1 //===- DFAPacketizerEmitter.cpp - Packetization DFA for a VLIW machine-----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class parses the Schedule.td file and produces an API that can be used 11 // to reason about whether an instruction can be added to a packet on a VLIW 12 // architecture. The class internally generates a deterministic finite 13 // automaton (DFA) that models all possible mappings of machine instructions 14 // to functional units as instructions are added to a packet. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "CodeGenTarget.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/TableGen/Record.h" 22 #include "llvm/TableGen/TableGenBackend.h" 23 #include <list> 24 #include <map> 25 #include <string> 26 using namespace llvm; 27 28 // 29 // class DFAPacketizerEmitter: class that generates and prints out the DFA 30 // for resource tracking. 31 // 32 namespace { 33 class DFAPacketizerEmitter { 34 private: 35 std::string TargetName; 36 // 37 // allInsnClasses is the set of all possible resources consumed by an 38 // InstrStage. 39 // 40 DenseSet<unsigned> allInsnClasses; 41 RecordKeeper &Records; 42 43 public: 44 DFAPacketizerEmitter(RecordKeeper &R); 45 46 // 47 // collectAllInsnClasses: Populate allInsnClasses which is a set of units 48 // used in each stage. 49 // 50 void collectAllInsnClasses(const std::string &Name, 51 Record *ItinData, 52 unsigned &NStages, 53 raw_ostream &OS); 54 55 void run(raw_ostream &OS); 56 }; 57 } // End anonymous namespace. 58 59 // 60 // 61 // State represents the usage of machine resources if the packet contains 62 // a set of instruction classes. 63 // 64 // Specifically, currentState is a set of bit-masks. 65 // The nth bit in a bit-mask indicates whether the nth resource is being used 66 // by this state. The set of bit-masks in a state represent the different 67 // possible outcomes of transitioning to this state. 68 // For example: consider a two resource architecture: resource L and resource M 69 // with three instruction classes: L, M, and L_or_M. 70 // From the initial state (currentState = 0x00), if we add instruction class 71 // L_or_M we will transition to a state with currentState = [0x01, 0x10]. This 72 // represents the possible resource states that can result from adding a L_or_M 73 // instruction 74 // 75 // Another way of thinking about this transition is we are mapping a NDFA with 76 // two states [0x01] and [0x10] into a DFA with a single state [0x01, 0x10]. 77 // 78 // A State instance also contains a collection of transitions from that state: 79 // a map from inputs to new states. 80 // 81 namespace { 82 class State { 83 public: 84 static int currentStateNum; 85 // stateNum is the only member used for equality/ordering, all other members 86 // can be mutated even in const State objects. 87 const int stateNum; 88 mutable bool isInitial; 89 mutable std::set<unsigned> stateInfo; 90 typedef std::map<unsigned, const State *> TransitionMap; 91 mutable TransitionMap Transitions; 92 93 State(); 94 95 bool operator<(const State &s) const { 96 return stateNum < s.stateNum; 97 } 98 99 // 100 // canAddInsnClass - Returns true if an instruction of type InsnClass is a 101 // valid transition from this state, i.e., can an instruction of type InsnClass 102 // be added to the packet represented by this state. 103 // 104 // PossibleStates is the set of valid resource states that ensue from valid 105 // transitions. 106 // 107 bool canAddInsnClass(unsigned InsnClass) const; 108 // 109 // AddInsnClass - Return all combinations of resource reservation 110 // which are possible from this state (PossibleStates). 111 // 112 void AddInsnClass(unsigned InsnClass, std::set<unsigned> &PossibleStates) const; 113 // 114 // addTransition - Add a transition from this state given the input InsnClass 115 // 116 void addTransition(unsigned InsnClass, const State *To) const; 117 // 118 // hasTransition - Returns true if there is a transition from this state 119 // given the input InsnClass 120 // 121 bool hasTransition(unsigned InsnClass) const; 122 }; 123 } // End anonymous namespace. 