1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/NoFolder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include <algorithm> 47 #include <map> 48 #include <set> 49 using namespace llvm; 50 using namespace PatternMatch; 51 52 #define DEBUG_TYPE "simplifycfg" 53 54 static cl::opt<unsigned> 55 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), 56 cl::desc("Control the amount of phi node folding to perform (default = 1)")); 57 58 static cl::opt<bool> 59 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 60 cl::desc("Duplicate return instructions into unconditional branches")); 61 62 static cl::opt<bool> 63 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 64 cl::desc("Sink common instructions down to the end block")); 65 66 static cl::opt<bool> HoistCondStores( 67 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 68 cl::desc("Hoist conditional stores if an unconditional store precedes")); 69 70 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 71 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 72 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)"); 73 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 74 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 75 76 namespace { 77 /// ValueEqualityComparisonCase - Represents a case of a switch. 78 struct ValueEqualityComparisonCase { 79 ConstantInt *Value; 80 BasicBlock *Dest; 81 82 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 83 : Value(Value), Dest(Dest) {} 84 85 bool operator<(ValueEqualityComparisonCase RHS) const { 86 // Comparing pointers is ok as we only rely on the order for uniquing. 87 return Value < RHS.Value; 88 } 89 90 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 91 }; 92 93 class SimplifyCFGOpt { 94 const TargetTransformInfo &TTI; 95 const DataLayout *const DL; 96 Value *isValueEqualityComparison(TerminatorInst *TI); 97 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 98 std::vector<ValueEqualityComparisonCase> &Cases); 99 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 100 BasicBlock *Pred, 101 IRBuilder<> &Builder); 102 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 103 IRBuilder<> &Builder); 104 105 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 106 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 107 bool SimplifyUnreachable(UnreachableInst *UI); 108 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 109 bool SimplifyIndirectBr(IndirectBrInst *IBI); 110 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 111 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 112 113 public: 114 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *DL) 115 : TTI(TTI), DL(DL) {} 116 bool run(BasicBlock *BB); 117 }; 118 } 119 120 /// SafeToMergeTerminators - Return true if it is safe to merge these two 121 /// terminator instructions together. 122 /// 123 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 124 if (SI1 == SI2) return false; // Can't merge with self! 125 126 // It is not safe to merge these two switch instructions if they have a common 127 // successor, and if that successor has a PHI node, and if *that* PHI node has 128 // conflicting incoming values from the two switch blocks. 129 BasicBlock *SI1BB = SI1->getParent(); 130 BasicBlock *SI2BB = SI2->getParent(); 131 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 132 133 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 134 if (SI1Succs.count(*I)) 135 for (BasicBlock::iterator BBI = (*I)->begin(); 136 isa<PHINode>(BBI); ++BBI) { 137 PHINode *PN = cast<PHINode>(BBI); 138 if (PN->getIncomingValueForBlock(SI1BB) != 139 PN->getIncomingValueForBlock(SI2BB)) 140 return false; 141 } 142 143 return true; 144 } 145 146 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable 147 /// to merge these two terminator instructions together, where SI1 is an 148 /// unconditional branch. PhiNodes will store all PHI nodes in common 149 /// successors. 150 /// 151 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 152 BranchInst *SI2, 153 Instruction *Cond, 154 SmallVectorImpl<PHINode*> &PhiNodes) { 155 if (SI1 == SI2) return false; // Can't merge with self! 156 assert(SI1->isUnconditional() && SI2->isConditional()); 157 158 // We fold the unconditional branch if we can easily update all PHI nodes in 159 // common successors: 160 // 1> We have a constant incoming value for the conditional branch; 161 // 2> We have "Cond" as the incoming value for the unconditional branch; 162 // 3> SI2->getCondition() and Cond have same operands. 163 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 164 if (!Ci2) return false; 165 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 166 Cond->getOperand(1) == Ci2->getOperand(1)) && 167 !(Cond->getOperand(0) == Ci2->getOperand(1) && 168 Cond->getOperand(1) == Ci2->getOperand(0))) 169 return false; 170 171 BasicBlock *SI1BB = SI1->getParent(); 172 BasicBlock *SI2BB = SI2->getParent(); 173 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 174 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 175 if (SI1Succs.count(*I)) 176 for (BasicBlock::iterator BBI = (*I)->begin(); 177 isa<PHINode>(BBI); ++BBI) { 178 PHINode *PN = cast<PHINode>(BBI); 179 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 180 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 181 return false; 182 PhiNodes.push_back(PN); 183 } 184 return true; 185 } 186 187 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will 188 /// now be entries in it from the 'NewPred' block. The values that will be 189 /// flowing into the PHI nodes will be the same as those coming in from 190 /// ExistPred, an existing predecessor of Succ. 191 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 192 BasicBlock *ExistPred) { 193 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 194 195 PHINode *PN; 196 for (BasicBlock::iterator I = Succ->begin(); 197 (PN = dyn_cast<PHINode>(I)); ++I) 198 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 199 } 200 201 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the 202 /// given instruction, which is assumed to be safe to speculate. 1 means 203 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive. 204 static unsigned ComputeSpeculationCost(const User *I, const DataLayout *DL) { 205 assert(isSafeToSpeculativelyExecute(I, DL) && 206 "Instruction is not safe to speculatively execute!"); 207 switch (Operator::getOpcode(I)) { 208 default: 209 // In doubt, be conservative. 210 return UINT_MAX; 211 case Instruction::GetElementPtr: 212 // GEPs are cheap if all indices are constant. 213 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 214 return UINT_MAX; 215 return 1; 216 case Instruction::ExtractValue: 217 case Instruction::Load: 218 case Instruction::Add: 219 case Instruction::Sub: 220 case Instruction::And: 221 case Instruction::Or: 222 case Instruction::Xor: 223 case Instruction::Shl: 224 case Instruction::LShr: 225 case Instruction::AShr: 226 case Instruction::ICmp: 227 case Instruction::Trunc: 228 case Instruction::ZExt: 229 case Instruction::SExt: 230 case Instruction::BitCast: 231 case Instruction::ExtractElement: 232 case Instruction::InsertElement: 233 return 1; // These are all cheap. 234 235 case Instruction::Call: 236 case Instruction::Select: 237 return 2; 238 } 239 } 240 241 /// DominatesMergePoint - If we have a merge point of an "if condition" as 242 /// accepted above, return true if the specified value dominates the block. We 243 /// don't handle the true generality of domination here, just a special case 244 /// which works well enough for us. 245 /// 246 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 247 /// see if V (which must be an instruction) and its recursive operands 248 /// that do not dominate BB have a combined cost lower than CostRemaining and 249 /// are non-trapping. If both are true, the instruction is inserted into the 250 /// set and true is returned. 251 /// 252 /// The cost for most non-trapping instructions is defined as 1 except for 253 /// Select whose cost is 2. 254 /// 255 /// After this function returns, CostRemaining is decreased by the cost of 256 /// V plus its non-dominating operands. If that cost is greater than 257 /// CostRemaining, false is returned and CostRemaining is undefined. 258 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 259 SmallPtrSet<Instruction*, 4> *AggressiveInsts, 260 unsigned &CostRemaining, 261 const DataLayout *DL) { 262 Instruction *I = dyn_cast<Instruction>(V); 263 if (!I) { 264 // Non-instructions all dominate instructions, but not all constantexprs 265 // can be executed unconditionally. 266 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 267 if (C->canTrap()) 268 return false; 269 return true; 270 } 271 BasicBlock *PBB = I->getParent(); 272 273 // We don't want to allow weird loops that might have the "if condition" in 274 // the bottom of this block. 275 if (PBB == BB) return false; 276 277 // If this instruction is defined in a block that contains an unconditional 278 // branch to BB, then it must be in the 'conditional' part of the "if 279 // statement". If not, it definitely dominates the region. 280 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 281 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 282 return true; 283 284 // If we aren't allowing aggressive promotion anymore, then don't consider 285 // instructions in the 'if region'. 286 if (!AggressiveInsts) return false; 287 288 // If we have seen this instruction before, don't count it again. 289 if (AggressiveInsts->count(I)) return true; 290 291 // Okay, it looks like the instruction IS in the "condition". Check to 292 // see if it's a cheap instruction to unconditionally compute, and if it 293 // only uses stuff defined outside of the condition. If so, hoist it out. 294 if (!isSafeToSpeculativelyExecute(I, DL)) 295 return false; 296 297 unsigned Cost = ComputeSpeculationCost(I, DL); 298 299 if (Cost > CostRemaining) 300 return false; 301 302 CostRemaining -= Cost; 303 304 // Okay, we can only really hoist these out if their operands do 305 // not take us over the cost threshold. 306 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 307 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, DL)) 308 return false; 309 // Okay, it's safe to do this! Remember this instruction. 310 AggressiveInsts->insert(I); 311 return true; 312 } 313 314 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr 315 /// and PointerNullValue. Return NULL if value is not a constant int. 316 static ConstantInt *GetConstantInt(Value *V, const DataLayout *DL) { 317 // Normal constant int. 318 ConstantInt *CI = dyn_cast<ConstantInt>(V); 319 if (CI || !DL || !isa<Constant>(V) || !V->getType()->isPointerTy()) 320 return CI; 321 322 // This is some kind of pointer constant. Turn it into a pointer-sized 323 // ConstantInt if possible. 324 IntegerType *PtrTy = cast<IntegerType>(DL->getIntPtrType(V->getType())); 325 326 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 327 if (isa<ConstantPointerNull>(V)) 328 return ConstantInt::get(PtrTy, 0); 329 330 // IntToPtr const int. 331 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 332 if (CE->getOpcode() == Instruction::IntToPtr) 333 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 334 // The constant is very likely to have the right type already. 335 if (CI->getType() == PtrTy) 336 return CI; 337 else 338 return cast<ConstantInt> 339 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 340 } 341 return nullptr; 342 } 343 344 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together 345 /// collection of icmp eq/ne instructions that compare a value against a 346 /// constant, return the value being compared, and stick the constant into the 347 /// Values vector. 348 static Value * 349 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra, 350 const DataLayout *DL, bool isEQ, unsigned &UsedICmps) { 351 Instruction *I = dyn_cast<Instruction>(V); 352 if (!I) return nullptr; 353 354 // If this is an icmp against a constant, handle this as one of the cases. 355 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 356 if (ConstantInt *C = GetConstantInt(I->getOperand(1), DL)) { 357 Value *RHSVal; 358 ConstantInt *RHSC; 359 360 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 361 // (x & ~2^x) == y --> x == y || x == y|2^x 362 // This undoes a transformation done by instcombine to fuse 2 compares. 363 if (match(ICI->getOperand(0), 364 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 365 APInt Not = ~RHSC->getValue(); 366 if (Not.isPowerOf2()) { 367 Vals.push_back(C); 368 Vals.push_back( 369 ConstantInt::get(C->getContext(), C->getValue() | Not)); 370 UsedICmps++; 371 return RHSVal; 372 } 373 } 374 375 UsedICmps++; 376 Vals.push_back(C); 377 return I->getOperand(0); 378 } 379 380 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to 381 // the set. 382 ConstantRange Span = 383 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue()); 384 385 // Shift the range if the compare is fed by an add. This is the range 386 // compare idiom as emitted by instcombine. 387 bool hasAdd = 388 match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC))); 389 if (hasAdd) 390 Span = Span.subtract(RHSC->getValue()); 391 392 // If this is an and/!= check then we want to optimize "x ugt 2" into 393 // x != 0 && x != 1. 394 if (!isEQ) 395 Span = Span.inverse(); 396 397 // If there are a ton of values, we don't want to make a ginormous switch. 398 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) 399 return nullptr; 400 401 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 402 Vals.push_back(ConstantInt::get(V->getContext(), Tmp)); 403 UsedICmps++; 404 return hasAdd ? RHSVal : I->getOperand(0); 405 } 406 return nullptr; 407 } 408 409 // Otherwise, we can only handle an | or &, depending on isEQ. 410 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And)) 411 return nullptr; 412 413 unsigned NumValsBeforeLHS = Vals.size(); 414 unsigned UsedICmpsBeforeLHS = UsedICmps; 415 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, DL, 416 isEQ, UsedICmps)) { 417 unsigned NumVals = Vals.size(); 418 unsigned UsedICmpsBeforeRHS = UsedICmps; 419 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL, 420 isEQ, UsedICmps)) { 421 if (LHS == RHS) 422 return LHS; 423 Vals.resize(NumVals); 424 UsedICmps = UsedICmpsBeforeRHS; 425 } 426 427 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet, 428 // set it and return success. 