the process to the map. 72 // The only time this should fail is if we run out of memory and can't 73 // allocate a ProcessMap. 74 //---------------------------------------------------------------------- 75 static nub_bool_t 76 AddProcessToMap (nub_process_t pid, MachProcessSP& procSP) 77 { 78 ProcessMap* process_map = GetProcessMap(true); 79 if (process_map) 80 { 81 process_map->insert(std::make_pair(pid, procSP)); 82 return true; 83 } 84 return false; 85 } 86 87 //---------------------------------------------------------------------- 88 // Remove the shared pointer for PID from the process map. 89 // 90 // Returns the number of items removed from the process map. 91 //---------------------------------------------------------------------- 92 static size_t 93 RemoveProcessFromMap (nub_process_t pid) 94 { 95 ProcessMap* process_map = GetProcessMap(false); 96 if (process_map) 97 { 98 return process_map->erase(pid); 99 } 100 return 0; 101 } 102 103 //---------------------------------------------------------------------- 104 // Get the shared pointer for PID from the existing process map. 105 // 106 // Returns true if we successfully find a shared pointer to a 107 // MachProcess object. 108 //---------------------------------------------------------------------- 109 static nub_bool_t 110 GetProcessSP (nub_process_t pid, MachProcessSP& procSP) 111 { 112 ProcessMap* process_map = GetProcessMap(false); 113 if (process_map != NULL) 114 { 115 ProcessMapIter pos = process_map->find(pid); 116 if (pos != process_map->end()) 117 { 118 procSP = pos->second; 119 return true; 120 } 121 } 122 procSP.reset(); 123 return false; 124 } 125 126 127 static void * 128 waitpid_thread (void *arg) 129 { 130 const pid_t pid = (pid_t)(intptr_t)arg; 131 int status; 132 while (1) 133 { 134 pid_t child_pid = waitpid(pid, &status, 0); 135 DNBLogThreadedIf(LOG_PROCESS, "waitpid_thread (): waitpid (pid = %i, &status, 0) => %i, status = %i, errno = %i", pid, child_pid, status, errno); 136 137 if (child_pid < 0) 138 { 139 if (errno == EINTR) 140 continue; 141 break; 142 } 143 else 144 { 145 if (WIFSTOPPED(status)) 146 { 147 continue; 148 } 149 else// if (WIFEXITED(status) || WIFSIGNALED(status)) 150 { 151 DNBLogThreadedIf(LOG_PROCESS, "waitpid_thread (): setting exit status for pid = %i to %i", child_pid, status); 152 DNBProcessSetExitStatus (child_pid, status); 153 return NULL; 154 } 155 } 156 } 157 158 // We should never exit as long as our child process is alive, so if we 159 // do something else went wrong and we should exit... 160 DNBLogThreadedIf(LOG_PROCESS, "waitpid_thread (): main loop exited, setting exit status to an invalid value (-1) for pid %i", pid); 161 DNBProcessSetExitStatus (pid, -1); 162 return NULL; 163 } 164 165 static bool 166 spawn_waitpid_thread (pid_t pid) 167 { 168 pthread_t thread = THREAD_NULL; 169 ::pthread_create (&thread, NULL, waitpid_thread, (void *)(intptr_t)pid); 170 if (thread != THREAD_NULL) 171 { 172 ::pthread_detach (thread); 173 return true; 174 } 175 return false; 176 } 177 178 nub_process_t 179 DNBProcessLaunch (const char *path, 180 char const *argv[], 181 const char *envp[], 182 const char *working_directory, // NULL => dont' change, non-NULL => set working directory for inferior to this 183 const char *stdin_path, 184 const char *stdout_path, 185 const char *stderr_path, 186 bool no_stdio, 187 nub_launch_flavor_t launch_flavor, 188 int disable_aslr, 189 char *err_str, 190 size_t err_len) 191 { 192 DNBLogThreadedIf(LOG_PROCESS, "%s ( path='%s', argv = %p, envp = %p, working_dir=%s, stdin=%s, stdout=%s, stderr=%s, no-stdio=%i, launch_flavor = %u, disable_aslr = %d, err = %p, err_len = %llu) called...", 193 __FUNCTION__, 194 path, 195 argv, 196 envp, 197 working_directory, 198 stdin_path, 199 stdout_path, 200 stderr_path, 201 no_stdio, 202 launch_flavor, 203 disable_aslr, 204 err_str, 205 (uint64_t)err_len); 206 207 if (err_str && err_len > 0) 208 err_str[0] = '\0'; 209 struct stat path_stat; 210 if (::stat(path, &path_stat) == -1) 211 { 212 char stat_error[256]; 213 ::strerror_r (errno, stat_error, sizeof(stat_error)); 214 snprintf(err_str, err_len, "%s (%s)", stat_error, path); 215 return INVALID_NUB_PROCESS; 216 } 217 218 MachProcessSP processSP (new MachProcess); 219 if (processSP.get()) 220 { 221 DNBError launch_err; 222 pid_t pid = processSP->LaunchForDebug (path, 223 argv, 224 envp, 225 working_directory, 226 stdin_path, 227 stdout_path, 228 stderr_path, 229 no_stdio, 230 launch_flavor, 231 disable_aslr, 232 launch_err); 233 if (err_str) 234 { 235 *err_str = '\0'; 236 if (launch_err.Fail()) 237 { 238 const char *launch_err_str = launch_err.AsString(); 239 if (launch_err_str) 240 { 241 strncpy(err_str, launch_err_str, err_len-1); 242 err_str[err_len-1] = '\0'; // Make sure the error string is terminated 243 } 244 } 245 } 246 247 DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) new pid is %d...", pid); 248 249 if (pid != INVALID_NUB_PROCESS) 250 { 251 // Spawn a thread to reap our child inferior process... 252 spawn_waitpid_thread (pid); 253 254 if (processSP->Task().TaskPortForProcessID (launch_err) == TASK_NULL) 255 { 256 // We failed to get the task for our process ID which is bad. 257 // Kill our process otherwise it will be stopped at the entry 258 // point and get reparented to someone else and never go away. 259 DNBLog ("Could not get task port for process, sending SIGKILL and exiting."); 260 kill (SIGKILL, pid); 261 262 if (err_str && err_len > 0) 263 { 264 if (launch_err.AsString()) 265 { 266 ::snprintf (err_str, err_len, "failed to get the task for process %i (%s)", pid, launch_err.AsString()); 267 } 268 else 269 { 270 ::snprintf (err_str, err_len, "failed to get the task for process %i", pid); 271 } 272 } 273 } 274 else 275 { 276 bool res = AddProcessToMap(pid, processSP); 277 assert(res && "Couldn't add process to map!"); 278 return pid; 279 } 280 } 281 } 282 return INVALID_NUB_PROCESS; 283 } 284 285 nub_process_t 286 DNBProcessAttachByName (const char *name, struct timespec *timeout, char *err_str, size_t err_len) 287 { 288 if (err_str && err_len > 0) 289 err_str[0] = '\0'; 290 std::vector<struct kinfo_proc> matching_proc_infos; 291 size_t num_matching_proc_infos = GetAllInfosMatchingName(name, matching_proc_infos); 292 if (num_matching_proc_infos == 0) 293 { 294 DNBLogError ("error: no processes match '%s'\n", name); 295 return INVALID_NUB_PROCESS; 296 } 297 else if (num_matching_proc_infos > 1) 298 { 299 DNBLogError ("error: %llu processes match '%s':\n", (uint64_t)num_matching_proc_infos, name); 300 size_t i; 301 for (i=0; i<num_matching_proc_infos; ++i) 302 DNBLogError ("%6u - %s\n", matching_proc_infos[i].kp_proc.p_pid, matching_proc_infos[i].kp_proc.p_comm); 303 return INVALID_NUB_PROCESS; 304 } 305 306 return DNBProcessAttach (matching_proc_infos[0].kp_proc.p_pid, timeout, err_str, err_len); 307 } 308 309 nub_process_t 310 DNBProcessAttach (nub_process_t attach_pid, struct timespec *timeout, char *err_str, size_t err_len) 311 { 312 if (err_str && err_len > 0) 313 err_str[0] = '\0'; 314 315 pid_t pid = INVALID_NUB_PROCESS; 316 MachProcessSP processSP(new MachProcess); 317 if (processSP.get()) 318 { 319 DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) attaching to pid %d...", attach_pid); 320 pid = processSP->AttachForDebug (attach_pid, err_str, err_len); 321 322 if (pid != INVALID_NUB_PROCESS) 323 { 324 bool res = AddProcessToMap(pid, processSP); 325 assert(res && "Couldn't add process to map!"); 326 spawn_waitpid_thread(pid); 327 } 328 } 329 330 while (pid != INVALID_NUB_PROCESS) 331 { 332 // Wait for process to start up and hit entry point 333 DNBLogThreadedIf (LOG_PROCESS, 334 "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE)...", 335 __FUNCTION__, 336 pid); 337 nub_event_t set_events = DNBProcessWaitForEvents (pid, 338 eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, 339 true, 340 timeout); 341 342 DNBLogThreadedIf (LOG_PROCESS, 343 "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE) => 0x%8.8x", 344 __FUNCTION__, 345 pid, 346 set_events); 347 348 if (set_events == 0) 349 { 350 if (err_str && err_len > 0) 351 snprintf(err_str, err_len, "operation timed out"); 352 pid = INVALID_NUB_PROCESS; 353 } 354 else 355 { 356 if (set_events & (eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged)) 357 { 358 nub_state_t pid_state = DNBProcessGetState (pid); 359 DNBLogThreadedIf (LOG_PROCESS, "%s process %4.4x state changed (eEventProcessStateChanged): %s", 360 __FUNCTION__, pid, DNBStateAsString(pid_state)); 361 362 switch (pid_state) 363 { 364 default: 365 case eStateInvalid: 366 case eStateUnloaded: 367 case eStateAttaching: 368 case eStateLaunching: 369 case eStateSuspended: 370 break; // Ignore 371 372 case eStateRunning: 373 case eStateStepping: 374 // Still waiting to stop at entry point... 375 break; 376 377 case eStateStopped: 378 case eStateCrashed: 379 return pid; 380 381 case eStateDetached: 382 case eStateExited: 383 if (err_str && err_len > 0) 384 snprintf(err_str, err_len, "process exited"); 385 return INVALID_NUB_PROCESS; 386 } 387 } 388 389 DNBProcessResetEvents(pid, set_events); 390 } 391 } 392 393 return INVALID_NUB_PROCESS; 394 } 395 396 size_t 397 GetAllInfos (std::vector<struct kinfo_proc>& proc_infos) 398 { 399 size_t size = 0; 400 int name[] = { CTL_KERN, KERN_PROC, KERN_PROC_ALL }; 401 u_int namelen = sizeof(name)/sizeof(int); 402 int err; 403 404 // Try to find out how many processes are around so we can 405 // size the buffer appropriately. sysctl's man page specifically suggests 406 // this approach, and says it returns a bit larger size than needed to 407 // handle any new processes created between then and now. 408 409 err = ::sysctl (name, namelen, NULL, &size, NULL, 0); 410 411 if ((err < 0) && (err != ENOMEM)) 412 { 413 proc_infos.clear(); 414 perror("sysctl (mib, miblen, NULL, &num_processes, NULL, 0)"); 415 return 0; 416 } 417 418 419 // Increase the size of the buffer by a few processes in case more have 420 // been spawned 421 proc_infos.resize (size / sizeof(struct kinfo_proc)); 422 size = proc_infos.size() * sizeof(struct kinfo_proc); // Make sure we don't exceed our resize... 423 err = ::sysctl (name, namelen, &proc_infos[0], &size, NULL, 0); 424 if (err < 0) 425 { 426 proc_infos.clear(); 427 return 0; 428 } 429 430 // Trim down our array to fit what we actually got back 431 proc_infos.resize(size / sizeof(struct kinfo_proc)); 432 return proc_infos.size(); 433 } 434 435 static size_t 436 GetAllInfosMatchingName(const char *full_process_name, std::vector<struct kinfo_proc>& matching_proc_infos) 437 { 438 439 matching_proc_infos.clear(); 440 if (full_process_name && full_process_name[0]) 441 { 442 // We only get the process name, not the full path, from the proc_info. So just take the 443 // base name of the process name... 444 const char *process_name; 445 process_name = strrchr (full_process_name, '/'); 446 if (process_name == NULL) 447 process_name = full_process_name; 448 else 449 process_name++; 450 451 const int process_name_len = strlen(process_name); 452 std::vector<struct kinfo_proc> proc_infos; 453 const size_t num_proc_infos = GetAllInfos(proc_infos); 454 if (num_proc_infos > 0) 455 { 456 uint32_t i; 457 for (i=0; i<num_proc_infos; i++) 458 { 459 // Skip zombie processes and processes with unset status 460 if (proc_infos[i].kp_proc.p_stat == 0 || proc_infos[i].kp_proc.p_stat == SZOMB) 461 continue; 462 463 // Check for process by name. We only check the first MAXCOMLEN 464 // chars as that is all that kp_proc.p_comm holds. 465 466 if (::strncasecmp(process_name, proc_infos[i].kp_proc.p_comm, MAXCOMLEN) == 0) 467 { 468 if (process_name_len > MAXCOMLEN) 469 { 470 // We found a matching process name whose first MAXCOMLEN 471 // characters match, but there is more to the name than 472 // this. We need to get the full process name. Use proc_pidpath, which will get 473 // us the full path to the executed process. 474 475 char proc_path_buf[PATH_MAX]; 476 477 int return_val = proc_pidpath (proc_infos[i].kp_proc.p_pid, proc_path_buf, PATH_MAX); 478 if (return_val > 0) 479 { 480 // Okay, now search backwards from that to see if there is a 481 // slash in the name. Note, even though we got all the args we don't care 482 // because the list data is just a bunch of concatenated null terminated strings 483 // so strrchr will start from the end of argv0. 484 485 const char *argv_basename = strrchr(proc_path_buf, '/'); 486 if (argv_basename) 487 { 488 // Skip the '/' 489 ++argv_basename; 490 } 491 else 492 { 493 // We didn't find a directory delimiter in the process argv[0], just use what was in there 494 argv_basename = proc_path_buf; 495 } 496 497 if (argv_basename) 498 { 499 if (::strncasecmp(process_name, argv_basename, PATH_MAX) == 0) 500 { 501 matching_proc_infos.push_back(proc_infos[i]); 502 } 503 } 504 } 505 } 506 else 507 { 508 // We found a matching process, add it to our list 509 matching_proc_infos.push_back(proc_infos[i]); 510 } 511 } 512 } 513 } 514 } 515 // return the newly added matches. 516 return matching_proc_infos.size(); 517 } 518 519 nub_process_t 520 DNBProcessAttachWait (const char *waitfor_process_name, 521 nub_launch_flavor_t launch_flavor, 522 bool ignore_existing, 523 struct timespec *timeout_abstime, 524 useconds_t waitfor_interval, 525 char *err_str, 526 size_t err_len, 527 DNBShouldCancelCallback should_cancel_callback, 528 void *callback_data) 529 { 530 DNBError prepare_error; 531 std::vector<struct kinfo_proc> exclude_proc_infos; 532 size_t num_exclude_proc_infos; 533 534 // If the PrepareForAttach returns a valid token, use MachProcess to check 535 // for the process, otherwise scan the process table. 536 537 const void *attach_token = MachProcess::PrepareForAttach (waitfor_process_name, launch_flavor, true, prepare_error); 538 539 if (prepare_error.Fail()) 540 { 541 DNBLogError ("Error in PrepareForAttach: %s", prepare_error.AsString()); 542 return INVALID_NUB_PROCESS; 543 } 544 545 if (attach_token == NULL) 546 { 547 if (ignore_existing) 548 num_exclude_proc_infos = GetAllInfosMatchingName (waitfor_process_name, exclude_proc_infos); 549 else 550 num_exclude_proc_infos = 0; 551 } 552 553 DNBLogThreadedIf (LOG_PROCESS, "Waiting for '%s' to appear...