124 125 // 126 // class DFA: deterministic finite automaton for processor resource tracking. 127 // 128 namespace { 129 class DFA { 130 public: 131 DFA(); 132 133 // Set of states. Need to keep this sorted to emit the transition table. 134 typedef std::set<State> StateSet; 135 StateSet states; 136 137 State *currentState; 138 139 // 140 // Modify the DFA. 141 // 142 const State &newState(); 143 144 // 145 // writeTable: Print out a table representing the DFA. 146 // 147 void writeTableAndAPI(raw_ostream &OS, const std::string &ClassName); 148 }; 149 } // End anonymous namespace. 150 151 152 // 153 // Constructors and destructors for State and DFA 154 // 155 State::State() : 156 stateNum(currentStateNum++), isInitial(false) {} 157 158 DFA::DFA(): currentState(nullptr) {} 159 160 // 161 // addTransition - Add a transition from this state given the input InsnClass 162 // 163 void State::addTransition(unsigned InsnClass, const State *To) const { 164 assert(!Transitions.count(InsnClass) && 165 "Cannot have multiple transitions for the same input"); 166 Transitions[InsnClass] = To; 167 } 168 169 // 170 // hasTransition - Returns true if there is a transition from this state 171 // given the input InsnClass 172 // 173 bool State::hasTransition(unsigned InsnClass) const { 174 return Transitions.count(InsnClass) > 0; 175 } 176 177 // 178 // AddInsnClass - Return all combinations of resource reservation 179 // which are possible from this state (PossibleStates). 180 // 181 void State::AddInsnClass(unsigned InsnClass, 182 std::set<unsigned> &PossibleStates) const { 183 // 184 // Iterate over all resource states in currentState. 185 // 186 187 for (std::set<unsigned>::iterator SI = stateInfo.begin(); 188 SI != stateInfo.end(); ++SI) { 189 unsigned thisState = *SI; 190 191 // 192 // Iterate over all possible resources used in InsnClass. 193 // For ex: for InsnClass = 0x11, all resources = {0x01, 0x10}. 194 // 195 196 DenseSet<unsigned> VisitedResourceStates; 197 for (unsigned int j = 0; j < sizeof(InsnClass) * 8; ++j) { 198 if ((0x1 << j) & InsnClass) { 199 // 200 // For each possible resource used in InsnClass, generate the 201 // resource state if that resource was used. 202 // 203 unsigned ResultingResourceState = thisState | (0x1 << j); 204 // 205 // Check if the resulting resource state can be accommodated in this 206 // packet. 207 // We compute ResultingResourceState OR thisState. 208 // If the result of the OR is different than thisState, it implies 209 // that there is at least one resource that can be used to schedule 210 // InsnClass in the current packet. 211 // Insert ResultingResourceState into PossibleStates only if we haven't 212 // processed ResultingResourceState before. 213 // 214 if ((ResultingResourceState != thisState) && 215 (VisitedResourceStates.count(ResultingResourceState) == 0)) { 216 VisitedResourceStates.insert(ResultingResourceState); 217 PossibleStates.insert(ResultingResourceState); 218 } 219 } 220 } 221 } 222 223 } 224 225 226 // 227 // canAddInsnClass - Quickly verifies if an instruction of type InsnClass is a 228 // valid transition from this state i.e., can an instruction of type InsnClass 229 // be added to the packet represented by this state. 230 // 231 bool State::canAddInsnClass(unsigned InsnClass) const { 232 for (std::set<unsigned>::const_iterator SI = stateInfo.begin(); 233 SI != stateInfo.end(); ++SI) { 234 if (~*SI & InsnClass) 235 return true; 236 } 237 return false; 238 } 239 240 241 const State &DFA::newState() { 242 auto IterPair = states.insert(State()); 243 assert(IterPair.second && "State already exists"); 244 return *IterPair.first; 245 } 246 247 248 int State::currentStateNum = 0; 249 250 DFAPacketizerEmitter::DFAPacketizerEmitter(RecordKeeper &R): 251 TargetName(CodeGenTarget(R).getName()), 252 allInsnClasses(), Records(R) {} 253 254 255 // 256 // writeTableAndAPI - Print out a table representing the DFA and the 257 // associated API to create a DFA packetizer. 