429 if (Extra == nullptr || Extra == I->getOperand(1)) { 430 Extra = I->getOperand(1); 431 return LHS; 432 } 433 434 Vals.resize(NumValsBeforeLHS); 435 UsedICmps = UsedICmpsBeforeLHS; 436 return nullptr; 437 } 438 439 // If the LHS can't be folded in, but Extra is available and RHS can, try to 440 // use LHS as Extra. 441 if (Extra == nullptr || Extra == I->getOperand(0)) { 442 Value *OldExtra = Extra; 443 Extra = I->getOperand(0); 444 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL, 445 isEQ, UsedICmps)) 446 return RHS; 447 assert(Vals.size() == NumValsBeforeLHS); 448 Extra = OldExtra; 449 } 450 451 return nullptr; 452 } 453 454 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 455 Instruction *Cond = nullptr; 456 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 457 Cond = dyn_cast<Instruction>(SI->getCondition()); 458 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 459 if (BI->isConditional()) 460 Cond = dyn_cast<Instruction>(BI->getCondition()); 461 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 462 Cond = dyn_cast<Instruction>(IBI->getAddress()); 463 } 464 465 TI->eraseFromParent(); 466 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 467 } 468 469 /// isValueEqualityComparison - Return true if the specified terminator checks 470 /// to see if a value is equal to constant integer value. 471 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 472 Value *CV = nullptr; 473 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 474 // Do not permit merging of large switch instructions into their 475 // predecessors unless there is only one predecessor. 476 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 477 pred_end(SI->getParent())) <= 128) 478 CV = SI->getCondition(); 479 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 480 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 481 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) 482 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 483 CV = ICI->getOperand(0); 484 485 // Unwrap any lossless ptrtoint cast. 486 if (DL && CV) { 487 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 488 Value *Ptr = PTII->getPointerOperand(); 489 if (PTII->getType() == DL->getIntPtrType(Ptr->getType())) 490 CV = Ptr; 491 } 492 } 493 return CV; 494 } 495 496 /// GetValueEqualityComparisonCases - Given a value comparison instruction, 497 /// decode all of the 'cases' that it represents and return the 'default' block. 498 BasicBlock *SimplifyCFGOpt:: 499 GetValueEqualityComparisonCases(TerminatorInst *TI, 500 std::vector<ValueEqualityComparisonCase> 501 &Cases) { 502 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 503 Cases.reserve(SI->getNumCases()); 504 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 505 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 506 i.getCaseSuccessor())); 507 return SI->getDefaultDest(); 508 } 509 510 BranchInst *BI = cast<BranchInst>(TI); 511 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 512 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 513 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 514 DL), 515 Succ)); 516 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 517 } 518 519 520 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries 521 /// in the list that match the specified block. 522 static void EliminateBlockCases(BasicBlock *BB, 523 std::vector<ValueEqualityComparisonCase> &Cases) { 524 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 525 } 526 527 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as 528 /// well. 529 static bool 530 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 531 std::vector<ValueEqualityComparisonCase > &C2) { 532 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 533 534 // Make V1 be smaller than V2. 535 if (V1->size() > V2->size()) 536 std::swap(V1, V2); 537 538 if (V1->size() == 0) return false; 539 if (V1->size() == 1) { 540 // Just scan V2. 541 ConstantInt *TheVal = (*V1)[0].Value; 542 for (unsigned i = 0, e = V2->size(); i != e; ++i) 543 if (TheVal == (*V2)[i].Value) 544 return true; 545 } 546 547 // Otherwise, just sort both lists and compare element by element. 548 array_pod_sort(V1->begin(), V1->end()); 549 array_pod_sort(V2->begin(), V2->end()); 550 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 551 while (i1 != e1 && i2 != e2) { 552 if ((*V1)[i1].Value == (*V2)[i2].Value) 553 return true; 554 if ((*V1)[i1].Value < (*V2)[i2].Value) 555 ++i1; 556 else 557 ++i2; 558 } 559 return false; 560 } 561 562 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a 563 /// terminator instruction and its block is known to only have a single 564 /// predecessor block, check to see if that predecessor is also a value 565 /// comparison with the same value, and if that comparison determines the 566 /// outcome of this comparison. If so, simplify TI. This does a very limited 567 /// form of jump threading. 568 bool SimplifyCFGOpt:: 569 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 570 BasicBlock *Pred, 571 IRBuilder<> &Builder) { 572 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 573 if (!PredVal) return false; // Not a value comparison in predecessor. 574 575 Value *ThisVal = isValueEqualityComparison(TI); 576 assert(ThisVal && "This isn't a value comparison!!"); 577 if (ThisVal != PredVal) return false; // Different predicates. 578 579 // TODO: Preserve branch weight metadata, similarly to how 580 // FoldValueComparisonIntoPredecessors preserves it. 581 582 // Find out information about when control will move from Pred to TI's block. 583 std::vector<ValueEqualityComparisonCase> PredCases; 584 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 585 PredCases); 586 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 587 588 // Find information about how control leaves this block. 589 std::vector<ValueEqualityComparisonCase> ThisCases; 590 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 591 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 592 593 // If TI's block is the default block from Pred's comparison, potentially 594 // simplify TI based on this knowledge. 595 if (PredDef == TI->getParent()) { 596 // If we are here, we know that the value is none of those cases listed in 597 // PredCases. If there are any cases in ThisCases that are in PredCases, we 598 // can simplify TI. 599 if (!ValuesOverlap(PredCases, ThisCases)) 600 return false; 601 602 if (isa<BranchInst>(TI)) { 603 // Okay, one of the successors of this condbr is dead. Convert it to a 604 // uncond br. 605 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 606 // Insert the new branch. 607 Instruction *NI = Builder.CreateBr(ThisDef); 608 (void) NI; 609 610 // Remove PHI node entries for the dead edge. 611 ThisCases[0].Dest->removePredecessor(TI->getParent()); 612 613 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 614 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 615 616 EraseTerminatorInstAndDCECond(TI); 617 return true; 618 } 619 620 SwitchInst *SI = cast<SwitchInst>(TI); 621 // Okay, TI has cases that are statically dead, prune them away. 622 SmallPtrSet<Constant*, 16> DeadCases; 623 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 624 DeadCases.insert(PredCases[i].Value); 625 626 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 627 << "Through successor TI: " << *TI); 628 629 // Collect branch weights into a vector. 630 SmallVector<uint32_t, 8> Weights; 631 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 632 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 633 if (HasWeight) 634 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 635 ++MD_i) { 636 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i)); 637 assert(CI); 638 Weights.push_back(CI->getValue().getZExtValue()); 639 } 640 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 641 --i; 642 if (DeadCases.count(i.getCaseValue())) { 643 if (HasWeight) { 644 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 645 Weights.pop_back(); 646 } 647 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 648 SI->removeCase(i); 649 } 650 } 651 if (HasWeight && Weights.size() >= 2) 652 SI->setMetadata(LLVMContext::MD_prof, 653 MDBuilder(SI->getParent()->getContext()). 654 createBranchWeights(Weights)); 655 656 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 657 return true; 658 } 659 660 // Otherwise, TI's block must correspond to some matched value. Find out 661 // which value (or set of values) this is. 662 ConstantInt *TIV = nullptr; 663 BasicBlock *TIBB = TI->getParent(); 664 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 665 if (PredCases[i].Dest == TIBB) { 666 if (TIV) 667 return false; // Cannot handle multiple values coming to this block. 668 TIV = PredCases[i].Value; 669 } 670 assert(TIV && "No edge from pred to succ?"); 671 672 // Okay, we found the one constant that our value can be if we get into TI's 673 // BB. Find out which successor will unconditionally be branched to. 674 BasicBlock *TheRealDest = nullptr; 675 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 676 if (ThisCases[i].Value == TIV) { 677 TheRealDest = ThisCases[i].Dest; 678 break; 679 } 680 681 // If not handled by any explicit cases, it is handled by the default case. 682 if (!TheRealDest) TheRealDest = ThisDef; 683 684 // Remove PHI node entries for dead edges. 685 BasicBlock *CheckEdge = TheRealDest; 686 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 687 if (*SI != CheckEdge) 688 (*SI)->removePredecessor(TIBB); 689 else 690 CheckEdge = nullptr; 691 692 // Insert the new branch. 693 Instruction *NI = Builder.CreateBr(TheRealDest); 694 (void) NI; 695 696 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 697 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 698 699 EraseTerminatorInstAndDCECond(TI); 700 return true; 701 } 702 703 namespace { 704 /// ConstantIntOrdering - This class implements a stable ordering of constant 705 /// integers that does not depend on their address. This is important for 706 /// applications that sort ConstantInt's to ensure uniqueness. 707 struct ConstantIntOrdering { 708 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 709 return LHS->getValue().ult(RHS->getValue()); 710 } 711 }; 712 } 713 714 static int ConstantIntSortPredicate(ConstantInt *const *P1, 715 ConstantInt *const *P2) { 716 const ConstantInt *LHS = *P1; 717 const ConstantInt *RHS = *P2; 718 if (LHS->getValue().ult(RHS->getValue())) 719 return 1; 720 if (LHS->getValue() == RHS->getValue()) 721 return 0; 722 return -1; 723 } 724 725 static inline bool HasBranchWeights(const Instruction* I) { 726 MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof); 727 if (ProfMD && ProfMD->getOperand(0)) 728 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 729 return MDS->getString().equals("branch_weights"); 730 731 return false; 732 } 733 734 /// Get Weights of a given TerminatorInst, the default weight is at the front 735 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 736 /// metadata. 737 static void GetBranchWeights(TerminatorInst *TI, 738 SmallVectorImpl<uint64_t> &Weights) { 739 MDNode* MD = TI->getMetadata(LLVMContext::MD_prof); 740 assert(MD); 741 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 742 ConstantInt *CI = cast<ConstantInt>(MD->getOperand(i)); 743 Weights.push_back(CI->getValue().getZExtValue()); 744 } 745 746 // If TI is a conditional eq, the default case is the false case, 747 // and the corresponding branch-weight data is at index 2. We swap the 748 // default weight to be the first entry. 749 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 750 assert(Weights.size() == 2); 751 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 752 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 753 std::swap(Weights.front(), Weights.back()); 754 } 755 } 756 757 /// Keep halving the weights until all can fit in uint32_t. 758 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 759 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 760 if (Max > UINT_MAX) { 761 unsigned Offset = 32 - countLeadingZeros(Max); 762 for (uint64_t &I : Weights) 763 I >>= Offset; 764 } 765 } 766 767 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value 768 /// equality comparison instruction (either a switch or a branch on "X == c"). 769 /// See if any of the predecessors of the terminator block are value comparisons 770 /// on the same value. If so, and if safe to do so, fold them together. 771 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 772 IRBuilder<> &Builder) { 773 BasicBlock *BB = TI->getParent(); 774 Value *CV = isValueEqualityComparison(TI); // CondVal 775 assert(CV && "Not a comparison?"); 776 bool Changed = false; 777 778 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 779 while (!Preds.empty()) { 780 BasicBlock *Pred = Preds.pop_back_val(); 781 782 // See if the predecessor is a comparison with the same value. 783 TerminatorInst *PTI = Pred->getTerminator(); 784 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 785 786 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 787 // Figure out which 'cases' to copy from SI to PSI. 788 std::vector<ValueEqualityComparisonCase> BBCases; 789 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 790 791 std::vector<ValueEqualityComparisonCase> PredCases; 792 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 793 794 // Based on whether the default edge from PTI goes to BB or not, fill in 795 // PredCases and PredDefault with the new switch cases we would like to 796 // build. 797 SmallVector<BasicBlock*, 8> NewSuccessors; 798 799 // Update the branch weight metadata along the way 800 SmallVector<uint64_t, 8> Weights; 801 bool PredHasWeights = HasBranchWeights(PTI); 802 bool SuccHasWeights = HasBranchWeights(TI); 803 804 if (PredHasWeights) { 805 GetBranchWeights(PTI, Weights); 806 // branch-weight metadata is inconsistent here. 807 if (Weights.size() != 1 + PredCases.size()) 808 PredHasWeights = SuccHasWeights = false; 809 } else if (SuccHasWeights) 810 // If there are no predecessor weights but there are successor weights, 811 // populate Weights with 1, which will later be scaled to the sum of 812 // successor's weights 813 Weights.assign(1 + PredCases.size(), 1); 814 815 SmallVector<uint64_t, 8> SuccWeights; 816 if (SuccHasWeights) { 817 GetBranchWeights(TI, SuccWeights); 818 // branch-weight metadata is inconsistent here. 819 if (SuccWeights.size() != 1 + BBCases.size()) 820 PredHasWeights = SuccHasWeights = false; 821 } else if (PredHasWeights) 822 SuccWeights.assign(1 + BBCases.size(), 1); 823 824 if (PredDefault == BB) { 825 // If this is the default destination from PTI, only the edges in TI 826 // that don't occur in PTI, or that branch to BB will be activated. 