\n", waitfor_process_name); 554 555 // Loop and try to find the process by name 556 nub_process_t waitfor_pid = INVALID_NUB_PROCESS; 557 558 while (waitfor_pid == INVALID_NUB_PROCESS) 559 { 560 if (attach_token != NULL) 561 { 562 nub_process_t pid; 563 pid = MachProcess::CheckForProcess(attach_token); 564 if (pid != INVALID_NUB_PROCESS) 565 { 566 waitfor_pid = pid; 567 break; 568 } 569 } 570 else 571 { 572 573 // Get the current process list, and check for matches that 574 // aren't in our original list. If anyone wants to attach 575 // to an existing process by name, they should do it with 576 // --attach=PROCNAME. Else we will wait for the first matching 577 // process that wasn't in our exclusion list. 578 std::vector<struct kinfo_proc> proc_infos; 579 const size_t num_proc_infos = GetAllInfosMatchingName (waitfor_process_name, proc_infos); 580 for (size_t i=0; i<num_proc_infos; i++) 581 { 582 nub_process_t curr_pid = proc_infos[i].kp_proc.p_pid; 583 for (size_t j=0; j<num_exclude_proc_infos; j++) 584 { 585 if (curr_pid == exclude_proc_infos[j].kp_proc.p_pid) 586 { 587 // This process was in our exclusion list, don't use it. 588 curr_pid = INVALID_NUB_PROCESS; 589 break; 590 } 591 } 592 593 // If we didn't find CURR_PID in our exclusion list, then use it. 594 if (curr_pid != INVALID_NUB_PROCESS) 595 { 596 // We found our process! 597 waitfor_pid = curr_pid; 598 break; 599 } 600 } 601 } 602 603 // If we haven't found our process yet, check for a timeout 604 // and then sleep for a bit until we poll again. 605 if (waitfor_pid == INVALID_NUB_PROCESS) 606 { 607 if (timeout_abstime != NULL) 608 { 609 // Check to see if we have a waitfor-duration option that 610 // has timed out? 611 if (DNBTimer::TimeOfDayLaterThan(*timeout_abstime)) 612 { 613 if (err_str && err_len > 0) 614 snprintf(err_str, err_len, "operation timed out"); 615 DNBLogError ("error: waiting for process '%s' timed out.\n", waitfor_process_name); 616 return INVALID_NUB_PROCESS; 617 } 618 } 619 620 // Call the should cancel callback as well... 621 622 if (should_cancel_callback != NULL 623 && should_cancel_callback (callback_data)) 624 { 625 DNBLogThreadedIf (LOG_PROCESS, "DNBProcessAttachWait cancelled by should_cancel callback."); 626 waitfor_pid = INVALID_NUB_PROCESS; 627 break; 628 } 629 630 ::usleep (waitfor_interval); // Sleep for WAITFOR_INTERVAL, then poll again 631 } 632 } 633 634 if (waitfor_pid != INVALID_NUB_PROCESS) 635 { 636 DNBLogThreadedIf (LOG_PROCESS, "Attaching to %s with pid %i...\n", waitfor_process_name, waitfor_pid); 637 waitfor_pid = DNBProcessAttach (waitfor_pid, timeout_abstime, err_str, err_len); 638 } 639 640 bool success = waitfor_pid != INVALID_NUB_PROCESS; 641 MachProcess::CleanupAfterAttach (attach_token, success, prepare_error); 642 643 return waitfor_pid; 644 } 645 646 nub_bool_t 647 DNBProcessDetach (nub_process_t pid) 648 { 649 MachProcessSP procSP; 650 if (GetProcessSP (pid, procSP)) 651 { 652 return procSP->Detach(); 653 } 654 return false; 655 } 656 657 nub_bool_t 658 DNBProcessKill (nub_process_t pid) 659 { 660 MachProcessSP procSP; 661 if (GetProcessSP (pid, procSP)) 662 { 663 return procSP->Kill (); 664 } 665 return false; 666 } 667 668 nub_bool_t 669 DNBProcessSignal (nub_process_t pid, int signal) 670 { 671 MachProcessSP procSP; 672 if (GetProcessSP (pid, procSP)) 673 { 674 return procSP->Signal (signal); 675 } 676 return false; 677 } 678 679 680 nub_bool_t 681 DNBProcessIsAlive (nub_process_t pid) 682 { 683 MachProcessSP procSP; 684 if (GetProcessSP (pid, procSP)) 685 { 686 return MachTask::IsValid (procSP->Task().TaskPort()); 687 } 688 return eStateInvalid; 689 } 690 691 //---------------------------------------------------------------------- 692 // Process and Thread state information 693 //---------------------------------------------------------------------- 694 nub_state_t 695 DNBProcessGetState (nub_process_t pid) 696 { 697 MachProcessSP procSP; 698 if (GetProcessSP (pid, procSP)) 699 { 700 return procSP->GetState(); 701 } 702 return eStateInvalid; 703 } 704 705 //---------------------------------------------------------------------- 706 // Process and Thread state information 707 //---------------------------------------------------------------------- 708 nub_bool_t 709 DNBProcessGetExitStatus (nub_process_t pid, int* status) 710 { 711 MachProcessSP procSP; 712 if (GetProcessSP (pid, procSP)) 713 { 714 return procSP->GetExitStatus(status); 715 } 716 return false; 717 } 718 719 nub_bool_t 720 DNBProcessSetExitStatus (nub_process_t pid, int status) 721 { 722 MachProcessSP procSP; 723 if (GetProcessSP (pid, procSP)) 724 { 725 procSP->SetExitStatus(status); 726 return true; 727 } 728 return false; 729 } 730 731 732 const char * 733 DNBThreadGetName (nub_process_t pid, nub_thread_t tid) 734 { 735 MachProcessSP procSP; 736 if (GetProcessSP (pid, procSP)) 737 return procSP->ThreadGetName(tid); 738 return NULL; 739 } 740 741 742 nub_bool_t 743 DNBThreadGetIdentifierInfo (nub_process_t pid, nub_thread_t tid, thread_identifier_info_data_t *ident_info) 744 { 745 MachProcessSP procSP; 746 if (GetProcessSP (pid, procSP)) 747 return procSP->GetThreadList().GetIdentifierInfo(tid, ident_info); 748 return false; 749 } 750 751 nub_state_t 752 DNBThreadGetState (nub_process_t pid, nub_thread_t tid) 753 { 754 MachProcessSP procSP; 755 if (GetProcessSP (pid, procSP)) 756 { 757 return procSP->ThreadGetState(tid); 758 } 759 return eStateInvalid; 760 } 761 762 const char * 763 DNBStateAsString(nub_state_t state) 764 { 765 switch (state) 766 { 767 case eStateInvalid: return "Invalid"; 768 case eStateUnloaded: return "Unloaded"; 769 case eStateAttaching: return "Attaching"; 770 case eStateLaunching: return "Launching"; 771 case eStateStopped: return "Stopped"; 772 case eStateRunning: return "Running"; 773 case eStateStepping: return "Stepping"; 774 case eStateCrashed: return "Crashed"; 775 case eStateDetached: return "Detached"; 776 case eStateExited: return "Exited"; 777 case eStateSuspended: return "Suspended"; 778 } 779 return "nub_state_t ???"; 780 } 781 782 const char * 783 DNBProcessGetExecutablePath (nub_process_t pid) 784 { 785 MachProcessSP procSP; 786 if (GetProcessSP (pid, procSP)) 787 { 788 return procSP->Path(); 789 } 790 return NULL; 791 } 792 793 nub_size_t 794 DNBProcessGetArgumentCount (nub_process_t pid) 795 { 796 MachProcessSP procSP; 797 if (GetProcessSP (pid, procSP)) 798 { 799 return procSP->ArgumentCount(); 800 } 801 return 0; 802 } 803 804 const char * 805 DNBProcessGetArgumentAtIndex (nub_process_t pid, nub_size_t idx) 806 { 807 MachProcessSP procSP; 808 if (GetProcessSP (pid, procSP)) 809 { 810 return procSP->ArgumentAtIndex (idx); 811 } 812 return NULL; 813 } 814 815 816 //---------------------------------------------------------------------- 817 // Execution control 818 //---------------------------------------------------------------------- 819 nub_bool_t 820 DNBProcessResume (nub_process_t pid, const DNBThreadResumeAction *actions, size_t num_actions) 821 { 822 DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid); 823 MachProcessSP procSP; 824 if (GetProcessSP (pid, procSP)) 825 { 826 DNBThreadResumeActions thread_actions (actions, num_actions); 827 828 // Below we add a default thread plan just in case one wasn't 829 // provided so all threads always know what they were supposed to do 830 if (thread_actions.IsEmpty()) 831 { 832 // No thread plans were given, so the default it to run all threads 833 thread_actions.SetDefaultThreadActionIfNeeded (eStateRunning, 0); 834 } 835 else 836 { 837 // Some thread plans were given which means anything that wasn't 838 // specified should remain stopped. 