258 // 259 // Format: 260 // DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid 261 // transitions. 262 // DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable for 263 // the ith state. 264 // 265 // 266 void DFA::writeTableAndAPI(raw_ostream &OS, const std::string &TargetName) { 267 static const std::string SentinelEntry = "{-1, -1}"; 268 DFA::StateSet::iterator SI = states.begin(); 269 // This table provides a map to the beginning of the transitions for State s 270 // in DFAStateInputTable. 271 std::vector<int> StateEntry(states.size()); 272 273 OS << "namespace llvm {\n\n"; 274 OS << "const int " << TargetName << "DFAStateInputTable[][2] = {\n"; 275 276 // Tracks the total valid transitions encountered so far. It is used 277 // to construct the StateEntry table. 278 int ValidTransitions = 0; 279 for (unsigned i = 0; i < states.size(); ++i, ++SI) { 280 assert ((SI->stateNum == (int) i) && "Mismatch in state numbers"); 281 StateEntry[i] = ValidTransitions; 282 for (State::TransitionMap::iterator 283 II = SI->Transitions.begin(), IE = SI->Transitions.end(); 284 II != IE; ++II) { 285 OS << "{" << II->first << ", " 286 << II->second->stateNum 287 << "}, "; 288 } 289 ValidTransitions += SI->Transitions.size(); 290 291 // If there are no valid transitions from this stage, we need a sentinel 292 // transition. 293 if (ValidTransitions == StateEntry[i]) { 294 OS << SentinelEntry << ","; 295 ++ValidTransitions; 296 } 297 298 OS << "\n"; 299 } 300 301 // Print out a sentinel entry at the end of the StateInputTable. This is 302 // needed to iterate over StateInputTable in DFAPacketizer::ReadTable() 303 OS << SentinelEntry << "\n"; 304 305 OS << "};\n\n"; 306 OS << "const unsigned int " << TargetName << "DFAStateEntryTable[] = {\n"; 307 308 // Multiply i by 2 since each entry in DFAStateInputTable is a set of 309 // two numbers. 310 for (unsigned i = 0; i < states.size(); ++i) 311 OS << StateEntry[i] << ", "; 312 313 // Print out the index to the sentinel entry in StateInputTable 314 OS << ValidTransitions << ", "; 315 316 OS << "\n};\n"; 317 OS << "} // namespace\n"; 318 319 320 // 321 // Emit DFA Packetizer tables if the target is a VLIW machine. 322 // 323 std::string SubTargetClassName = TargetName + "GenSubtargetInfo"; 324 OS << "\n" << "#include \"llvm/CodeGen/DFAPacketizer.h\"\n"; 325 OS << "namespace llvm {\n"; 326 OS << "DFAPacketizer *" << SubTargetClassName << "::" 327 << "createDFAPacketizer(const InstrItineraryData *IID) const {\n" 328 << " return new DFAPacketizer(IID, " << TargetName 329 << "DFAStateInputTable, " << TargetName << "DFAStateEntryTable);\n}\n\n"; 330 OS << "} // End llvm namespace \n"; 331 } 332 333 334 // 335 // collectAllInsnClasses - Populate allInsnClasses which is a set of units 336 // used in each stage. 337 // 338 void DFAPacketizerEmitter::collectAllInsnClasses(const std::string &Name, 339 Record *ItinData, 340 unsigned &NStages, 341 raw_ostream &OS) { 342 // Collect processor itineraries. 343 std::vector<Record*> ProcItinList = 344 Records.getAllDerivedDefinitions("ProcessorItineraries"); 345 346 // If just no itinerary then don't bother. 347 if (ProcItinList.size() < 2) 348 return; 349 std::map<std::string, unsigned> NameToBitsMap; 350 351 // Parse functional units for all the itineraries. 352 for (unsigned i = 0, N = ProcItinList.size(); i < N; ++i) { 353 Record *Proc = ProcItinList[i]; 354 std::vector<Record*> FUs = Proc->getValueAsListOfDefs("FU"); 355 356 // Convert macros to bits for each stage. 357 for (unsigned i = 0, N = FUs.size(); i < N; ++i) 358 NameToBitsMap[FUs[i]->getName()] = (unsigned) (1U << i); 359 } 360 361 const std::vector<Record*> &StageList = 362 ItinData->getValueAsListOfDefs("Stages"); 363 364 // The number of stages. 365 NStages = StageList.size(); 366 367 // For each unit. 368 unsigned UnitBitValue = 0; 369 370 // Compute the bitwise or of each unit used in this stage. 