827 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 828 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 829 if (PredCases[i].Dest != BB) 830 PTIHandled.insert(PredCases[i].Value); 831 else { 832 // The default destination is BB, we don't need explicit targets. 833 std::swap(PredCases[i], PredCases.back()); 834 835 if (PredHasWeights || SuccHasWeights) { 836 // Increase weight for the default case. 837 Weights[0] += Weights[i+1]; 838 std::swap(Weights[i+1], Weights.back()); 839 Weights.pop_back(); 840 } 841 842 PredCases.pop_back(); 843 --i; --e; 844 } 845 846 // Reconstruct the new switch statement we will be building. 847 if (PredDefault != BBDefault) { 848 PredDefault->removePredecessor(Pred); 849 PredDefault = BBDefault; 850 NewSuccessors.push_back(BBDefault); 851 } 852 853 unsigned CasesFromPred = Weights.size(); 854 uint64_t ValidTotalSuccWeight = 0; 855 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 856 if (!PTIHandled.count(BBCases[i].Value) && 857 BBCases[i].Dest != BBDefault) { 858 PredCases.push_back(BBCases[i]); 859 NewSuccessors.push_back(BBCases[i].Dest); 860 if (SuccHasWeights || PredHasWeights) { 861 // The default weight is at index 0, so weight for the ith case 862 // should be at index i+1. Scale the cases from successor by 863 // PredDefaultWeight (Weights[0]). 864 Weights.push_back(Weights[0] * SuccWeights[i+1]); 865 ValidTotalSuccWeight += SuccWeights[i+1]; 866 } 867 } 868 869 if (SuccHasWeights || PredHasWeights) { 870 ValidTotalSuccWeight += SuccWeights[0]; 871 // Scale the cases from predecessor by ValidTotalSuccWeight. 872 for (unsigned i = 1; i < CasesFromPred; ++i) 873 Weights[i] *= ValidTotalSuccWeight; 874 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 875 Weights[0] *= SuccWeights[0]; 876 } 877 } else { 878 // If this is not the default destination from PSI, only the edges 879 // in SI that occur in PSI with a destination of BB will be 880 // activated. 881 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 882 std::map<ConstantInt*, uint64_t> WeightsForHandled; 883 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 884 if (PredCases[i].Dest == BB) { 885 PTIHandled.insert(PredCases[i].Value); 886 887 if (PredHasWeights || SuccHasWeights) { 888 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 889 std::swap(Weights[i+1], Weights.back()); 890 Weights.pop_back(); 891 } 892 893 std::swap(PredCases[i], PredCases.back()); 894 PredCases.pop_back(); 895 --i; --e; 896 } 897 898 // Okay, now we know which constants were sent to BB from the 899 // predecessor. Figure out where they will all go now. 900 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 901 if (PTIHandled.count(BBCases[i].Value)) { 902 // If this is one we are capable of getting... 903 if (PredHasWeights || SuccHasWeights) 904 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 905 PredCases.push_back(BBCases[i]); 906 NewSuccessors.push_back(BBCases[i].Dest); 907 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 908 } 909 910 // If there are any constants vectored to BB that TI doesn't handle, 911 // they must go to the default destination of TI. 912 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 913 PTIHandled.begin(), 914 E = PTIHandled.end(); I != E; ++I) { 915 if (PredHasWeights || SuccHasWeights) 916 Weights.push_back(WeightsForHandled[*I]); 917 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 918 NewSuccessors.push_back(BBDefault); 919 } 920 } 921 922 // Okay, at this point, we know which new successor Pred will get. Make 923 // sure we update the number of entries in the PHI nodes for these 924 // successors. 925 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) 926 AddPredecessorToBlock(NewSuccessors[i], Pred, BB); 927 928 Builder.SetInsertPoint(PTI); 929 // Convert pointer to int before we switch. 930 if (CV->getType()->isPointerTy()) { 931 assert(DL && "Cannot switch on pointer without DataLayout"); 932 CV = Builder.CreatePtrToInt(CV, DL->getIntPtrType(CV->getType()), 933 "magicptr"); 934 } 935 936 // Now that the successors are updated, create the new Switch instruction. 937 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 938 PredCases.size()); 939 NewSI->setDebugLoc(PTI->getDebugLoc()); 940 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 941 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest); 942 943 if (PredHasWeights || SuccHasWeights) { 944 // Halve the weights if any of them cannot fit in an uint32_t 945 FitWeights(Weights); 946 947 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 948 949 NewSI->setMetadata(LLVMContext::MD_prof, 950 MDBuilder(BB->getContext()). 951 createBranchWeights(MDWeights)); 952 } 953 954 EraseTerminatorInstAndDCECond(PTI); 955 956 // Okay, last check. If BB is still a successor of PSI, then we must 957 // have an infinite loop case. If so, add an infinitely looping block 958 // to handle the case to preserve the behavior of the code. 959 BasicBlock *InfLoopBlock = nullptr; 960 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 961 if (NewSI->getSuccessor(i) == BB) { 962 if (!InfLoopBlock) { 963 // Insert it at the end of the function, because it's either code, 964 // or it won't matter if it's hot. :) 965 InfLoopBlock = BasicBlock::Create(BB->getContext(), 966 "infloop", BB->getParent()); 967 BranchInst::Create(InfLoopBlock, InfLoopBlock); 968 } 969 NewSI->setSuccessor(i, InfLoopBlock); 970 } 971 972 Changed = true; 973 } 974 } 975 return Changed; 976 } 977 978 // isSafeToHoistInvoke - If we would need to insert a select that uses the 979 // value of this invoke (comments in HoistThenElseCodeToIf explain why we 980 // would need to do this), we can't hoist the invoke, as there is nowhere 981 // to put the select in this case. 982 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 983 Instruction *I1, Instruction *I2) { 984 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 985 PHINode *PN; 986 for (BasicBlock::iterator BBI = SI->begin(); 987 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 988 Value *BB1V = PN->getIncomingValueForBlock(BB1); 989 Value *BB2V = PN->getIncomingValueForBlock(BB2); 990 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 991 return false; 992 } 993 } 994 } 995 return true; 996 } 997 998 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and 999 /// BB2, hoist any common code in the two blocks up into the branch block. The 1000 /// caller of this function guarantees that BI's block dominates BB1 and BB2. 1001 static bool HoistThenElseCodeToIf(BranchInst *BI, const DataLayout *DL) { 1002 // This does very trivial matching, with limited scanning, to find identical 1003 // instructions in the two blocks. In particular, we don't want to get into 1004 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1005 // such, we currently just scan for obviously identical instructions in an 1006 // identical order. 1007 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1008 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1009 1010 BasicBlock::iterator BB1_Itr = BB1->begin(); 1011 BasicBlock::iterator BB2_Itr = BB2->begin(); 1012 1013 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 1014 // Skip debug info if it is not identical. 1015 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1016 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1017 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1018 while (isa<DbgInfoIntrinsic>(I1)) 1019 I1 = BB1_Itr++; 1020 while (isa<DbgInfoIntrinsic>(I2)) 1021 I2 = BB2_Itr++; 1022 } 1023 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1024 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1025 return false; 1026 1027 BasicBlock *BIParent = BI->getParent(); 1028 1029 bool Changed = false; 1030 do { 1031 // If we are hoisting the terminator instruction, don't move one (making a 1032 // broken BB), instead clone it, and remove BI. 1033 if (isa<TerminatorInst>(I1)) 1034 goto HoistTerminator; 1035 1036 // For a normal instruction, we just move one to right before the branch, 1037 // then replace all uses of the other with the first. Finally, we remove 1038 // the now redundant second instruction. 1039 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 1040 if (!I2->use_empty()) 1041 I2->replaceAllUsesWith(I1); 1042 I1->intersectOptionalDataWith(I2); 1043 I2->eraseFromParent(); 1044 Changed = true; 1045 1046 I1 = BB1_Itr++; 1047 I2 = BB2_Itr++; 1048 // Skip debug info if it is not identical. 1049 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1050 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1051 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1052 while (isa<DbgInfoIntrinsic>(I1)) 1053 I1 = BB1_Itr++; 1054 while (isa<DbgInfoIntrinsic>(I2)) 1055 I2 = BB2_Itr++; 1056 } 1057 } while (I1->isIdenticalToWhenDefined(I2)); 1058 1059 return true; 1060 1061 HoistTerminator: 1062 // It may not be possible to hoist an invoke. 1063 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1064 return Changed; 1065 1066 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1067 PHINode *PN; 1068 for (BasicBlock::iterator BBI = SI->begin(); 1069 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1070 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1071 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1072 if (BB1V == BB2V) 1073 continue; 1074 1075 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V, DL)) 1076 return Changed; 1077 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V, DL)) 1078 return Changed; 1079 } 1080 } 1081 1082 // Okay, it is safe to hoist the terminator. 1083 Instruction *NT = I1->clone(); 1084 BIParent->getInstList().insert(BI, NT); 1085 if (!NT->getType()->isVoidTy()) { 1086 I1->replaceAllUsesWith(NT); 1087 I2->replaceAllUsesWith(NT); 1088 NT->takeName(I1); 1089 } 1090 1091 IRBuilder<true, NoFolder> Builder(NT); 1092 // Hoisting one of the terminators from our successor is a great thing. 1093 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1094 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1095 // nodes, so we insert select instruction to compute the final result. 1096 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1097 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1098 PHINode *PN; 1099 for (BasicBlock::iterator BBI = SI->begin(); 1100 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1101 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1102 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1103 if (BB1V == BB2V) continue; 1104 1105 // These values do not agree. Insert a select instruction before NT 1106 // that determines the right value. 1107 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1108 if (!SI) 1109 SI = cast<SelectInst> 1110 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1111 BB1V->getName()+"."+BB2V->getName())); 1112 1113 // Make the PHI node use the select for all incoming values for BB1/BB2 1114 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1115 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1116 PN->setIncomingValue(i, SI); 1117 } 1118 } 1119 1120 // Update any PHI nodes in our new successors. 1121 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1122 AddPredecessorToBlock(*SI, BIParent, BB1); 1123 1124 EraseTerminatorInstAndDCECond(BI); 1125 return true; 1126 } 1127 1128 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd, 1129 /// check whether BBEnd has only two predecessors and the other predecessor 1130 /// ends with an unconditional branch. If it is true, sink any common code 1131 /// in the two predecessors to BBEnd. 1132 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1133 assert(BI1->isUnconditional()); 1134 BasicBlock *BB1 = BI1->getParent(); 1135 BasicBlock *BBEnd = BI1->getSuccessor(0); 1136 1137 // Check that BBEnd has two predecessors and the other predecessor ends with 1138 // an unconditional branch. 1139 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1140 BasicBlock *Pred0 = *PI++; 1141 if (PI == PE) // Only one predecessor. 1142 return false; 1143 BasicBlock *Pred1 = *PI++; 1144 if (PI != PE) // More than two predecessors. 1145 return false; 1146 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1147 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1148 if (!BI2 || !BI2->isUnconditional()) 1149 return false; 1150 1151 // Gather the PHI nodes in BBEnd. 1152 std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2; 1153 Instruction *FirstNonPhiInBBEnd = nullptr; 1154 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); 1155 I != E; ++I) { 1156 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1157 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1158 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1159 MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN); 1160 } else { 1161 FirstNonPhiInBBEnd = &*I; 1162 break; 1163 } 1164 } 1165 if (!FirstNonPhiInBBEnd) 1166 return false; 1167 1168 1169 // This does very trivial matching, with limited scanning, to find identical 1170 // instructions in the two blocks. We scan backward for obviously identical 1171 // instructions in an identical order. 1172 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1173 RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(), 1174 RE2 = BB2->getInstList().rend(); 1175 // Skip debug info. 1176 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1177 if (RI1 == RE1) 1178 return false; 1179 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1180 if (RI2 == RE2) 1181 return false; 1182 // Skip the unconditional branches. 1183 ++RI1; 1184 ++RI2; 1185 1186 bool Changed = false; 1187 while (RI1 != RE1 && RI2 != RE2) { 1188 // Skip debug info. 1189 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1190 if (RI1 == RE1) 1191 return Changed; 1192 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1193 if (RI2 == RE2) 1194 return Changed; 1195 1196 Instruction *I1 = &*RI1, *I2 = &*RI2; 1197 // I1 and I2 should have a single use in the same PHI node, and they 1198 // perform the same operation. 1199 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1200 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1201 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1202 isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) || 1203 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1204 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1205 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1206 !I1->hasOneUse() || !I2->hasOneUse() || 1207 MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() || 1208 MapValueFromBB1ToBB2[I1].first != I2) 1209 return Changed; 1210 1211 // Check whether we should swap the operands of ICmpInst. 