839 thread_actions.SetDefaultThreadActionIfNeeded (eStateStopped, 0); 840 } 841 return procSP->Resume (thread_actions); 842 } 843 return false; 844 } 845 846 nub_bool_t 847 DNBProcessHalt (nub_process_t pid) 848 { 849 DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid); 850 MachProcessSP procSP; 851 if (GetProcessSP (pid, procSP)) 852 return procSP->Signal (SIGSTOP); 853 return false; 854 } 855 // 856 //nub_bool_t 857 //DNBThreadResume (nub_process_t pid, nub_thread_t tid, nub_bool_t step) 858 //{ 859 // DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u)", __FUNCTION__, pid, tid, (uint32_t)step); 860 // MachProcessSP procSP; 861 // if (GetProcessSP (pid, procSP)) 862 // { 863 // return procSP->Resume(tid, step, 0); 864 // } 865 // return false; 866 //} 867 // 868 //nub_bool_t 869 //DNBThreadResumeWithSignal (nub_process_t pid, nub_thread_t tid, nub_bool_t step, int signal) 870 //{ 871 // DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u, signal = %i)", __FUNCTION__, pid, tid, (uint32_t)step, signal); 872 // MachProcessSP procSP; 873 // if (GetProcessSP (pid, procSP)) 874 // { 875 // return procSP->Resume(tid, step, signal); 876 // } 877 // return false; 878 //} 879 880 nub_event_t 881 DNBProcessWaitForEvents (nub_process_t pid, nub_event_t event_mask, bool wait_for_set, struct timespec* timeout) 882 { 883 nub_event_t result = 0; 884 MachProcessSP procSP; 885 if (GetProcessSP (pid, procSP)) 886 { 887 if (wait_for_set) 888 result = procSP->Events().WaitForSetEvents(event_mask, timeout); 889 else 890 result = procSP->Events().WaitForEventsToReset(event_mask, timeout); 891 } 892 return result; 893 } 894 895 void 896 DNBProcessResetEvents (nub_process_t pid, nub_event_t event_mask) 897 { 898 MachProcessSP procSP; 899 if (GetProcessSP (pid, procSP)) 900 procSP->Events().ResetEvents(event_mask); 901 } 902 903 // Breakpoints 904 nub_bool_t 905 DNBBreakpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, nub_bool_t hardware) 906 { 907 MachProcessSP procSP; 908 if (GetProcessSP (pid, procSP)) 909 return procSP->CreateBreakpoint(addr, size, hardware) != NULL; 910 return false; 911 } 912 913 nub_bool_t 914 DNBBreakpointClear (nub_process_t pid, nub_addr_t addr) 915 { 916 MachProcessSP procSP; 917 if (GetProcessSP (pid, procSP)) 918 return procSP->DisableBreakpoint(addr, true); 919 return false; // Failed 920 } 921 922 923 //---------------------------------------------------------------------- 924 // Watchpoints 925 //---------------------------------------------------------------------- 926 nub_bool_t 927 DNBWatchpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, uint32_t watch_flags, nub_bool_t hardware) 928 { 929 MachProcessSP procSP; 930 if (GetProcessSP (pid, procSP)) 931 return procSP->CreateWatchpoint(addr, size, watch_flags, hardware) != NULL; 932 return false; 933 } 934 935 nub_bool_t 936 DNBWatchpointClear (nub_process_t pid, nub_addr_t addr) 937 { 938 MachProcessSP procSP; 939 if (GetProcessSP (pid, procSP)) 940 return procSP->DisableWatchpoint(addr, true); 941 return false; // Failed 942 } 943 944 //---------------------------------------------------------------------- 945 // Return the number of supported hardware watchpoints. 946 //---------------------------------------------------------------------- 947 uint32_t 948 DNBWatchpointGetNumSupportedHWP (nub_process_t pid) 949 { 950 MachProcessSP procSP; 951 if (GetProcessSP (pid, procSP)) 952 return procSP->GetNumSupportedHardwareWatchpoints(); 953 return 0; 954 } 955 956 //---------------------------------------------------------------------- 957 // Read memory in the address space of process PID. This call will take 958 // care of setting and restoring permissions and breaking up the memory 959 // read into multiple chunks as required. 960 // 961 // RETURNS: number of bytes actually read 962 //---------------------------------------------------------------------- 963 nub_size_t 964 DNBProcessMemoryRead (nub_process_t pid, nub_addr_t addr, nub_size_t size, void *buf) 965 { 966 MachProcessSP procSP; 967 if (GetProcessSP (pid, procSP)) 968 return procSP->ReadMemory(addr, size, buf); 969 return 0; 970 } 971 972 //---------------------------------------------------------------------- 973 // Write memory to the address space of process PID. This call will take 974 // care of setting and restoring permissions and breaking up the memory 975 // write into multiple chunks as required. 976 // 977 // RETURNS: number of bytes actually written 978 //---------------------------------------------------------------------- 979 nub_size_t 980 DNBProcessMemoryWrite (nub_process_t pid, nub_addr_t addr, nub_size_t size, const void *buf) 981 { 982 MachProcessSP procSP; 983 if (GetProcessSP (pid, procSP)) 984 return procSP->WriteMemory(addr, size, buf); 985 return 0; 986 } 987 988 nub_addr_t 989 DNBProcessMemoryAllocate (nub_process_t pid, nub_size_t size, uint32_t permissions) 990 { 991 MachProcessSP procSP; 992 if (GetProcessSP (pid, procSP)) 993 return procSP->Task().AllocateMemory (size, permissions); 994 return 0; 995 } 996 997 nub_bool_t 998 DNBProcessMemoryDeallocate (nub_process_t pid, nub_addr_t addr) 999 { 1000 MachProcessSP procSP; 1001 if (GetProcessSP (pid, procSP)) 1002 return procSP->Task().DeallocateMemory (addr); 1003 return 0; 1004 } 1005 1006 //---------------------------------------------------------------------- 1007 // Find attributes of the memory region that contains ADDR for process PID, 1008 // if possible, and return a string describing those attributes. 1009 // 1010 // Returns 1 if we could find attributes for this region and OUTBUF can 1011 // be sent to the remote debugger. 1012 // 1013 // Returns 0 if we couldn't find the attributes for a region of memory at 1014 // that address and OUTBUF should not be sent. 1015 // 1016 // Returns -1 if this platform cannot look up information about memory regions 1017 // or if we do not yet have a valid launched process. 1018 // 1019 //---------------------------------------------------------------------- 1020 int 1021 DNBProcessMemoryRegionInfo (nub_process_t pid, nub_addr_t addr, DNBRegionInfo *region_info) 1022 { 1023 MachProcessSP procSP; 1024 if (GetProcessSP (pid, procSP)) 1025 return procSP->Task().GetMemoryRegionInfo (addr, region_info); 1026 1027 return -1; 1028 } 1029 1030 std::string 1031 DNBProcessGetProfileData (nub_process_t pid, DNBProfileDataScanType scanType) 1032 { 1033 MachProcessSP procSP; 1034 if (GetProcessSP (pid, procSP)) 1035 return procSP->Task().GetProfileData(scanType); 1036 1037 return std::string(""); 1038 } 1039 1040 nub_bool_t 1041 DNBProcessSetEnableAsyncProfiling (nub_process_t pid, nub_bool_t enable, uint64_t interval_usec, DNBProfileDataScanType scan_type) 1042 { 1043 MachProcessSP procSP; 1044 if (GetProcessSP (pid, procSP)) 1045 { 1046 procSP->SetEnableAsyncProfiling(enable, interval_usec, scan_type); 1047 return true; 1048 } 1049 1050 return false; 1051 } 1052 1053 //---------------------------------------------------------------------- 1054 // Formatted output that uses memory and registers from process and 1055 // thread in place of arguments. 