371 for (unsigned i = 0; i < NStages; ++i) { 372 const Record *Stage = StageList[i]; 373 374 // Get unit list. 375 const std::vector<Record*> &UnitList = 376 Stage->getValueAsListOfDefs("Units"); 377 378 for (unsigned j = 0, M = UnitList.size(); j < M; ++j) { 379 // Conduct bitwise or. 380 std::string UnitName = UnitList[j]->getName(); 381 assert(NameToBitsMap.count(UnitName)); 382 UnitBitValue |= NameToBitsMap[UnitName]; 383 } 384 385 if (UnitBitValue != 0) 386 allInsnClasses.insert(UnitBitValue); 387 } 388 } 389 390 391 // 392 // Run the worklist algorithm to generate the DFA. 393 // 394 void DFAPacketizerEmitter::run(raw_ostream &OS) { 395 396 // Collect processor iteraries. 397 std::vector<Record*> ProcItinList = 398 Records.getAllDerivedDefinitions("ProcessorItineraries"); 399 400 // 401 // Collect the instruction classes. 402 // 403 for (unsigned i = 0, N = ProcItinList.size(); i < N; i++) { 404 Record *Proc = ProcItinList[i]; 405 406 // Get processor itinerary name. 407 const std::string &Name = Proc->getName(); 408 409 // Skip default. 410 if (Name == "NoItineraries") 411 continue; 412 413 // Sanity check for at least one instruction itinerary class. 414 unsigned NItinClasses = 415 Records.getAllDerivedDefinitions("InstrItinClass").size(); 416 if (NItinClasses == 0) 417 return; 418 419 // Get itinerary data list. 420 std::vector<Record*> ItinDataList = Proc->getValueAsListOfDefs("IID"); 421 422 // Collect instruction classes for all itinerary data. 423 for (unsigned j = 0, M = ItinDataList.size(); j < M; j++) { 424 Record *ItinData = ItinDataList[j]; 425 unsigned NStages; 426 collectAllInsnClasses(Name, ItinData, NStages, OS); 427 } 428 } 429 430 431 // 432 // Run a worklist algorithm to generate the DFA. 433 // 434 DFA D; 435 const State *Initial = &D.newState(); 436 Initial->isInitial = true; 437 Initial->stateInfo.insert(0x0); 438 SmallVector<const State*, 32> WorkList; 439 std::map<std::set<unsigned>, const State*> Visited; 440 441 WorkList.push_back(Initial); 442 443 // 444 // Worklist algorithm to create a DFA for processor resource tracking. 445 // C = {set of InsnClasses} 446 // Begin with initial node in worklist. Initial node does not have 447 // any consumed resources, 448 // ResourceState = 0x0 449 // Visited = {} 450 // While worklist != empty 451 // S = first element of worklist 452 // For every instruction class C 453 // if we can accommodate C in S: 454 // S' = state with resource states = {S Union C} 455 // Add a new transition: S x C -> S' 456 // If S' is not in Visited: 457 // Add S' to worklist 458 // Add S' to Visited 459 // 460 while (!WorkList.empty()) { 461 const State *current = WorkList.pop_back_val(); 462 for (DenseSet<unsigned>::iterator CI = allInsnClasses.begin(), 463 CE = allInsnClasses.end(); CI != CE; ++CI) { 464 unsigned InsnClass = *CI; 465 466 std::set<unsigned> NewStateResources; 467 // 468 // If we haven't already created a transition for this input 469 // and the state can accommodate this InsnClass, create a transition. 470 // 471 if (!current->hasTransition(InsnClass) && 472 current->canAddInsnClass(InsnClass)) { 473 const State *NewState; 474 current->AddInsnClass(InsnClass, NewStateResources); 475 assert(NewStateResources.size() && "New states must be generated"); 476 477 // 478 // If we have seen this state before, then do not create a new state. 479 // 480 // 481 auto VI = Visited.find(NewStateResources); 482 if (VI != Visited.end()) 483 NewState = VI->second; 484 else { 485 NewState = &D.newState(); 486 NewState->stateInfo = NewStateResources; 487 Visited[NewStateResources] = NewState; 488 WorkList.push_back(NewState); 489 } 490 491 current->addTransition(InsnClass, NewState); 492 } 493 } 494 } 495 496 // Print out the table. 497 D.writeTableAndAPI(OS, TargetName); 498 } 499 500 namespace llvm { 501 502 void EmitDFAPacketizer(RecordKeeper &RK, raw_ostream &OS) { 503 emitSourceFileHeader("Target DFA Packetizer Tables", OS); 504 DFAPacketizerEmitter(RK).run(OS); 505 } 506 507 } // End llvm namespace 508