1212 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1213 bool SwapOpnds = false; 1214 if (ICmp1 && ICmp2 && 1215 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1216 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1217 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1218 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1219 ICmp2->swapOperands(); 1220 SwapOpnds = true; 1221 } 1222 if (!I1->isSameOperationAs(I2)) { 1223 if (SwapOpnds) 1224 ICmp2->swapOperands(); 1225 return Changed; 1226 } 1227 1228 // The operands should be either the same or they need to be generated 1229 // with a PHI node after sinking. We only handle the case where there is 1230 // a single pair of different operands. 1231 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr; 1232 unsigned Op1Idx = 0; 1233 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1234 if (I1->getOperand(I) == I2->getOperand(I)) 1235 continue; 1236 // Early exit if we have more-than one pair of different operands or 1237 // the different operand is already in MapValueFromBB1ToBB2. 1238 // Early exit if we need a PHI node to replace a constant. 1239 if (DifferentOp1 || 1240 MapValueFromBB1ToBB2.find(I1->getOperand(I)) != 1241 MapValueFromBB1ToBB2.end() || 1242 isa<Constant>(I1->getOperand(I)) || 1243 isa<Constant>(I2->getOperand(I))) { 1244 // If we can't sink the instructions, undo the swapping. 1245 if (SwapOpnds) 1246 ICmp2->swapOperands(); 1247 return Changed; 1248 } 1249 DifferentOp1 = I1->getOperand(I); 1250 Op1Idx = I; 1251 DifferentOp2 = I2->getOperand(I); 1252 } 1253 1254 // We insert the pair of different operands to MapValueFromBB1ToBB2 and 1255 // remove (I1, I2) from MapValueFromBB1ToBB2. 1256 if (DifferentOp1) { 1257 PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2, 1258 DifferentOp1->getName() + ".sink", 1259 BBEnd->begin()); 1260 MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN); 1261 // I1 should use NewPN instead of DifferentOp1. 1262 I1->setOperand(Op1Idx, NewPN); 1263 NewPN->addIncoming(DifferentOp1, BB1); 1264 NewPN->addIncoming(DifferentOp2, BB2); 1265 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1266 } 1267 PHINode *OldPN = MapValueFromBB1ToBB2[I1].second; 1268 MapValueFromBB1ToBB2.erase(I1); 1269 1270 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";); 1271 DEBUG(dbgs() << " " << *I2 << "\n";); 1272 // We need to update RE1 and RE2 if we are going to sink the first 1273 // instruction in the basic block down. 1274 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1275 // Sink the instruction. 1276 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1); 1277 if (!OldPN->use_empty()) 1278 OldPN->replaceAllUsesWith(I1); 1279 OldPN->eraseFromParent(); 1280 1281 if (!I2->use_empty()) 1282 I2->replaceAllUsesWith(I1); 1283 I1->intersectOptionalDataWith(I2); 1284 I2->eraseFromParent(); 1285 1286 if (UpdateRE1) 1287 RE1 = BB1->getInstList().rend(); 1288 if (UpdateRE2) 1289 RE2 = BB2->getInstList().rend(); 1290 FirstNonPhiInBBEnd = I1; 1291 NumSinkCommons++; 1292 Changed = true; 1293 } 1294 return Changed; 1295 } 1296 1297 /// \brief Determine if we can hoist sink a sole store instruction out of a 1298 /// conditional block. 1299 /// 1300 /// We are looking for code like the following: 1301 /// BrBB: 1302 /// store i32 %add, i32* %arrayidx2 1303 /// ... // No other stores or function calls (we could be calling a memory 1304 /// ... // function). 1305 /// %cmp = icmp ult %x, %y 1306 /// br i1 %cmp, label %EndBB, label %ThenBB 1307 /// ThenBB: 1308 /// store i32 %add5, i32* %arrayidx2 1309 /// br label EndBB 1310 /// EndBB: 1311 /// ... 1312 /// We are going to transform this into: 1313 /// BrBB: 1314 /// store i32 %add, i32* %arrayidx2 1315 /// ... // 1316 /// %cmp = icmp ult %x, %y 1317 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1318 /// store i32 %add.add5, i32* %arrayidx2 1319 /// ... 1320 /// 1321 /// \return The pointer to the value of the previous store if the store can be 1322 /// hoisted into the predecessor block. 0 otherwise. 1323 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1324 BasicBlock *StoreBB, BasicBlock *EndBB) { 1325 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1326 if (!StoreToHoist) 1327 return nullptr; 1328 1329 // Volatile or atomic. 1330 if (!StoreToHoist->isSimple()) 1331 return nullptr; 1332 1333 Value *StorePtr = StoreToHoist->getPointerOperand(); 1334 1335 // Look for a store to the same pointer in BrBB. 1336 unsigned MaxNumInstToLookAt = 10; 1337 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1338 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1339 Instruction *CurI = &*RI; 1340 1341 // Could be calling an instruction that effects memory like free(). 1342 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1343 return nullptr; 1344 1345 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1346 // Found the previous store make sure it stores to the same location. 1347 if (SI && SI->getPointerOperand() == StorePtr) 1348 // Found the previous store, return its value operand. 1349 return SI->getValueOperand(); 1350 else if (SI) 1351 return nullptr; // Unknown store. 1352 } 1353 1354 return nullptr; 1355 } 1356 1357 /// \brief Speculate a conditional basic block flattening the CFG. 1358 /// 1359 /// Note that this is a very risky transform currently. Speculating 1360 /// instructions like this is most often not desirable. Instead, there is an MI 1361 /// pass which can do it with full awareness of the resource constraints. 1362 /// However, some cases are "obvious" and we should do directly. An example of 1363 /// this is speculating a single, reasonably cheap instruction. 1364 /// 1365 /// There is only one distinct advantage to flattening the CFG at the IR level: 1366 /// it makes very common but simplistic optimizations such as are common in 1367 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1368 /// modeling their effects with easier to reason about SSA value graphs. 1369 /// 1370 /// 1371 /// An illustration of this transform is turning this IR: 1372 /// \code 1373 /// BB: 1374 /// %cmp = icmp ult %x, %y 1375 /// br i1 %cmp, label %EndBB, label %ThenBB 1376 /// ThenBB: 1377 /// %sub = sub %x, %y 1378 /// br label BB2 1379 /// EndBB: 1380 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1381 /// ... 1382 /// \endcode 1383 /// 1384 /// Into this IR: 1385 /// \code 1386 /// BB: 1387 /// %cmp = icmp ult %x, %y 1388 /// %sub = sub %x, %y 1389 /// %cond = select i1 %cmp, 0, %sub 1390 /// ... 1391 /// \endcode 1392 /// 1393 /// \returns true if the conditional block is removed. 1394 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1395 const DataLayout *DL) { 1396 // Be conservative for now. FP select instruction can often be expensive. 1397 Value *BrCond = BI->getCondition(); 1398 if (isa<FCmpInst>(BrCond)) 1399 return false; 1400 1401 BasicBlock *BB = BI->getParent(); 1402 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1403 1404 // If ThenBB is actually on the false edge of the conditional branch, remember 1405 // to swap the select operands later. 1406 bool Invert = false; 1407 if (ThenBB != BI->getSuccessor(0)) { 1408 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1409 Invert = true; 1410 } 1411 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1412 1413 // Keep a count of how many times instructions are used within CondBB when 1414 // they are candidates for sinking into CondBB. Specifically: 1415 // - They are defined in BB, and 1416 // - They have no side effects, and 1417 // - All of their uses are in CondBB. 1418 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1419 1420 unsigned SpeculationCost = 0; 1421 Value *SpeculatedStoreValue = nullptr; 1422 StoreInst *SpeculatedStore = nullptr; 1423 for (BasicBlock::iterator BBI = ThenBB->begin(), 1424 BBE = std::prev(ThenBB->end()); 1425 BBI != BBE; ++BBI) { 1426 Instruction *I = BBI; 1427 // Skip debug info. 1428 if (isa<DbgInfoIntrinsic>(I)) 1429 continue; 1430 1431 // Only speculatively execution a single instruction (not counting the 1432 // terminator) for now. 1433 ++SpeculationCost; 1434 if (SpeculationCost > 1) 1435 return false; 1436 1437 // Don't hoist the instruction if it's unsafe or expensive. 1438 if (!isSafeToSpeculativelyExecute(I, DL) && 1439 !(HoistCondStores && 1440 (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB, 1441 EndBB)))) 1442 return false; 1443 if (!SpeculatedStoreValue && 1444 ComputeSpeculationCost(I, DL) > PHINodeFoldingThreshold) 1445 return false; 1446 1447 // Store the store speculation candidate. 1448 if (SpeculatedStoreValue) 1449 SpeculatedStore = cast<StoreInst>(I); 1450 1451 // Do not hoist the instruction if any of its operands are defined but not 1452 // used in BB. The transformation will prevent the operand from 1453 // being sunk into the use block. 1454 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1455 i != e; ++i) { 1456 Instruction *OpI = dyn_cast<Instruction>(*i); 1457 if (!OpI || OpI->getParent() != BB || 1458 OpI->mayHaveSideEffects()) 1459 continue; // Not a candidate for sinking. 1460 1461 ++SinkCandidateUseCounts[OpI]; 1462 } 1463 } 1464 1465 // Consider any sink candidates which are only used in CondBB as costs for 1466 // speculation. Note, while we iterate over a DenseMap here, we are summing 1467 // and so iteration order isn't significant. 1468 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1469 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1470 I != E; ++I) 1471 if (I->first->getNumUses() == I->second) { 1472 ++SpeculationCost; 1473 if (SpeculationCost > 1) 1474 return false; 1475 } 1476 1477 // Check that the PHI nodes can be converted to selects. 1478 bool HaveRewritablePHIs = false; 1479 for (BasicBlock::iterator I = EndBB->begin(); 1480 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1481 Value *OrigV = PN->getIncomingValueForBlock(BB); 1482 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1483 1484 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1485 // Skip PHIs which are trivial. 1486 if (ThenV == OrigV) 1487 continue; 1488 1489 HaveRewritablePHIs = true; 1490 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1491 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1492 if (!OrigCE && !ThenCE) 1493 continue; // Known safe and cheap. 1494 1495 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE, DL)) || 1496 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE, DL))) 1497 return false; 1498 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, DL) : 0; 1499 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, DL) : 0; 1500 if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold) 1501 return false; 1502 1503 // Account for the cost of an unfolded ConstantExpr which could end up 1504 // getting expanded into Instructions. 1505 // FIXME: This doesn't account for how many operations are combined in the 1506 // constant expression. 1507 ++SpeculationCost; 1508 if (SpeculationCost > 1) 1509 return false; 1510 } 1511 1512 // If there are no PHIs to process, bail early. This helps ensure idempotence 1513 // as well. 1514 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1515 return false; 1516 1517 // If we get here, we can hoist the instruction and if-convert. 1518 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1519 1520 // Insert a select of the value of the speculated store. 1521 if (SpeculatedStoreValue) { 1522 IRBuilder<true, NoFolder> Builder(BI); 1523 Value *TrueV = SpeculatedStore->getValueOperand(); 1524 Value *FalseV = SpeculatedStoreValue; 1525 if (Invert) 1526 std::swap(TrueV, FalseV); 1527 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1528 "." + FalseV->getName()); 1529 SpeculatedStore->setOperand(0, S); 1530 } 1531 1532 // Hoist the instructions. 1533 BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(), 1534 std::prev(ThenBB->end())); 1535 1536 // Insert selects and rewrite the PHI operands. 1537 IRBuilder<true, NoFolder> Builder(BI); 1538 for (BasicBlock::iterator I = EndBB->begin(); 1539 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1540 unsigned OrigI = PN->getBasicBlockIndex(BB); 1541 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1542 Value *OrigV = PN->getIncomingValue(OrigI); 1543 Value *ThenV = PN->getIncomingValue(ThenI); 1544 1545 // Skip PHIs which are trivial. 1546 if (OrigV == ThenV) 1547 continue; 1548 1549 // Create a select whose true value is the speculatively executed value and 1550 // false value is the preexisting value. Swap them if the branch 1551 // destinations were inverted. 1552 Value *TrueV = ThenV, *FalseV = OrigV; 1553 if (Invert) 1554 std::swap(TrueV, FalseV); 1555 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1556 TrueV->getName() + "." + FalseV->getName()); 1557 PN->setIncomingValue(OrigI, V); 1558 PN->setIncomingValue(ThenI, V); 1559 } 1560 1561 ++NumSpeculations; 1562 return true; 1563 } 1564 1565 /// \returns True if this block contains a CallInst with the NoDuplicate 1566 /// attribute. 1567 static bool HasNoDuplicateCall(const BasicBlock *BB) { 1568 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1569 const CallInst *CI = dyn_cast<CallInst>(I); 1570 if (!CI) 1571 continue; 1572 if (CI->cannotDuplicate()) 1573 return true; 1574 } 1575 return false; 1576 } 1577 1578 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch 1579 /// across this block. 1580 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1581 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1582 unsigned Size = 0; 1583 1584 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1585 if (isa<DbgInfoIntrinsic>(BBI)) 1586 continue; 1587 if (Size > 10) return false; // Don't clone large BB's. 1588 ++Size; 1589 1590 // We can only support instructions that do not define values that are 1591 // live outside of the current basic block. 1592 for (User *U : BBI->users()) { 1593 Instruction *UI = cast<Instruction>(U); 1594 if (UI->getParent() != BB || isa<PHINode>(UI)) return false; 1595 } 1596 1597 // Looks ok, continue checking. 1598 } 1599 1600 return true; 1601 } 1602 1603 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value 1604 /// that is defined in the same block as the branch and if any PHI entries are 1605 /// constants, thread edges corresponding to that entry to be branches to their 1606 /// ultimate destination. 