Home | History | Annotate | Download | only in enc
      1 // Copyright 2010 Google Inc. All Rights Reserved.
      2 //
      3 // Licensed under the Apache License, Version 2.0 (the "License");
      4 // you may not use this file except in compliance with the License.
      5 // You may obtain a copy of the License at
      6 //
      7 // http://www.apache.org/licenses/LICENSE-2.0
      8 //
      9 // Unless required by applicable law or agreed to in writing, software
     10 // distributed under the License is distributed on an "AS IS" BASIS,
     11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 // See the License for the specific language governing permissions and
     13 // limitations under the License.
     14 //
     15 // Entropy encoding (Huffman) utilities.
     16 
     17 #ifndef BROTLI_ENC_ENTROPY_ENCODE_H_
     18 #define BROTLI_ENC_ENTROPY_ENCODE_H_
     19 
     20 #include <stdint.h>
     21 #include <string.h>
     22 #include "./histogram.h"
     23 #include "./prefix.h"
     24 
     25 namespace brotli {
     26 
     27 // This function will create a Huffman tree.
     28 //
     29 // The (data,length) contains the population counts.
     30 // The tree_limit is the maximum bit depth of the Huffman codes.
     31 //
     32 // The depth contains the tree, i.e., how many bits are used for
     33 // the symbol.
     34 //
     35 // See http://en.wikipedia.org/wiki/Huffman_coding
     36 void CreateHuffmanTree(const int *data,
     37                        const int length,
     38                        const int tree_limit,
     39                        uint8_t *depth);
     40 
     41 // Change the population counts in a way that the consequent
     42 // Hufmann tree compression, especially its rle-part will be more
     43 // likely to compress this data more efficiently.
     44 //
     45 // length contains the size of the histogram.
     46 // counts contains the population counts.
     47 int OptimizeHuffmanCountsForRle(int length, int* counts);
     48 
     49 
     50 // Write a huffman tree from bit depths into the bitstream representation
     51 // of a Huffman tree. The generated Huffman tree is to be compressed once
     52 // more using a Huffman tree
     53 void WriteHuffmanTree(const uint8_t* depth, const int length,
     54                       uint8_t* tree,
     55                       uint8_t* extra_bits_data,
     56                       int* huffman_tree_size);
     57 
     58 // Get the actual bit values for a tree of bit depths.
     59 void ConvertBitDepthsToSymbols(const uint8_t *depth, int len, uint16_t *bits);
     60 
     61 template<int kSize>
     62 struct EntropyCode {
     63   // How many bits for symbol.
     64   uint8_t depth_[kSize];
     65   // Actual bits used to represent the symbol.
     66   uint16_t bits_[kSize];
     67   // How many non-zero depth.
     68   int count_;
     69   // First four symbols with non-zero depth.
     70   int symbols_[4];
     71 };
     72 
     73 template<int kSize>
     74 void BuildEntropyCode(const Histogram<kSize>& histogram,
     75                       const int tree_limit,
     76                       const int alphabet_size,
     77                       EntropyCode<kSize>* code) {
     78   memset(code->depth_, 0, sizeof(code->depth_));
     79   memset(code->bits_, 0, sizeof(code->bits_));
     80   memset(code->symbols_, 0, sizeof(code->symbols_));
     81   code->count_ = 0;
     82   if (histogram.total_count_ == 0) return;
     83   for (int i = 0; i < kSize; ++i) {
     84     if (histogram.data_[i] > 0) {
     85       if (code->count_ < 4) code->symbols_[code->count_] = i;
     86       ++code->count_;
     87     }
     88   }
     89   if (alphabet_size >= 50 && code->count_ >= 16) {
     90     int counts[kSize];
     91     memcpy(counts, &histogram.data_[0], sizeof(counts[0]) * kSize);
     92     OptimizeHuffmanCountsForRle(alphabet_size, counts);
     93     CreateHuffmanTree(counts, alphabet_size, tree_limit, &code->depth_[0]);
     94   } else {
     95     CreateHuffmanTree(&histogram.data_[0], alphabet_size, tree_limit,
     96                       &code->depth_[0]);
     97   }
     98   ConvertBitDepthsToSymbols(&code->depth_[0], alphabet_size, &code->bits_[0]);
     99 }
    100 
    101 static const int kCodeLengthCodes = 18;
    102 
    103 // Literal entropy code.
    104 typedef EntropyCode<256> EntropyCodeLiteral;
    105 // Prefix entropy codes.
    106 typedef EntropyCode<kNumCommandPrefixes> EntropyCodeCommand;
    107 typedef EntropyCode<kNumDistancePrefixes> EntropyCodeDistance;
    108 typedef EntropyCode<kNumBlockLenPrefixes> EntropyCodeBlockLength;
    109 // Context map entropy code, 256 Huffman tree indexes + 16 run length codes.
    110 typedef EntropyCode<272> EntropyCodeContextMap;
    111 // Block type entropy code, 256 block types + 2 special symbols.
    112 typedef EntropyCode<258> EntropyCodeBlockType;
    113 
    114 }  // namespace brotli
    115 
    116 #endif  // BROTLI_ENC_ENTROPY_ENCODE_H_
    117