1056 //---------------------------------------------------------------------- 1057 nub_size_t 1058 DNBPrintf (nub_process_t pid, nub_thread_t tid, nub_addr_t base_addr, FILE *file, const char *format) 1059 { 1060 if (file == NULL) 1061 return 0; 1062 enum printf_flags 1063 { 1064 alternate_form = (1 << 0), 1065 zero_padding = (1 << 1), 1066 negative_field_width = (1 << 2), 1067 blank_space = (1 << 3), 1068 show_sign = (1 << 4), 1069 show_thousands_separator= (1 << 5), 1070 }; 1071 1072 enum printf_length_modifiers 1073 { 1074 length_mod_h = (1 << 0), 1075 length_mod_hh = (1 << 1), 1076 length_mod_l = (1 << 2), 1077 length_mod_ll = (1 << 3), 1078 length_mod_L = (1 << 4), 1079 length_mod_j = (1 << 5), 1080 length_mod_t = (1 << 6), 1081 length_mod_z = (1 << 7), 1082 length_mod_q = (1 << 8), 1083 }; 1084 1085 nub_addr_t addr = base_addr; 1086 char *end_format = (char*)format + strlen(format); 1087 char *end = NULL; // For strtoXXXX calls; 1088 std::basic_string<uint8_t> buf; 1089 nub_size_t total_bytes_read = 0; 1090 DNBDataRef data; 1091 const char *f; 1092 for (f = format; *f != '\0' && f < end_format; f++) 1093 { 1094 char ch = *f; 1095 switch (ch) 1096 { 1097 case '%': 1098 { 1099 f++; // Skip the '%' character 1100 // int min_field_width = 0; 1101 // int precision = 0; 1102 //uint32_t flags = 0; 1103 uint32_t length_modifiers = 0; 1104 uint32_t byte_size = 0; 1105 uint32_t actual_byte_size = 0; 1106 bool is_string = false; 1107 bool is_register = false; 1108 DNBRegisterValue register_value; 1109 int64_t register_offset = 0; 1110 nub_addr_t register_addr = INVALID_NUB_ADDRESS; 1111 1112 // Create the format string to use for this conversion specification 1113 // so we can remove and mprintf specific flags and formatters. 1114 std::string fprintf_format("%"); 1115 1116 // Decode any flags 1117 switch (*f) 1118 { 1119 case '#': fprintf_format += *f++; break; //flags |= alternate_form; break; 1120 case '0': fprintf_format += *f++; break; //flags |= zero_padding; break; 1121 case '-': fprintf_format += *f++; break; //flags |= negative_field_width; break; 1122 case ' ': fprintf_format += *f++; break; //flags |= blank_space; break; 1123 case '+': fprintf_format += *f++; break; //flags |= show_sign; break; 1124 case ',': fprintf_format += *f++; break; //flags |= show_thousands_separator;break; 1125 case '{': 1126 case '[': 1127 { 1128 // We have a register name specification that can take two forms: 1129 // ${regname} or ${regname+offset} 1130 // The action is to read the register value and add the signed offset 1131 // (if any) and use that as the value to format. 1132 // $[regname] or $[regname+offset] 1133 // The action is to read the register value and add the signed offset 1134 // (if any) and use the result as an address to dereference. The size 1135 // of what is dereferenced is specified by the actual byte size that 1136 // follows the minimum field width and precision (see comments below). 1137 switch (*f) 1138 { 1139 case '{': 1140 case '[': 1141 { 1142 char open_scope_ch = *f; 1143 f++; 1144 const char *reg_name = f; 1145 size_t reg_name_length = strcspn(f, "+-}]"); 1146 if (reg_name_length > 0) 1147 { 1148 std::string register_name(reg_name, reg_name_length); 1149 f += reg_name_length; 1150 register_offset = strtoll(f, &end, 0); 1151 if (f < end) 1152 f = end; 1153 if ((open_scope_ch == '{' && *f != '}') || (open_scope_ch == '[' && *f != ']')) 1154 { 1155 fprintf(file, "error: Invalid register format string. Valid formats are %%{regname} or %%{regname+offset}, %%[regname] or %%[regname+offset]\n"); 1156 return total_bytes_read; 1157 } 1158 else 1159 { 1160 f++; 1161 if (DNBThreadGetRegisterValueByName(pid, tid, REGISTER_SET_ALL, register_name.c_str(), ®ister_value)) 1162 { 1163 // Set the address to dereference using the register value plus the offset 1164 switch (register_value.info.size) 1165 { 1166 default: 1167 case 0: 1168 fprintf (file, "error: unsupported register size of %u.\n", register_value.info.size); 1169 return total_bytes_read; 1170 1171 case 1: register_addr = register_value.value.uint8 + register_offset; break; 1172 case 2: register_addr = register_value.value.uint16 + register_offset; break; 1173 case 4: register_addr = register_value.value.uint32 + register_offset; break; 1174 case 8: register_addr = register_value.value.uint64 + register_offset; break; 1175 case 16: 1176 if (open_scope_ch == '[') 1177 { 1178 fprintf (file, "error: register size (%u) too large for address.\n", register_value.info.size); 1179 return total_bytes_read; 1180 } 1181 break; 1182 } 1183 1184 if (open_scope_ch == '{') 1185 { 1186 byte_size = register_value.info.size; 1187 is_register = true; // value is in a register 1188 1189 } 1190 else 1191 { 1192 addr = register_addr; // Use register value and offset as the address 1193 } 1194 } 1195 else 1196 { 1197 fprintf(file, "error: unable to read register '%s' for process %#.4x and thread %#.8" PRIx64 "\n", register_name.c_str(), pid, tid); 1198 return total_bytes_read; 1199 } 1200 } 1201 } 1202 } 1203 break; 1204 1205 default: 1206 fprintf(file, "error: %%$ must be followed by (regname + n) or [regname + n]\n"); 1207 return total_bytes_read; 1208 } 1209 } 1210 break; 1211 } 1212 1213 // Check for a minimum field width 1214 if (isdigit(*f)) 1215 { 1216 //min_field_width = strtoul(f, &end, 10); 1217 strtoul(f, &end, 10); 1218 if (end > f) 1219 { 1220 fprintf_format.append(f, end - f); 1221 f = end; 1222 } 1223 } 1224 1225 1226 // Check for a precision 1227 if (*f == '.') 1228 { 1229 f++; 1230 if (isdigit(*f)) 1231 { 1232 fprintf_format += '.'; 1233 //precision = strtoul(f, &end, 10); 1234 strtoul(f, &end, 10); 1235 if (end > f) 1236 { 1237 fprintf_format.append(f, end - f); 1238 f = end; 1239 } 1240 } 1241 } 1242 1243 1244 // mprintf specific: read the optional actual byte size (abs) 1245 // after the standard minimum field width (mfw) and precision (prec). 1246 // Standard printf calls you can have "mfw.prec" or ".prec", but 1247 // mprintf can have "mfw.prec.abs", ".prec.abs" or "..abs". This is nice 1248 // for strings that may be in a fixed size buffer, but may not use all bytes 1249 // in that buffer for printable characters. 1250 if (*f == '.') 