1607 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *DL) { 1608 BasicBlock *BB = BI->getParent(); 1609 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1610 // NOTE: we currently cannot transform this case if the PHI node is used 1611 // outside of the block. 1612 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1613 return false; 1614 1615 // Degenerate case of a single entry PHI. 1616 if (PN->getNumIncomingValues() == 1) { 1617 FoldSingleEntryPHINodes(PN->getParent()); 1618 return true; 1619 } 1620 1621 // Now we know that this block has multiple preds and two succs. 1622 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1623 1624 if (HasNoDuplicateCall(BB)) return false; 1625 1626 // Okay, this is a simple enough basic block. See if any phi values are 1627 // constants. 1628 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1629 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1630 if (!CB || !CB->getType()->isIntegerTy(1)) continue; 1631 1632 // Okay, we now know that all edges from PredBB should be revectored to 1633 // branch to RealDest. 1634 BasicBlock *PredBB = PN->getIncomingBlock(i); 1635 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1636 1637 if (RealDest == BB) continue; // Skip self loops. 1638 // Skip if the predecessor's terminator is an indirect branch. 1639 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1640 1641 // The dest block might have PHI nodes, other predecessors and other 1642 // difficult cases. Instead of being smart about this, just insert a new 1643 // block that jumps to the destination block, effectively splitting 1644 // the edge we are about to create. 1645 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1646 RealDest->getName()+".critedge", 1647 RealDest->getParent(), RealDest); 1648 BranchInst::Create(RealDest, EdgeBB); 1649 1650 // Update PHI nodes. 1651 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1652 1653 // BB may have instructions that are being threaded over. Clone these 1654 // instructions into EdgeBB. We know that there will be no uses of the 1655 // cloned instructions outside of EdgeBB. 1656 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1657 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1658 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1659 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1660 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1661 continue; 1662 } 1663 // Clone the instruction. 1664 Instruction *N = BBI->clone(); 1665 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1666 1667 // Update operands due to translation. 1668 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1669 i != e; ++i) { 1670 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1671 if (PI != TranslateMap.end()) 1672 *i = PI->second; 1673 } 1674 1675 // Check for trivial simplification. 1676 if (Value *V = SimplifyInstruction(N, DL)) { 1677 TranslateMap[BBI] = V; 1678 delete N; // Instruction folded away, don't need actual inst 1679 } else { 1680 // Insert the new instruction into its new home. 1681 EdgeBB->getInstList().insert(InsertPt, N); 1682 if (!BBI->use_empty()) 1683 TranslateMap[BBI] = N; 1684 } 1685 } 1686 1687 // Loop over all of the edges from PredBB to BB, changing them to branch 1688 // to EdgeBB instead. 1689 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1690 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1691 if (PredBBTI->getSuccessor(i) == BB) { 1692 BB->removePredecessor(PredBB); 1693 PredBBTI->setSuccessor(i, EdgeBB); 1694 } 1695 1696 // Recurse, simplifying any other constants. 1697 return FoldCondBranchOnPHI(BI, DL) | true; 1698 } 1699 1700 return false; 1701 } 1702 1703 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry 1704 /// PHI node, see if we can eliminate it. 1705 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *DL) { 1706 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1707 // statement", which has a very simple dominance structure. Basically, we 1708 // are trying to find the condition that is being branched on, which 1709 // subsequently causes this merge to happen. We really want control 1710 // dependence information for this check, but simplifycfg can't keep it up 1711 // to date, and this catches most of the cases we care about anyway. 1712 BasicBlock *BB = PN->getParent(); 1713 BasicBlock *IfTrue, *IfFalse; 1714 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1715 if (!IfCond || 1716 // Don't bother if the branch will be constant folded trivially. 1717 isa<ConstantInt>(IfCond)) 1718 return false; 1719 1720 // Okay, we found that we can merge this two-entry phi node into a select. 1721 // Doing so would require us to fold *all* two entry phi nodes in this block. 1722 // At some point this becomes non-profitable (particularly if the target 1723 // doesn't support cmov's). Only do this transformation if there are two or 1724 // fewer PHI nodes in this block. 1725 unsigned NumPhis = 0; 1726 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1727 if (NumPhis > 2) 1728 return false; 1729 1730 // Loop over the PHI's seeing if we can promote them all to select 1731 // instructions. While we are at it, keep track of the instructions 1732 // that need to be moved to the dominating block. 1733 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1734 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1735 MaxCostVal1 = PHINodeFoldingThreshold; 1736 1737 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1738 PHINode *PN = cast<PHINode>(II++); 1739 if (Value *V = SimplifyInstruction(PN, DL)) { 1740 PN->replaceAllUsesWith(V); 1741 PN->eraseFromParent(); 1742 continue; 1743 } 1744 1745 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1746 MaxCostVal0, DL) || 1747 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1748 MaxCostVal1, DL)) 1749 return false; 1750 } 1751 1752 // If we folded the first phi, PN dangles at this point. Refresh it. If 1753 // we ran out of PHIs then we simplified them all. 1754 PN = dyn_cast<PHINode>(BB->begin()); 1755 if (!PN) return true; 1756 1757 // Don't fold i1 branches on PHIs which contain binary operators. These can 1758 // often be turned into switches and other things. 1759 if (PN->getType()->isIntegerTy(1) && 1760 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1761 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1762 isa<BinaryOperator>(IfCond))) 1763 return false; 1764 1765 // If we all PHI nodes are promotable, check to make sure that all 1766 // instructions in the predecessor blocks can be promoted as well. If 1767 // not, we won't be able to get rid of the control flow, so it's not 1768 // worth promoting to select instructions. 1769 BasicBlock *DomBlock = nullptr; 1770 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1771 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1772 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1773 IfBlock1 = nullptr; 1774 } else { 1775 DomBlock = *pred_begin(IfBlock1); 1776 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1777 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1778 // This is not an aggressive instruction that we can promote. 1779 // Because of this, we won't be able to get rid of the control 1780 // flow, so the xform is not worth it. 1781 return false; 1782 } 1783 } 1784 1785 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1786 IfBlock2 = nullptr; 1787 } else { 1788 DomBlock = *pred_begin(IfBlock2); 1789 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1790 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1791 // This is not an aggressive instruction that we can promote. 1792 // Because of this, we won't be able to get rid of the control 1793 // flow, so the xform is not worth it. 1794 return false; 1795 } 1796 } 1797 1798 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1799 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1800 1801 // If we can still promote the PHI nodes after this gauntlet of tests, 1802 // do all of the PHI's now. 1803 Instruction *InsertPt = DomBlock->getTerminator(); 1804 IRBuilder<true, NoFolder> Builder(InsertPt); 1805 1806 // Move all 'aggressive' instructions, which are defined in the 1807 // conditional parts of the if's up to the dominating block. 1808 if (IfBlock1) 1809 DomBlock->getInstList().splice(InsertPt, 1810 IfBlock1->getInstList(), IfBlock1->begin(), 1811 IfBlock1->getTerminator()); 1812 if (IfBlock2) 1813 DomBlock->getInstList().splice(InsertPt, 1814 IfBlock2->getInstList(), IfBlock2->begin(), 1815 IfBlock2->getTerminator()); 1816 1817 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1818 // Change the PHI node into a select instruction. 1819 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1820 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1821 1822 SelectInst *NV = 1823 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1824 PN->replaceAllUsesWith(NV); 1825 NV->takeName(PN); 1826 PN->eraseFromParent(); 1827 } 1828 1829 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1830 // has been flattened. Change DomBlock to jump directly to our new block to 1831 // avoid other simplifycfg's kicking in on the diamond. 1832 TerminatorInst *OldTI = DomBlock->getTerminator(); 1833 Builder.SetInsertPoint(OldTI); 1834 Builder.CreateBr(BB); 1835 OldTI->eraseFromParent(); 1836 return true; 1837 } 1838 1839 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes 1840 /// to two returning blocks, try to merge them together into one return, 1841 /// introducing a select if the return values disagree. 1842 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1843 IRBuilder<> &Builder) { 1844 assert(BI->isConditional() && "Must be a conditional branch"); 1845 BasicBlock *TrueSucc = BI->getSuccessor(0); 1846 BasicBlock *FalseSucc = BI->getSuccessor(1); 1847 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1848 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1849 1850 // Check to ensure both blocks are empty (just a return) or optionally empty 1851 // with PHI nodes. If there are other instructions, merging would cause extra 1852 // computation on one path or the other. 1853 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1854 return false; 1855 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1856 return false; 1857 1858 Builder.SetInsertPoint(BI); 1859 // Okay, we found a branch that is going to two return nodes. If 1860 // there is no return value for this function, just change the 1861 // branch into a return. 1862 if (FalseRet->getNumOperands() == 0) { 1863 TrueSucc->removePredecessor(BI->getParent()); 1864 FalseSucc->removePredecessor(BI->getParent()); 1865 Builder.CreateRetVoid(); 1866 EraseTerminatorInstAndDCECond(BI); 1867 return true; 1868 } 1869 1870 // Otherwise, figure out what the true and false return values are 1871 // so we can insert a new select instruction. 1872 Value *TrueValue = TrueRet->getReturnValue(); 1873 Value *FalseValue = FalseRet->getReturnValue(); 1874 1875 // Unwrap any PHI nodes in the return blocks. 1876 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1877 if (TVPN->getParent() == TrueSucc) 1878 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1879 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1880 if (FVPN->getParent() == FalseSucc) 1881 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1882 1883 // In order for this transformation to be safe, we must be able to 1884 // unconditionally execute both operands to the return. This is 1885 // normally the case, but we could have a potentially-trapping 1886 // constant expression that prevents this transformation from being 1887 // safe. 1888 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1889 if (TCV->canTrap()) 1890 return false; 1891 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1892 if (FCV->canTrap()) 1893 return false; 1894 1895 // Okay, we collected all the mapped values and checked them for sanity, and 1896 // defined to really do this transformation. First, update the CFG. 1897 TrueSucc->removePredecessor(BI->getParent()); 1898 FalseSucc->removePredecessor(BI->getParent()); 1899 1900 // Insert select instructions where needed. 1901 Value *BrCond = BI->getCondition(); 1902 if (TrueValue) { 1903 // Insert a select if the results differ. 1904 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1905 } else if (isa<UndefValue>(TrueValue)) { 1906 TrueValue = FalseValue; 1907 } else { 1908 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 1909 FalseValue, "retval"); 1910 } 1911 } 1912 1913 Value *RI = !TrueValue ? 1914 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 1915 1916 (void) RI; 1917 1918 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 1919 << "\n " << *BI << "NewRet = " << *RI 1920 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 1921 1922 EraseTerminatorInstAndDCECond(BI); 1923 1924 return true; 1925 } 1926 1927 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the 1928 /// probabilities of the branch taking each edge. Fills in the two APInt 1929 /// parameters and return true, or returns false if no or invalid metadata was 1930 /// found. 1931 static bool ExtractBranchMetadata(BranchInst *BI, 1932 uint64_t &ProbTrue, uint64_t &ProbFalse) { 1933 assert(BI->isConditional() && 1934 "Looking for probabilities on unconditional branch?"); 1935 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 1936 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 1937 ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1)); 1938 ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2)); 1939 if (!CITrue || !CIFalse) return false; 1940 ProbTrue = CITrue->getValue().getZExtValue(); 1941 ProbFalse = CIFalse->getValue().getZExtValue(); 1942 return true; 1943 } 1944 1945 /// checkCSEInPredecessor - Return true if the given instruction is available 1946 /// in its predecessor block. If yes, the instruction will be removed. 1947 /// 1948 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 1949 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 1950 return false; 1951 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 1952 Instruction *PBI = &*I; 1953 // Check whether Inst and PBI generate the same value. 1954 if (Inst->isIdenticalTo(PBI)) { 1955 Inst->replaceAllUsesWith(PBI); 1956 Inst->eraseFromParent(); 1957 return true; 1958 } 1959 } 1960 return false; 1961 } 1962 1963 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a 1964 /// predecessor branches to us and one of our successors, fold the block into 1965 /// the predecessor and use logical operations to pick the right destination. 1966 bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL) { 1967 BasicBlock *BB = BI->getParent(); 1968 1969 Instruction *Cond = nullptr; 1970 if (BI->isConditional()) 1971 Cond = dyn_cast<Instruction>(BI->getCondition()); 1972 else { 1973 // For unconditional branch, check for a simple CFG pattern, where 1974 // BB has a single predecessor and BB's successor is also its predecessor's 1975 // successor. If such pattern exisits, check for CSE between BB and its 1976 // predecessor. 1977 if (BasicBlock *PB = BB->getSinglePredecessor()) 1978 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 1979 if (PBI->isConditional() && 1980 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 1981 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 1982 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 1983 I != E; ) { 1984 Instruction *Curr = I++; 1985 if (isa<CmpInst>(Curr)) { 1986 Cond = Curr; 1987 break; 1988 } 1989 // Quit if we can't remove this instruction. 1990 if (!checkCSEInPredecessor(Curr, PB)) 1991 return false; 1992 } 1993 } 1994 1995 if (!Cond) 1996 return false; 1997 } 1998 1999 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2000 Cond->getParent() != BB || !Cond->hasOneUse()) 2001 return false; 2002 2003 // Only allow this if the condition is a simple instruction that can be 2004 // executed unconditionally. It must be in the same block as the branch, and 2005 // must be at the front of the block. 2006 BasicBlock::iterator FrontIt = BB->front(); 2007 2008 // Ignore dbg intrinsics. 2009 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 2010 2011 // Allow a single instruction to be hoisted in addition to the compare 2012 // that feeds the branch. We later ensure that any values that _it_ uses 2013 // were also live in the predecessor, so that we don't unnecessarily create 2014 // register pressure or inhibit out-of-order execution. 2015 Instruction *BonusInst = nullptr; 2016 if (&*FrontIt != Cond && 2017 FrontIt->hasOneUse() && FrontIt->user_back() == Cond && 2018 isSafeToSpeculativelyExecute(FrontIt, DL)) { 2019 BonusInst = &*FrontIt; 2020 ++FrontIt; 2021 2022 // Ignore dbg intrinsics. 2023 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 2024 } 2025 2026 // Only a single bonus inst is allowed. 2027 if (&*FrontIt != Cond) 2028 return false; 2029 2030 // Make sure the instruction after the condition is the cond branch. 2031 BasicBlock::iterator CondIt = Cond; ++CondIt; 2032 2033 // Ignore dbg intrinsics. 2034 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2035 2036 if (&*CondIt != BI) 2037 return false; 2038 2039 // Cond is known to be a compare or binary operator. Check to make sure that 2040 // neither operand is a potentially-trapping constant expression. 2041 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2042 if (CE->canTrap()) 2043 return false; 2044 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2045 if (CE->canTrap()) 2046 return false; 2047 2048 // Finally, don't infinitely unroll conditional loops. 2049 BasicBlock *TrueDest = BI->getSuccessor(0); 2050 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2051 if (TrueDest == BB || FalseDest == BB) 2052 return false; 2053 2054 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2055 BasicBlock *PredBlock = *PI; 2056 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2057 2058 // Check that we have two conditional branches. If there is a PHI node in 2059 // the common successor, verify that the same value flows in from both 2060 // blocks. 2061 SmallVector<PHINode*, 4> PHIs; 2062 if (!PBI || PBI->isUnconditional() || 2063 (BI->isConditional() && 2064 !SafeToMergeTerminators(BI, PBI)) || 2065 (!BI->isConditional() && 2066 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2067 continue; 2068 2069 // Determine if the two branches share a common destination. 2070 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2071 bool InvertPredCond = false; 2072 2073 if (BI->isConditional()) { 2074 if (PBI->getSuccessor(0) == TrueDest) 2075 Opc = Instruction::Or; 2076 else if (PBI->getSuccessor(1) == FalseDest) 2077 Opc = Instruction::And; 2078 else if (PBI->getSuccessor(0) == FalseDest) 2079 Opc = Instruction::And, InvertPredCond = true; 2080 else if (PBI->getSuccessor(1) == TrueDest) 2081 Opc = Instruction::Or, InvertPredCond = true; 2082 else 2083 continue; 2084 } else { 2085 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2086 continue; 2087 } 2088 2089 // Ensure that any values used in the bonus instruction are also used 2090 // by the terminator of the predecessor. This means that those values 2091 // must already have been resolved, so we won't be inhibiting the 2092 // out-of-order core by speculating them earlier. We also allow 2093 // instructions that are used by the terminator's condition because it 2094 // exposes more merging opportunities. 2095 bool UsedByBranch = (BonusInst && BonusInst->hasOneUse() && 2096 BonusInst->user_back() == Cond); 2097 2098 if (BonusInst && !UsedByBranch) { 2099 // Collect the values used by the bonus inst 2100 SmallPtrSet<Value*, 4> UsedValues; 2101 for (Instruction::op_iterator OI = BonusInst->op_begin(), 2102 OE = BonusInst->op_end(); OI != OE; ++OI) { 2103 Value *V = *OI; 2104 if (!isa<Constant>(V) && !isa<Argument>(V)) 2105 UsedValues.insert(V); 2106 } 2107 2108 SmallVector<std::pair<Value*, unsigned>, 4> Worklist; 2109 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0)); 2110 2111 // Walk up to four levels back up the use-def chain of the predecessor's 2112 // terminator to see if all those values were used. The choice of four 2113 // levels is arbitrary, to provide a compile-time-cost bound. 2114 while (!Worklist.empty()) { 2115 std::pair<Value*, unsigned> Pair = Worklist.back(); 2116 Worklist.pop_back(); 2117 2118 if (Pair.second >= 4) continue; 2119 UsedValues.erase(Pair.first); 2120 if (UsedValues.empty()) break; 2121 2122 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) { 2123 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 2124 OI != OE; ++OI) 2125 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1)); 2126 } 2127 } 2128 2129 if (!UsedValues.empty()) return false; 2130 } 2131 2132 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2133 IRBuilder<> Builder(PBI); 2134 2135 // If we need to invert the condition in the pred block to match, do so now. 2136 if (InvertPredCond) { 2137 Value *NewCond = PBI->getCondition(); 2138 2139 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2140 CmpInst *CI = cast<CmpInst>(NewCond); 2141 CI->setPredicate(CI->getInversePredicate()); 2142 } else { 2143 NewCond = Builder.CreateNot(NewCond, 2144 PBI->getCondition()->getName()+".not"); 2145 } 2146 2147 PBI->setCondition(NewCond); 2148 PBI->swapSuccessors(); 2149 } 2150 2151 // If we have a bonus inst, clone it into the predecessor block. 2152 Instruction *NewBonus = nullptr; 2153 if (BonusInst) { 2154 NewBonus = BonusInst->clone(); 2155 2156 // If we moved a load, we cannot any longer claim any knowledge about 2157 // its potential value. The previous information might have been valid 2158 // only given the branch precondition. 2159 // For an analogous reason, we must also drop all the metadata whose 2160 // semantics we don't understand. 2161 NewBonus->dropUnknownMetadata(LLVMContext::MD_dbg); 2162 2163 PredBlock->getInstList().insert(PBI, NewBonus); 2164 NewBonus->takeName(BonusInst); 2165 BonusInst->setName(BonusInst->getName()+".old"); 2166 } 2167 2168 // Clone Cond into the predecessor basic block, and or/and the 2169 // two conditions together. 2170 Instruction *New = Cond->clone(); 2171 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus); 2172 PredBlock->getInstList().insert(PBI, New); 2173 New->takeName(Cond); 2174 Cond->setName(New->getName()+".old"); 2175 2176 if (BI->isConditional()) { 2177 Instruction *NewCond = 2178 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2179 New, "or.cond")); 2180 PBI->setCondition(NewCond); 2181 2182 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2183 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2184 PredFalseWeight); 2185 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2186 SuccFalseWeight); 2187 SmallVector<uint64_t, 8> NewWeights; 2188 2189 if (PBI->getSuccessor(0) == BB) { 2190 if (PredHasWeights && SuccHasWeights) { 2191 // PBI: br i1 %x, BB, FalseDest 2192 // BI: br i1 %y, TrueDest, FalseDest 2193 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2194 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2195 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2196 // TrueWeight for PBI * FalseWeight for BI. 2197 // We assume that total weights of a BranchInst can fit into 32 bits. 2198 // Therefore, we will not have overflow using 64-bit arithmetic. 2199 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2200 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2201 } 2202 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2203 PBI->setSuccessor(0, TrueDest); 2204 } 2205 if (PBI->getSuccessor(1) == BB) { 2206 if (PredHasWeights && SuccHasWeights) { 2207 // PBI: br i1 %x, TrueDest, BB 2208 // BI: br i1 %y, TrueDest, FalseDest 2209 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2210 // FalseWeight for PBI * TrueWeight for BI. 2211 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2212 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2213 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2214 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2215 } 2216 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2217 PBI->setSuccessor(1, FalseDest); 2218 } 2219 if (NewWeights.size() == 2) { 2220 // Halve the weights if any of them cannot fit in an uint32_t 2221 FitWeights(NewWeights); 2222 2223 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2224 PBI->setMetadata(LLVMContext::MD_prof, 2225 MDBuilder(BI->getContext()). 2226 createBranchWeights(MDWeights)); 2227 } else 2228 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2229 } else { 2230 // Update PHI nodes in the common successors. 2231 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2232 ConstantInt *PBI_C = cast<ConstantInt>( 2233 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2234 assert(PBI_C->getType()->isIntegerTy(1)); 2235 Instruction *MergedCond = nullptr; 2236 if (PBI->getSuccessor(0) == TrueDest) { 2237 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2238 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2239 // is false: !PBI_Cond and BI_Value 2240 Instruction *NotCond = 2241 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2242 "not.cond")); 2243 MergedCond = 2244 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2245 NotCond, New, 2246 "and.cond")); 2247 if (PBI_C->isOne()) 2248 MergedCond = 2249 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2250 PBI->getCondition(), MergedCond, 2251 "or.cond")); 2252 } else { 2253 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2254 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2255 // is false: PBI_Cond and BI_Value 2256 MergedCond = 2257 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2258 PBI->getCondition(), New, 2259 "and.cond")); 2260 if (PBI_C->isOne()) { 2261 Instruction *NotCond = 2262 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2263 "not.cond")); 2264 MergedCond = 2265 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2266 NotCond, MergedCond, 2267 "or.cond")); 2268 } 2269 } 2270 // Update PHI Node. 2271 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2272 MergedCond); 2273 } 2274 // Change PBI from Conditional to Unconditional. 2275 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2276 EraseTerminatorInstAndDCECond(PBI); 2277 PBI = New_PBI; 2278 } 2279 2280 // TODO: If BB is reachable from all paths through PredBlock, then we 2281 // could replace PBI's branch probabilities with BI's. 2282 2283 // Copy any debug value intrinsics into the end of PredBlock. 2284 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2285 if (isa<DbgInfoIntrinsic>(*I)) 2286 I->clone()->insertBefore(PBI); 2287 2288 return true; 2289 } 2290 return false; 2291 } 2292 2293 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a 2294 /// predecessor of another block, this function tries to simplify it. We know 2295 /// that PBI and BI are both conditional branches, and BI is in one of the 2296 /// successor blocks of PBI - PBI branches to BI. 2297 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 2298 assert(PBI->isConditional() && BI->isConditional()); 2299 BasicBlock *BB = BI->getParent(); 2300 2301 // If this block ends with a branch instruction, and if there is a 2302 // predecessor that ends on a branch of the same condition, make 2303 // this conditional branch redundant. 2304 if (PBI->getCondition() == BI->getCondition() && 2305 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2306 // Okay, the outcome of this conditional branch is statically 2307 // knowable. If this block had a single pred, handle specially. 2308 if (BB->getSinglePredecessor()) { 2309 // Turn this into a branch on constant. 2310 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2311 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2312 CondIsTrue)); 2313 return true; // Nuke the branch on constant. 2314 } 2315 2316 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2317 // in the constant and simplify the block result. Subsequent passes of 2318 // simplifycfg will thread the block. 2319 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2320 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2321 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 2322 std::distance(PB, PE), 2323 BI->getCondition()->getName() + ".pr", 2324 BB->begin()); 2325 // Okay, we're going to insert the PHI node. Since PBI is not the only 2326 // predecessor, compute the PHI'd conditional value for all of the preds. 2327 // Any predecessor where the condition is not computable we keep symbolic. 2328 for (pred_iterator PI = PB; PI != PE; ++PI) { 2329 BasicBlock *P = *PI; 2330 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2331 PBI != BI && PBI->isConditional() && 2332 PBI->getCondition() == BI->getCondition() && 2333 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2334 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2335 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2336 CondIsTrue), P); 2337 } else { 2338 NewPN->addIncoming(BI->getCondition(), P); 2339 } 2340 } 2341 2342 BI->setCondition(NewPN); 2343 return true; 2344 } 2345 } 2346 2347 // If this is a conditional branch in an empty block, and if any 2348 // predecessors are a conditional branch to one of our destinations, 2349 // fold the conditions into logical ops and one cond br. 2350 BasicBlock::iterator BBI = BB->begin(); 2351 // Ignore dbg intrinsics. 