1251 { 1252 f++; 1253 actual_byte_size = strtoul(f, &end, 10); 1254 if (end > f) 1255 { 1256 byte_size = actual_byte_size; 1257 f = end; 1258 } 1259 } 1260 1261 // Decode the length modifiers 1262 switch (*f) 1263 { 1264 case 'h': // h and hh length modifiers 1265 fprintf_format += *f++; 1266 length_modifiers |= length_mod_h; 1267 if (*f == 'h') 1268 { 1269 fprintf_format += *f++; 1270 length_modifiers |= length_mod_hh; 1271 } 1272 break; 1273 1274 case 'l': // l and ll length modifiers 1275 fprintf_format += *f++; 1276 length_modifiers |= length_mod_l; 1277 if (*f == 'h') 1278 { 1279 fprintf_format += *f++; 1280 length_modifiers |= length_mod_ll; 1281 } 1282 break; 1283 1284 case 'L': fprintf_format += *f++; length_modifiers |= length_mod_L; break; 1285 case 'j': fprintf_format += *f++; length_modifiers |= length_mod_j; break; 1286 case 't': fprintf_format += *f++; length_modifiers |= length_mod_t; break; 1287 case 'z': fprintf_format += *f++; length_modifiers |= length_mod_z; break; 1288 case 'q': fprintf_format += *f++; length_modifiers |= length_mod_q; break; 1289 } 1290 1291 // Decode the conversion specifier 1292 switch (*f) 1293 { 1294 case '_': 1295 // mprintf specific format items 1296 { 1297 ++f; // Skip the '_' character 1298 switch (*f) 1299 { 1300 case 'a': // Print the current address 1301 ++f; 1302 fprintf_format += "ll"; 1303 fprintf_format += *f; // actual format to show address with folows the 'a' ("%_ax") 1304 fprintf (file, fprintf_format.c_str(), addr); 1305 break; 1306 case 'o': // offset from base address 1307 ++f; 1308 fprintf_format += "ll"; 1309 fprintf_format += *f; // actual format to show address with folows the 'a' ("%_ox") 1310 fprintf(file, fprintf_format.c_str(), addr - base_addr); 1311 break; 1312 default: 1313 fprintf (file, "error: unsupported mprintf specific format character '%c'.\n", *f); 1314 break; 1315 } 1316 continue; 1317 } 1318 break; 1319 1320 case 'D': 1321 case 'O': 1322 case 'U': 1323 fprintf_format += *f; 1324 if (byte_size == 0) 1325 byte_size = sizeof(long int); 1326 break; 1327 1328 case 'd': 1329 case 'i': 1330 case 'o': 1331 case 'u': 1332 case 'x': 1333 case 'X': 1334 fprintf_format += *f; 1335 if (byte_size == 0) 1336 { 1337 if (length_modifiers & length_mod_hh) 1338 byte_size = sizeof(char); 1339 else if (length_modifiers & length_mod_h) 1340 byte_size = sizeof(short); 1341 else if (length_modifiers & length_mod_ll) 1342 byte_size = sizeof(long long); 1343 else if (length_modifiers & length_mod_l) 1344 byte_size = sizeof(long); 1345 else 1346 byte_size = sizeof(int); 1347 } 1348 break; 1349 1350 case 'a': 1351 case 'A': 1352 case 'f': 1353 case 'F': 1354 case 'e': 1355 case 'E': 1356 case 'g': 1357 case 'G': 1358 fprintf_format += *f; 1359 if (byte_size == 0) 1360 { 1361 if (length_modifiers & length_mod_L) 1362 byte_size = sizeof(long double); 1363 else 1364 byte_size = sizeof(double); 1365 } 1366 break; 1367 1368 case 'c': 1369 if ((length_modifiers & length_mod_l) == 0) 1370 { 1371 fprintf_format += *f; 1372 if (byte_size == 0) 1373 byte_size = sizeof(char); 1374 break; 1375 } 1376 // Fall through to 'C' modifier below... 1377 1378 case 'C': 1379 fprintf_format += *f; 1380 if (byte_size == 0) 1381 byte_size = sizeof(wchar_t); 1382 break; 1383 1384 case 's': 1385 fprintf_format += *f; 1386 if (is_register || byte_size == 0) 1387 is_string = 1; 1388 break; 1389 1390 case 'p': 1391 fprintf_format += *f; 1392 if (byte_size == 0) 1393 byte_size = sizeof(void*); 1394 break; 1395 } 1396 1397 if (is_string) 1398 { 1399 std::string mem_string; 1400 const size_t string_buf_len = 4; 1401 char string_buf[string_buf_len+1]; 1402 char *string_buf_end = string_buf + string_buf_len; 1403 string_buf[string_buf_len] = '\0'; 1404 nub_size_t bytes_read; 1405 nub_addr_t str_addr = is_register ? register_addr : addr; 1406 while ((bytes_read = DNBProcessMemoryRead(pid, str_addr, string_buf_len, &string_buf[0])) > 0) 1407 { 1408 // Did we get a NULL termination character yet? 1409 if (strchr(string_buf, '\0') == string_buf_end) 1410 { 1411 // no NULL terminator yet, append as a std::string 1412 mem_string.append(string_buf, string_buf_len); 1413 str_addr += string_buf_len; 1414 } 1415 else 1416 { 1417 // yep 1418 break; 1419 } 1420 } 1421 // Append as a C-string so we don't get the extra NULL 1422 // characters in the temp buffer (since it was resized) 1423 mem_string += string_buf; 1424 size_t mem_string_len = mem_string.size() + 1; 1425 fprintf(file, fprintf_format.c_str(), mem_string.c_str()); 1426 if (mem_string_len > 0) 1427 { 1428 if (!is_register) 1429 { 1430 addr += mem_string_len; 1431 total_bytes_read += mem_string_len; 1432 } 1433 } 1434 else 1435 return total_bytes_read; 1436 } 1437 else 1438 if (byte_size > 0) 1439 { 1440 buf.resize(byte_size); 1441 nub_size_t bytes_read = 0; 1442 if (is_register) 1443 bytes_read = register_value.info.size; 1444 else 1445 bytes_read = DNBProcessMemoryRead(pid, addr, buf.size(), &buf[0]); 1446 if (bytes_read > 0) 1447 { 1448 if (!is_register) 1449 total_bytes_read += bytes_read; 1450 1451 if (bytes_read == byte_size) 1452 { 1453 switch (*f) 1454 { 1455 case 'd': 1456 case 'i': 1457 case 'o': 1458 case 'u': 1459 case 'X': 1460 case 'x': 1461 case 'a': 1462 case 'A': 1463 case 'f': 1464 case 'F': 1465 case 'e': 1466 case 'E': 1467 case 'g': 1468 case 'G': 1469 case 'p': 1470 case 'c': 1471 case 'C': 1472 { 1473 if (is_register) 1474 data.SetData(®ister_value.value.v_uint8[0], register_value.info.size); 1475 else 1476 data.SetData(&buf[0], bytes_read); 1477 DNBDataRef::offset_t data_offset = 0; 1478 if (byte_size <= 4) 1479 { 1480 uint32_t u32 = data.GetMax32(&data_offset, byte_size); 1481 // Show the actual byte width when displaying hex 1482 fprintf(file, fprintf_format.c_str(), u32); 1483 } 1484 else if (byte_size <= 8) 1485 { 1486 uint64_t u64 = data.GetMax64(&data_offset, byte_size); 1487 // Show the actual byte width when displaying hex 1488 fprintf(file, fprintf_format.c_str(), u64); 1489 } 1490 else 1491 { 1492 fprintf(file, "error: integer size not supported, must be 8 bytes or less (%u bytes).\n", byte_size); 1493 } 1494 if (!is_register) 1495 addr += byte_size; 1496 } 1497 break; 1498 1499 case 's': 1500 fprintf(file, fprintf_format.c_str(), buf.c_str()); 1501 addr += byte_size; 1502 break; 1503 1504 default: 1505 fprintf(file, "error: unsupported conversion specifier '%c'.\n", *f); 1506 break; 1507 } 1508 } 1509 } 1510 } 1511 else 1512 return total_bytes_read; 1513 } 1514 break; 1515 1516 case '\\': 1517 { 1518 f++; 1519 switch (*f) 1520 { 1521 case 'e': ch = '\e'; break; 1522 case 'a': ch = '\a'; break; 1523 case 'b': ch = '\b'; break; 1524 case 'f': ch = '\f'; break; 1525 case 'n': ch = '\n'; break; 1526 case 'r': ch = '\r'; break; 1527 case 't': ch = '\t'; break; 1528 case 'v': ch = '\v'; break; 1529 case '\'': ch = '\''; break; 1530 case '\\': ch = '\\'; break; 1531 case '0': 1532 case '1': 1533 case '2': 1534 case '3': 1535 case '4': 1536 case '5': 1537 case '6': 1538 case '7': 1539 ch = strtoul(f, &end, 8); 1540 f = end; 1541 break; 1542 default: 1543 ch = *f; 1544 break; 1545 } 1546 fputc(ch, file); 1547 } 1548 break; 1549 1550 default: 1551 fputc(ch, file); 1552 break; 1553 } 1554 } 1555 return total_bytes_read; 1556 } 1557 1558 1559 //---------------------------------------------------------------------- 1560 // Get the number of threads for the specified process. 1561 //---------------------------------------------------------------------- 1562 nub_size_t 1563 DNBProcessGetNumThreads (nub_process_t pid) 1564 { 1565 MachProcessSP procSP; 1566 if (GetProcessSP (pid, procSP)) 1567 return procSP->GetNumThreads(); 1568 return 0; 1569 } 1570 1571 //---------------------------------------------------------------------- 1572 // Get the thread ID of the current thread. 