2352 while (isa<DbgInfoIntrinsic>(BBI)) 2353 ++BBI; 2354 if (&*BBI != BI) 2355 return false; 2356 2357 2358 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2359 if (CE->canTrap()) 2360 return false; 2361 2362 int PBIOp, BIOp; 2363 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2364 PBIOp = BIOp = 0; 2365 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2366 PBIOp = 0, BIOp = 1; 2367 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2368 PBIOp = 1, BIOp = 0; 2369 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2370 PBIOp = BIOp = 1; 2371 else 2372 return false; 2373 2374 // Check to make sure that the other destination of this branch 2375 // isn't BB itself. If so, this is an infinite loop that will 2376 // keep getting unwound. 2377 if (PBI->getSuccessor(PBIOp) == BB) 2378 return false; 2379 2380 // Do not perform this transformation if it would require 2381 // insertion of a large number of select instructions. For targets 2382 // without predication/cmovs, this is a big pessimization. 2383 2384 // Also do not perform this transformation if any phi node in the common 2385 // destination block can trap when reached by BB or PBB (PR17073). In that 2386 // case, it would be unsafe to hoist the operation into a select instruction. 2387 2388 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2389 unsigned NumPhis = 0; 2390 for (BasicBlock::iterator II = CommonDest->begin(); 2391 isa<PHINode>(II); ++II, ++NumPhis) { 2392 if (NumPhis > 2) // Disable this xform. 2393 return false; 2394 2395 PHINode *PN = cast<PHINode>(II); 2396 Value *BIV = PN->getIncomingValueForBlock(BB); 2397 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 2398 if (CE->canTrap()) 2399 return false; 2400 2401 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2402 Value *PBIV = PN->getIncomingValue(PBBIdx); 2403 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 2404 if (CE->canTrap()) 2405 return false; 2406 } 2407 2408 // Finally, if everything is ok, fold the branches to logical ops. 2409 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2410 2411 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2412 << "AND: " << *BI->getParent()); 2413 2414 2415 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2416 // branch in it, where one edge (OtherDest) goes back to itself but the other 2417 // exits. We don't *know* that the program avoids the infinite loop 2418 // (even though that seems likely). If we do this xform naively, we'll end up 2419 // recursively unpeeling the loop. Since we know that (after the xform is 2420 // done) that the block *is* infinite if reached, we just make it an obviously 2421 // infinite loop with no cond branch. 2422 if (OtherDest == BB) { 2423 // Insert it at the end of the function, because it's either code, 2424 // or it won't matter if it's hot. :) 2425 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2426 "infloop", BB->getParent()); 2427 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2428 OtherDest = InfLoopBlock; 2429 } 2430 2431 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2432 2433 // BI may have other predecessors. Because of this, we leave 2434 // it alone, but modify PBI. 2435 2436 // Make sure we get to CommonDest on True&True directions. 2437 Value *PBICond = PBI->getCondition(); 2438 IRBuilder<true, NoFolder> Builder(PBI); 2439 if (PBIOp) 2440 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2441 2442 Value *BICond = BI->getCondition(); 2443 if (BIOp) 2444 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2445 2446 // Merge the conditions. 2447 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2448 2449 // Modify PBI to branch on the new condition to the new dests. 2450 PBI->setCondition(Cond); 2451 PBI->setSuccessor(0, CommonDest); 2452 PBI->setSuccessor(1, OtherDest); 2453 2454 // Update branch weight for PBI. 2455 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2456 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2457 PredFalseWeight); 2458 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2459 SuccFalseWeight); 2460 if (PredHasWeights && SuccHasWeights) { 2461 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2462 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2463 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2464 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2465 // The weight to CommonDest should be PredCommon * SuccTotal + 2466 // PredOther * SuccCommon. 2467 // The weight to OtherDest should be PredOther * SuccOther. 2468 SmallVector<uint64_t, 2> NewWeights; 2469 NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) + 2470 PredOther * SuccCommon); 2471 NewWeights.push_back(PredOther * SuccOther); 2472 // Halve the weights if any of them cannot fit in an uint32_t 2473 FitWeights(NewWeights); 2474 2475 SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end()); 2476 PBI->setMetadata(LLVMContext::MD_prof, 2477 MDBuilder(BI->getContext()). 2478 createBranchWeights(MDWeights)); 2479 } 2480 2481 // OtherDest may have phi nodes. If so, add an entry from PBI's 2482 // block that are identical to the entries for BI's block. 2483 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2484 2485 // We know that the CommonDest already had an edge from PBI to 2486 // it. If it has PHIs though, the PHIs may have different 2487 // entries for BB and PBI's BB. If so, insert a select to make 2488 // them agree. 2489 PHINode *PN; 2490 for (BasicBlock::iterator II = CommonDest->begin(); 2491 (PN = dyn_cast<PHINode>(II)); ++II) { 2492 Value *BIV = PN->getIncomingValueForBlock(BB); 2493 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2494 Value *PBIV = PN->getIncomingValue(PBBIdx); 2495 if (BIV != PBIV) { 2496 // Insert a select in PBI to pick the right value. 2497 Value *NV = cast<SelectInst> 2498 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2499 PN->setIncomingValue(PBBIdx, NV); 2500 } 2501 } 2502 2503 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2504 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2505 2506 // This basic block is probably dead. We know it has at least 2507 // one fewer predecessor. 2508 return true; 2509 } 2510 2511 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a 2512 // branch to TrueBB if Cond is true or to FalseBB if Cond is false. 2513 // Takes care of updating the successors and removing the old terminator. 2514 // Also makes sure not to introduce new successors by assuming that edges to 2515 // non-successor TrueBBs and FalseBBs aren't reachable. 2516 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2517 BasicBlock *TrueBB, BasicBlock *FalseBB, 2518 uint32_t TrueWeight, 2519 uint32_t FalseWeight){ 2520 // Remove any superfluous successor edges from the CFG. 2521 // First, figure out which successors to preserve. 2522 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2523 // successor. 2524 BasicBlock *KeepEdge1 = TrueBB; 2525 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 2526 2527 // Then remove the rest. 2528 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { 2529 BasicBlock *Succ = OldTerm->getSuccessor(I); 2530 // Make sure only to keep exactly one copy of each edge. 2531 if (Succ == KeepEdge1) 2532 KeepEdge1 = nullptr; 2533 else if (Succ == KeepEdge2) 2534 KeepEdge2 = nullptr; 2535 else 2536 Succ->removePredecessor(OldTerm->getParent()); 2537 } 2538 2539 IRBuilder<> Builder(OldTerm); 2540 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2541 2542 // Insert an appropriate new terminator. 2543 if (!KeepEdge1 && !KeepEdge2) { 2544 if (TrueBB == FalseBB) 2545 // We were only looking for one successor, and it was present. 2546 // Create an unconditional branch to it. 2547 Builder.CreateBr(TrueBB); 2548 else { 2549 // We found both of the successors we were looking for. 2550 // Create a conditional branch sharing the condition of the select. 2551 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2552 if (TrueWeight != FalseWeight) 2553 NewBI->setMetadata(LLVMContext::MD_prof, 2554 MDBuilder(OldTerm->getContext()). 2555 createBranchWeights(TrueWeight, FalseWeight)); 2556 } 2557 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2558 // Neither of the selected blocks were successors, so this 2559 // terminator must be unreachable. 2560 new UnreachableInst(OldTerm->getContext(), OldTerm); 2561 } else { 2562 // One of the selected values was a successor, but the other wasn't. 2563 // Insert an unconditional branch to the one that was found; 2564 // the edge to the one that wasn't must be unreachable. 2565 if (!KeepEdge1) 2566 // Only TrueBB was found. 2567 Builder.CreateBr(TrueBB); 2568 else 2569 // Only FalseBB was found. 2570 Builder.CreateBr(FalseBB); 2571 } 2572 2573 EraseTerminatorInstAndDCECond(OldTerm); 2574 return true; 2575 } 2576 2577 // SimplifySwitchOnSelect - Replaces 2578 // (switch (select cond, X, Y)) on constant X, Y 2579 // with a branch - conditional if X and Y lead to distinct BBs, 2580 // unconditional otherwise. 2581 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2582 // Check for constant integer values in the select. 2583 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2584 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2585 if (!TrueVal || !FalseVal) 2586 return false; 2587 2588 // Find the relevant condition and destinations. 2589 Value *Condition = Select->getCondition(); 2590 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2591 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2592 2593 // Get weight for TrueBB and FalseBB. 2594 uint32_t TrueWeight = 0, FalseWeight = 0; 2595 SmallVector<uint64_t, 8> Weights; 2596 bool HasWeights = HasBranchWeights(SI); 2597 if (HasWeights) { 2598 GetBranchWeights(SI, Weights); 2599 if (Weights.size() == 1 + SI->getNumCases()) { 2600 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2601 getSuccessorIndex()]; 2602 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2603 getSuccessorIndex()]; 2604 } 2605 } 2606 2607 // Perform the actual simplification. 2608 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 2609 TrueWeight, FalseWeight); 2610 } 2611 2612 // SimplifyIndirectBrOnSelect - Replaces 2613 // (indirectbr (select cond, blockaddress(@fn, BlockA), 2614 // blockaddress(@fn, BlockB))) 2615 // with 2616 // (br cond, BlockA, BlockB). 2617 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 2618 // Check that both operands of the select are block addresses. 2619 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 2620 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 2621 if (!TBA || !FBA) 2622 return false; 2623 2624 // Extract the actual blocks. 2625 BasicBlock *TrueBB = TBA->getBasicBlock(); 2626 BasicBlock *FalseBB = FBA->getBasicBlock(); 2627 2628 // Perform the actual simplification. 2629 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 2630 0, 0); 2631 } 2632 2633 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp 2634 /// instruction (a seteq/setne with a constant) as the only instruction in a 2635 /// block that ends with an uncond branch. We are looking for a very specific 2636 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 2637 /// this case, we merge the first two "or's of icmp" into a switch, but then the 2638 /// default value goes to an uncond block with a seteq in it, we get something 2639 /// like: 2640 /// 2641 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 2642 /// DEFAULT: 2643 /// %tmp = icmp eq i8 %A, 92 2644 /// br label %end 2645 /// end: 2646 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 2647 /// 2648 /// We prefer to split the edge to 'end' so that there is a true/false entry to 2649 /// the PHI, merging the third icmp into the switch. 2650 static bool TryToSimplifyUncondBranchWithICmpInIt( 2651 ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI, 2652 const DataLayout *DL) { 2653 BasicBlock *BB = ICI->getParent(); 2654 2655 // If the block has any PHIs in it or the icmp has multiple uses, it is too 2656 // complex. 2657 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 2658 2659 Value *V = ICI->getOperand(0); 2660 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 2661 2662 // The pattern we're looking for is where our only predecessor is a switch on 2663 // 'V' and this block is the default case for the switch. In this case we can 2664 // fold the compared value into the switch to simplify things. 2665 BasicBlock *Pred = BB->getSinglePredecessor(); 2666 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false; 2667 2668 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 2669 if (SI->getCondition() != V) 2670 return false; 2671 2672 // If BB is reachable on a non-default case, then we simply know the value of 2673 // V in this block. Substitute it and constant fold the icmp instruction 2674 // away. 2675 if (SI->getDefaultDest() != BB) { 2676 ConstantInt *VVal = SI->findCaseDest(BB); 2677 assert(VVal && "Should have a unique destination value"); 2678 ICI->setOperand(0, VVal); 2679 2680 if (Value *V = SimplifyInstruction(ICI, DL)) { 2681 ICI->replaceAllUsesWith(V); 2682 ICI->eraseFromParent(); 2683 } 2684 // BB is now empty, so it is likely to simplify away. 2685 return SimplifyCFG(BB, TTI, DL) | true; 2686 } 2687 2688 // Ok, the block is reachable from the default dest. If the constant we're 2689 // comparing exists in one of the other edges, then we can constant fold ICI 2690 // and zap it. 2691 if (SI->findCaseValue(Cst) != SI->case_default()) { 2692 Value *V; 2693 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2694 V = ConstantInt::getFalse(BB->getContext()); 2695 else 2696 V = ConstantInt::getTrue(BB->getContext()); 2697 2698 ICI->replaceAllUsesWith(V); 2699 ICI->eraseFromParent(); 2700 // BB is now empty, so it is likely to simplify away. 2701 return SimplifyCFG(BB, TTI, DL) | true; 2702 } 2703 2704 // The use of the icmp has to be in the 'end' block, by the only PHI node in 2705 // the block. 2706 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 2707 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 2708 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 2709 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 2710 return false; 2711 2712 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 2713 // true in the PHI. 2714 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 2715 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 2716 2717 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2718 std::swap(DefaultCst, NewCst); 2719 2720 // Replace ICI (which is used by the PHI for the default value) with true or 2721 // false depending on if it is EQ or NE. 2722 ICI->replaceAllUsesWith(DefaultCst); 2723 ICI->eraseFromParent(); 2724 2725 // Okay, the switch goes to this block on a default value. Add an edge from 2726 // the switch to the merge point on the compared value. 