1573 //---------------------------------------------------------------------- 1574 nub_thread_t 1575 DNBProcessGetCurrentThread (nub_process_t pid) 1576 { 1577 MachProcessSP procSP; 1578 if (GetProcessSP (pid, procSP)) 1579 return procSP->GetCurrentThread(); 1580 return 0; 1581 } 1582 1583 //---------------------------------------------------------------------- 1584 // Get the mach port number of the current thread. 1585 //---------------------------------------------------------------------- 1586 nub_thread_t 1587 DNBProcessGetCurrentThreadMachPort (nub_process_t pid) 1588 { 1589 MachProcessSP procSP; 1590 if (GetProcessSP (pid, procSP)) 1591 return procSP->GetCurrentThreadMachPort(); 1592 return 0; 1593 } 1594 1595 //---------------------------------------------------------------------- 1596 // Change the current thread. 1597 //---------------------------------------------------------------------- 1598 nub_thread_t 1599 DNBProcessSetCurrentThread (nub_process_t pid, nub_thread_t tid) 1600 { 1601 MachProcessSP procSP; 1602 if (GetProcessSP (pid, procSP)) 1603 return procSP->SetCurrentThread (tid); 1604 return INVALID_NUB_THREAD; 1605 } 1606 1607 1608 //---------------------------------------------------------------------- 1609 // Dump a string describing a thread's stop reason to the specified file 1610 // handle 1611 //---------------------------------------------------------------------- 1612 nub_bool_t 1613 DNBThreadGetStopReason (nub_process_t pid, nub_thread_t tid, struct DNBThreadStopInfo *stop_info) 1614 { 1615 MachProcessSP procSP; 1616 if (GetProcessSP (pid, procSP)) 1617 return procSP->GetThreadStoppedReason (tid, stop_info); 1618 return false; 1619 } 1620 1621 //---------------------------------------------------------------------- 1622 // Return string description for the specified thread. 1623 // 1624 // RETURNS: NULL if the thread isn't valid, else a NULL terminated C 1625 // string from a static buffer that must be copied prior to subsequent 1626 // calls. 1627 //---------------------------------------------------------------------- 1628 const char * 1629 DNBThreadGetInfo (nub_process_t pid, nub_thread_t tid) 1630 { 1631 MachProcessSP procSP; 1632 if (GetProcessSP (pid, procSP)) 1633 return procSP->GetThreadInfo (tid); 1634 return NULL; 1635 } 1636 1637 //---------------------------------------------------------------------- 1638 // Get the thread ID given a thread index. 1639 //---------------------------------------------------------------------- 1640 nub_thread_t 1641 DNBProcessGetThreadAtIndex (nub_process_t pid, size_t thread_idx) 1642 { 1643 MachProcessSP procSP; 1644 if (GetProcessSP (pid, procSP)) 1645 return procSP->GetThreadAtIndex (thread_idx); 1646 return INVALID_NUB_THREAD; 1647 } 1648 1649 //---------------------------------------------------------------------- 1650 // Do whatever is needed to sync the thread's register state with it's kernel values. 1651 //---------------------------------------------------------------------- 1652 nub_bool_t 1653 DNBProcessSyncThreadState (nub_process_t pid, nub_thread_t tid) 1654 { 1655 MachProcessSP procSP; 1656 if (GetProcessSP (pid, procSP)) 1657 return procSP->SyncThreadState (tid); 1658 return false; 1659 1660 } 1661 1662 nub_addr_t 1663 DNBProcessGetSharedLibraryInfoAddress (nub_process_t pid) 1664 { 1665 MachProcessSP procSP; 1666 DNBError err; 1667 if (GetProcessSP (pid, procSP)) 1668 return procSP->Task().GetDYLDAllImageInfosAddress (err); 1669 return INVALID_NUB_ADDRESS; 1670 } 1671 1672 1673 nub_bool_t 1674 DNBProcessSharedLibrariesUpdated(nub_process_t pid) 1675 { 1676 MachProcessSP procSP; 1677 if (GetProcessSP (pid, procSP)) 1678 { 1679 procSP->SharedLibrariesUpdated (); 1680 return true; 1681 } 1682 return false; 1683 } 1684 1685 //---------------------------------------------------------------------- 1686 // Get the current shared library information for a process. Only return 1687 // the shared libraries that have changed since the last shared library 1688 // state changed event if only_changed is non-zero. 1689 //---------------------------------------------------------------------- 1690 nub_size_t 1691 DNBProcessGetSharedLibraryInfo (nub_process_t pid, nub_bool_t only_changed, struct DNBExecutableImageInfo **image_infos) 1692 { 1693 MachProcessSP procSP; 1694 if (GetProcessSP (pid, procSP)) 1695 return procSP->CopyImageInfos (image_infos, only_changed); 1696 1697 // If we have no process, then return NULL for the shared library info 1698 // and zero for shared library count 1699 *image_infos = NULL; 1700 return 0; 1701 } 1702 1703 //---------------------------------------------------------------------- 1704 // Get the register set information for a specific thread. 1705 //---------------------------------------------------------------------- 1706 const DNBRegisterSetInfo * 1707 DNBGetRegisterSetInfo (nub_size_t *num_reg_sets) 1708 { 1709 return DNBArchProtocol::GetRegisterSetInfo (num_reg_sets); 1710 } 1711 1712 1713 //---------------------------------------------------------------------- 1714 // Read a register value by register set and register index. 1715 //---------------------------------------------------------------------- 1716 nub_bool_t 1717 DNBThreadGetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, DNBRegisterValue *value) 1718 { 1719 MachProcessSP procSP; 1720 ::bzero (value, sizeof(DNBRegisterValue)); 1721 if (GetProcessSP (pid, procSP)) 1722 { 1723 if (tid != INVALID_NUB_THREAD) 1724 return procSP->GetRegisterValue (tid, set, reg, value); 1725 } 1726 return false; 1727 } 1728 1729 nub_bool_t 1730 DNBThreadSetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, const DNBRegisterValue *value) 1731 { 1732 if (tid != INVALID_NUB_THREAD) 1733 { 1734 MachProcessSP procSP; 1735 if (GetProcessSP (pid, procSP)) 1736 return procSP->SetRegisterValue (tid, set, reg, value); 1737 } 1738 return false; 1739 } 1740 1741 nub_size_t 1742 DNBThreadGetRegisterContext (nub_process_t pid, nub_thread_t tid, void *buf, size_t buf_len) 1743 { 1744 MachProcessSP procSP; 1745 if (GetProcessSP (pid, procSP)) 1746 { 1747 if (tid != INVALID_NUB_THREAD) 1748 return procSP->GetThreadList().GetRegisterContext (tid, buf, buf_len); 1749 } 1750 ::bzero (buf, buf_len); 1751 return 0; 1752 1753 } 1754 1755 nub_size_t 1756 DNBThreadSetRegisterContext (nub_process_t pid, nub_thread_t tid, const void *buf, size_t buf_len) 1757 { 1758 MachProcessSP procSP; 1759 if (GetProcessSP (pid, procSP)) 1760 { 1761 if (tid != INVALID_NUB_THREAD) 1762 return procSP->GetThreadList().SetRegisterContext (tid, buf, buf_len); 1763 } 1764 return 0; 1765 } 1766 1767 //---------------------------------------------------------------------- 1768 // Read a register value by name. 1769 //---------------------------------------------------------------------- 1770 nub_bool_t 1771 DNBThreadGetRegisterValueByName (nub_process_t pid, nub_thread_t tid, uint32_t reg_set, const char *reg_name, DNBRegisterValue *value) 1772 { 1773 MachProcessSP procSP; 1774 ::bzero (value, sizeof(DNBRegisterValue)); 1775 if (GetProcessSP (pid, procSP)) 1776 { 1777 const struct DNBRegisterSetInfo *set_info; 1778 nub_size_t num_reg_sets = 0; 1779 set_info = DNBGetRegisterSetInfo (&num_reg_sets); 1780 if (set_info) 1781 { 1782 uint32_t set = reg_set; 1783 uint32_t reg; 1784 if (set == REGISTER_SET_ALL) 1785 { 1786 for (set = 1; set < num_reg_sets; ++set) 1787 { 1788 for (reg = 0; reg < set_info[set].num_registers; ++reg) 1789 { 1790 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0) 1791 return procSP->GetRegisterValue (tid, set, reg, value); 1792 } 1793 } 1794 } 1795 else 1796 { 1797 for (reg = 0; reg < set_info[set].num_registers; ++reg) 1798 { 1799 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0) 1800 return procSP->GetRegisterValue (tid, set, reg, value); 1801 } 1802 } 1803 } 1804 } 1805 return false; 1806 } 1807 1808 1809 //---------------------------------------------------------------------- 1810 // Read a register set and register number from the register name. 1811 //---------------------------------------------------------------------- 1812 nub_bool_t 1813 DNBGetRegisterInfoByName (const char *reg_name, DNBRegisterInfo* info) 1814 { 1815 const struct DNBRegisterSetInfo *set_info; 1816 nub_size_t num_reg_sets = 0; 1817 set_info = DNBGetRegisterSetInfo (&num_reg_sets); 1818 if (set_info) 1819 { 1820 uint32_t set, reg; 1821 for (set = 1; set < num_reg_sets; ++set) 1822 { 1823 for (reg = 0; reg < set_info[set].num_registers; ++reg) 1824 { 1825 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0) 1826 { 1827 *info = set_info[set].registers[reg]; 1828 return true; 1829 } 1830 } 1831 } 1832 1833 for (set = 1; set < num_reg_sets; ++set) 1834 { 1835 uint32_t reg; 1836 for (reg = 0; reg < set_info[set].num_registers; ++reg) 1837 { 1838 if (set_info[set].registers[reg].alt == NULL) 1839 continue; 1840 1841 if (strcasecmp(reg_name, set_info[set].registers[reg].alt) == 0) 1842 { 1843 *info = set_info[set].registers[reg]; 1844 return true; 1845 } 1846 } 1847 } 1848 } 1849 1850 ::bzero (info, sizeof(DNBRegisterInfo)); 1851 return false; 1852 } 1853 1854 1855 //---------------------------------------------------------------------- 1856 // Set the name to address callback function that this nub can use 1857 // for any name to address lookups that are needed. 1858 //---------------------------------------------------------------------- 1859 nub_bool_t 1860 DNBProcessSetNameToAddressCallback (nub_process_t pid, DNBCallbackNameToAddress callback, void *baton) 1861 { 1862 MachProcessSP procSP; 1863 if (GetProcessSP (pid, procSP)) 1864 { 1865 procSP->SetNameToAddressCallback (callback, baton); 1866 return true; 1867 } 1868 return false; 1869 } 1870 1871 1872 //---------------------------------------------------------------------- 1873 // Set the name to address callback function that this nub can use 1874 // for any name to address lookups that are needed. 1875 //---------------------------------------------------------------------- 1876 nub_bool_t 1877 DNBProcessSetSharedLibraryInfoCallback (nub_process_t pid, DNBCallbackCopyExecutableImageInfos callback, void *baton) 1878 { 1879 MachProcessSP procSP; 1880 if (GetProcessSP (pid, procSP)) 1881 { 1882 procSP->SetSharedLibraryInfoCallback (callback, baton); 1883 return true; 1884 } 1885 return false; 1886 } 1887 1888 nub_addr_t 1889 DNBProcessLookupAddress (nub_process_t pid, const char *name, const char *shlib) 1890 { 1891 MachProcessSP procSP; 1892 if (GetProcessSP (pid, procSP)) 1893 { 1894 return procSP->LookupSymbol (name, shlib); 1895 } 1896 return INVALID_NUB_ADDRESS; 1897 } 1898 1899 1900 nub_size_t 1901 DNBProcessGetAvailableSTDOUT (nub_process_t pid, char *buf, nub_size_t buf_size) 1902 { 1903 MachProcessSP procSP; 1904 if (GetProcessSP (pid, procSP)) 1905 return procSP->GetAvailableSTDOUT (buf, buf_size); 1906 return 0; 1907 } 1908 1909 nub_size_t 1910 DNBProcessGetAvailableSTDERR (nub_process_t pid, char *buf, nub_size_t buf_size) 1911 { 1912 MachProcessSP procSP; 1913 if (GetProcessSP (pid, procSP)) 1914 return procSP->GetAvailableSTDERR (buf, buf_size); 1915 return 0; 1916 } 1917 1918 nub_size_t 1919 DNBProcessGetAvailableProfileData (nub_process_t pid, char *buf, nub_size_t buf_size) 1920 { 1921 MachProcessSP procSP; 1922 if (GetProcessSP (pid, procSP)) 1923 return procSP->GetAsyncProfileData (buf, buf_size); 1924 return 0; 1925 } 1926 1927 nub_size_t 1928 DNBProcessGetStopCount (nub_process_t pid) 1929 { 1930 MachProcessSP procSP; 1931 if (GetProcessSP (pid, procSP)) 1932 return procSP->StopCount(); 1933 return 0; 1934 } 1935 1936 uint32_t 1937 DNBProcessGetCPUType (nub_process_t pid) 1938 { 1939 MachProcessSP procSP; 1940 if (GetProcessSP (pid, procSP)) 1941 return procSP->GetCPUType (); 1942 return 0; 1943 1944 } 1945 1946 nub_bool_t 1947 DNBResolveExecutablePath (const char *path, char *resolved_path, size_t resolved_path_size) 1948 { 1949 if (path == NULL || path[0] == '\0') 1950 return false; 1951 1952 char max_path[PATH_MAX]; 1953 std::string result; 1954 CFString::GlobPath(path, result); 1955 1956 if (result.empty()) 1957 result = path; 1958 1959 struct stat path_stat; 1960 if (::stat(path, &path_stat) == 0) 1961 { 1962 if ((path_stat.st_mode & S_IFMT) == S_IFDIR) 1963 { 1964 CFBundle bundle (path); 1965 CFReleaser<CFURLRef> url(bundle.CopyExecutableURL ()); 1966 if (url.get()) 1967 { 1968 if (::CFURLGetFileSystemRepresentation (url.get(), true, (UInt8*)resolved_path, resolved_path_size)) 1969 return true; 1970 } 1971 } 1972 } 1973 1974 if (realpath(path, max_path)) 1975 { 1976 // Found the path relatively... 1977 ::strncpy(resolved_path, max_path, resolved_path_size); 1978 return strlen(resolved_path) + 1 < resolved_path_size; 1979 } 1980 else 1981 { 1982 // Not a relative path, check the PATH environment variable if the 1983 const char *PATH = getenv("PATH"); 1984 if (PATH) 1985 { 1986 const char *curr_path_start = PATH; 1987 const char *curr_path_end; 1988 while (curr_path_start && *curr_path_start) 1989 { 1990 curr_path_end = strchr(curr_path_start, ':'); 1991 if (curr_path_end == NULL) 1992 { 1993 result.assign(curr_path_start); 1994 curr_path_start = NULL; 1995 } 1996 else if (curr_path_end > curr_path_start) 1997 { 1998 size_t len = curr_path_end - curr_path_start; 1999 result.assign(curr_path_start, len); 2000 curr_path_start += len + 1; 2001 } 2002 else 2003 break; 2004 2005 result += '/'; 2006 result += path; 2007 struct stat s; 2008 if (stat(result.c_str(), &s) == 0) 2009 { 2010 ::strncpy(resolved_path, result.c_str(), resolved_path_size); 2011 return result.size() + 1 < resolved_path_size; 2012 } 2013 } 2014 } 2015 } 2016 return false; 2017 } 2018 2019 2020 void 2021 DNBInitialize() 2022 { 2023 DNBLogThreadedIf (LOG_PROCESS, "DNBInitialize ()"); 2024 #if defined (__i386__) || defined (__x86_64__) 2025 DNBArchImplI386::Initialize(); 2026 DNBArchImplX86_64::Initialize(); 2027 #elif defined (__arm__) 2028 DNBArchMachARM::Initialize(); 2029 #endif 2030 } 2031 2032 void 2033 DNBTerminate() 2034 { 2035 } 2036 2037 nub_bool_t 2038 DNBSetArchitecture (const char *arch) 2039 { 2040 if (arch && arch[0]) 2041 { 2042 if (strcasecmp (arch, "i386") == 0) 2043 return DNBArchProtocol::SetArchitecture (CPU_TYPE_I386); 2044 else if (strcasecmp (arch, "x86_64") == 0) 2045 return DNBArchProtocol::SetArchitecture (CPU_TYPE_X86_64); 2046 else if (strstr (arch, "arm") == arch) 2047 return DNBArchProtocol::SetArchitecture (CPU_TYPE_ARM); 2048 } 2049 return false; 2050 } 2051