2727 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 2728 BB->getParent(), BB); 2729 SmallVector<uint64_t, 8> Weights; 2730 bool HasWeights = HasBranchWeights(SI); 2731 if (HasWeights) { 2732 GetBranchWeights(SI, Weights); 2733 if (Weights.size() == 1 + SI->getNumCases()) { 2734 // Split weight for default case to case for "Cst". 2735 Weights[0] = (Weights[0]+1) >> 1; 2736 Weights.push_back(Weights[0]); 2737 2738 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 2739 SI->setMetadata(LLVMContext::MD_prof, 2740 MDBuilder(SI->getContext()). 2741 createBranchWeights(MDWeights)); 2742 } 2743 } 2744 SI->addCase(Cst, NewBB); 2745 2746 // NewBB branches to the phi block, add the uncond branch and the phi entry. 2747 Builder.SetInsertPoint(NewBB); 2748 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 2749 Builder.CreateBr(SuccBlock); 2750 PHIUse->addIncoming(NewCst, NewBB); 2751 return true; 2752 } 2753 2754 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. 2755 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2756 /// fold it into a switch instruction if so. 2757 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL, 2758 IRBuilder<> &Builder) { 2759 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2760 if (!Cond) return false; 2761 2762 2763 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2764 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2765 // 'setne's and'ed together, collect them. 2766 Value *CompVal = nullptr; 2767 std::vector<ConstantInt*> Values; 2768 bool TrueWhenEqual = true; 2769 Value *ExtraCase = nullptr; 2770 unsigned UsedICmps = 0; 2771 2772 if (Cond->getOpcode() == Instruction::Or) { 2773 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, true, 2774 UsedICmps); 2775 } else if (Cond->getOpcode() == Instruction::And) { 2776 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, false, 2777 UsedICmps); 2778 TrueWhenEqual = false; 2779 } 2780 2781 // If we didn't have a multiply compared value, fail. 2782 if (!CompVal) return false; 2783 2784 // Avoid turning single icmps into a switch. 2785 if (UsedICmps <= 1) 2786 return false; 2787 2788 // There might be duplicate constants in the list, which the switch 2789 // instruction can't handle, remove them now. 2790 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2791 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2792 2793 // If Extra was used, we require at least two switch values to do the 2794 // transformation. A switch with one value is just an cond branch. 2795 if (ExtraCase && Values.size() < 2) return false; 2796 2797 // TODO: Preserve branch weight metadata, similarly to how 2798 // FoldValueComparisonIntoPredecessors preserves it. 2799 2800 // Figure out which block is which destination. 2801 BasicBlock *DefaultBB = BI->getSuccessor(1); 2802 BasicBlock *EdgeBB = BI->getSuccessor(0); 2803 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2804 2805 BasicBlock *BB = BI->getParent(); 2806 2807 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2808 << " cases into SWITCH. BB is:\n" << *BB); 2809 2810 // If there are any extra values that couldn't be folded into the switch 2811 // then we evaluate them with an explicit branch first. Split the block 2812 // right before the condbr to handle it. 2813 if (ExtraCase) { 2814 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2815 // Remove the uncond branch added to the old block. 2816 TerminatorInst *OldTI = BB->getTerminator(); 2817 Builder.SetInsertPoint(OldTI); 2818 2819 if (TrueWhenEqual) 2820 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 2821 else 2822 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 2823 2824 OldTI->eraseFromParent(); 2825 2826 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2827 // for the edge we just added. 2828 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2829 2830 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2831 << "\nEXTRABB = " << *BB); 2832 BB = NewBB; 2833 } 2834 2835 Builder.SetInsertPoint(BI); 2836 // Convert pointer to int before we switch. 2837 if (CompVal->getType()->isPointerTy()) { 2838 assert(DL && "Cannot switch on pointer without DataLayout"); 2839 CompVal = Builder.CreatePtrToInt(CompVal, 2840 DL->getIntPtrType(CompVal->getType()), 2841 "magicptr"); 2842 } 2843 2844 // Create the new switch instruction now. 2845 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 2846 2847 // Add all of the 'cases' to the switch instruction. 2848 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2849 New->addCase(Values[i], EdgeBB); 2850 2851 // We added edges from PI to the EdgeBB. As such, if there were any 2852 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2853 // the number of edges added. 2854 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2855 isa<PHINode>(BBI); ++BBI) { 2856 PHINode *PN = cast<PHINode>(BBI); 2857 Value *InVal = PN->getIncomingValueForBlock(BB); 2858 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2859 PN->addIncoming(InVal, BB); 2860 } 2861 2862 // Erase the old branch instruction. 2863 EraseTerminatorInstAndDCECond(BI); 2864 2865 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2866 return true; 2867 } 2868 2869 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 2870 // If this is a trivial landing pad that just continues unwinding the caught 2871 // exception then zap the landing pad, turning its invokes into calls. 2872 BasicBlock *BB = RI->getParent(); 2873 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 2874 if (RI->getValue() != LPInst) 2875 // Not a landing pad, or the resume is not unwinding the exception that 2876 // caused control to branch here. 2877 return false; 2878 2879 // Check that there are no other instructions except for debug intrinsics. 2880 BasicBlock::iterator I = LPInst, E = RI; 2881 while (++I != E) 2882 if (!isa<DbgInfoIntrinsic>(I)) 2883 return false; 2884 2885 // Turn all invokes that unwind here into calls and delete the basic block. 2886 bool InvokeRequiresTableEntry = false; 2887 bool Changed = false; 2888 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 2889 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator()); 2890 2891 if (II->hasFnAttr(Attribute::UWTable)) { 2892 // Don't remove an `invoke' instruction if the ABI requires an entry into 2893 // the table. 2894 InvokeRequiresTableEntry = true; 2895 continue; 2896 } 2897 2898 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 2899 2900 // Insert a call instruction before the invoke. 2901 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II); 2902 Call->takeName(II); 2903 Call->setCallingConv(II->getCallingConv()); 2904 Call->setAttributes(II->getAttributes()); 2905 Call->setDebugLoc(II->getDebugLoc()); 2906 2907 // Anything that used the value produced by the invoke instruction now uses 2908 // the value produced by the call instruction. Note that we do this even 2909 // for void functions and calls with no uses so that the callgraph edge is 2910 // updated. 2911 II->replaceAllUsesWith(Call); 2912 BB->removePredecessor(II->getParent()); 2913 2914 // Insert a branch to the normal destination right before the invoke. 2915 BranchInst::Create(II->getNormalDest(), II); 2916 2917 // Finally, delete the invoke instruction! 2918 II->eraseFromParent(); 2919 Changed = true; 2920 } 2921 2922 if (!InvokeRequiresTableEntry) 2923 // The landingpad is now unreachable. Zap it. 2924 BB->eraseFromParent(); 2925 2926 return Changed; 2927 } 2928 2929 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 2930 BasicBlock *BB = RI->getParent(); 2931 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2932 2933 // Find predecessors that end with branches. 2934 SmallVector<BasicBlock*, 8> UncondBranchPreds; 2935 SmallVector<BranchInst*, 8> CondBranchPreds; 2936 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2937 BasicBlock *P = *PI; 2938 TerminatorInst *PTI = P->getTerminator(); 2939 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 2940 if (BI->isUnconditional()) 2941 UncondBranchPreds.push_back(P); 2942 else 2943 CondBranchPreds.push_back(BI); 2944 } 2945 } 2946 2947 // If we found some, do the transformation! 2948 if (!UncondBranchPreds.empty() && DupRet) { 2949 while (!UncondBranchPreds.empty()) { 2950 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 2951 DEBUG(dbgs() << "FOLDING: " << *BB 2952 << "INTO UNCOND BRANCH PRED: " << *Pred); 2953 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 2954 } 2955 2956 // If we eliminated all predecessors of the block, delete the block now. 2957 if (pred_begin(BB) == pred_end(BB)) 2958 // We know there are no successors, so just nuke the block. 2959 BB->eraseFromParent(); 2960 2961 return true; 2962 } 2963 2964 // Check out all of the conditional branches going to this return 2965 // instruction. If any of them just select between returns, change the 2966 // branch itself into a select/return pair. 2967 while (!CondBranchPreds.empty()) { 2968 BranchInst *BI = CondBranchPreds.pop_back_val(); 2969 2970 // Check to see if the non-BB successor is also a return block. 2971 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 2972 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 2973 SimplifyCondBranchToTwoReturns(BI, Builder)) 2974 return true; 2975 } 2976 return false; 2977 } 2978 2979 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 2980 BasicBlock *BB = UI->getParent(); 2981 2982 bool Changed = false; 2983 2984 // If there are any instructions immediately before the unreachable that can 2985 // be removed, do so. 2986 while (UI != BB->begin()) { 2987 BasicBlock::iterator BBI = UI; 2988 --BBI; 2989 // Do not delete instructions that can have side effects which might cause 2990 // the unreachable to not be reachable; specifically, calls and volatile 2991 // operations may have this effect. 2992 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 2993 2994 if (BBI->mayHaveSideEffects()) { 2995 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 2996 if (SI->isVolatile()) 2997 break; 2998 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 2999 if (LI->isVolatile()) 3000 break; 3001 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3002 if (RMWI->isVolatile()) 3003 break; 3004 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3005 if (CXI->isVolatile()) 3006 break; 3007 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 3008 !isa<LandingPadInst>(BBI)) { 3009 break; 3010 } 3011 // Note that deleting LandingPad's here is in fact okay, although it 3012 // involves a bit of subtle reasoning. If this inst is a LandingPad, 3013 // all the predecessors of this block will be the unwind edges of Invokes, 3014 // and we can therefore guarantee this block will be erased. 3015 } 3016 3017 // Delete this instruction (any uses are guaranteed to be dead) 3018 if (!BBI->use_empty()) 3019 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3020 BBI->eraseFromParent(); 3021 Changed = true; 3022 } 3023 3024 // If the unreachable instruction is the first in the block, take a gander 3025 // at all of the predecessors of this instruction, and simplify them. 3026 if (&BB->front() != UI) return Changed; 3027 3028 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 3029 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3030 TerminatorInst *TI = Preds[i]->getTerminator(); 3031 IRBuilder<> Builder(TI); 3032 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3033 if (BI->isUnconditional()) { 3034 if (BI->getSuccessor(0) == BB) { 3035 new UnreachableInst(TI->getContext(), TI); 3036 TI->eraseFromParent(); 3037 Changed = true; 3038 } 3039 } else { 3040 if (BI->getSuccessor(0) == BB) { 3041 Builder.CreateBr(BI->getSuccessor(1)); 3042 EraseTerminatorInstAndDCECond(BI); 3043 } else if (BI->getSuccessor(1) == BB) { 3044 Builder.CreateBr(BI->getSuccessor(0)); 3045 EraseTerminatorInstAndDCECond(BI); 3046 Changed = true; 3047 } 3048 } 3049 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3050 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3051 i != e; ++i) 3052 if (i.getCaseSuccessor() == BB) { 3053 BB->removePredecessor(SI->getParent()); 3054 SI->removeCase(i); 3055 --i; --e; 3056 Changed = true; 3057 } 3058 // If the default value is unreachable, figure out the most popular 3059 // destination and make it the default. 3060 if (SI->getDefaultDest() == BB) { 3061 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity; 3062 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3063 i != e; ++i) { 3064 std::pair<unsigned, unsigned> &entry = 3065 Popularity[i.getCaseSuccessor()]; 3066 if (entry.first == 0) { 3067 entry.first = 1; 3068 entry.second = i.getCaseIndex(); 3069 } else { 3070 entry.first++; 3071 } 3072 } 3073 3074 // Find the most popular block. 3075 unsigned MaxPop = 0; 3076 unsigned MaxIndex = 0; 3077 BasicBlock *MaxBlock = nullptr; 3078 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator 3079 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { 3080 if (I->second.first > MaxPop || 3081 (I->second.first == MaxPop && MaxIndex > I->second.second)) { 3082 MaxPop = I->second.first; 3083 MaxIndex = I->second.second; 3084 MaxBlock = I->first; 3085 } 3086 } 3087 if (MaxBlock) { 3088 // Make this the new default, allowing us to delete any explicit 3089 // edges to it. 3090 SI->setDefaultDest(MaxBlock); 3091 Changed = true; 3092 3093 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from 3094 // it. 3095 if (isa<PHINode>(MaxBlock->begin())) 3096 for (unsigned i = 0; i != MaxPop-1; ++i) 3097 MaxBlock->removePredecessor(SI->getParent()); 3098 3099 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3100 i != e; ++i) 3101 if (i.getCaseSuccessor() == MaxBlock) { 3102 SI->removeCase(i); 3103 --i; --e; 3104 } 3105 } 3106 } 3107 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 3108 if (II->getUnwindDest() == BB) { 3109 // Convert the invoke to a call instruction. This would be a good 3110 // place to note that the call does not throw though. 3111 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 3112 II->removeFromParent(); // Take out of symbol table 3113 3114 // Insert the call now... 3115 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); 3116 Builder.SetInsertPoint(BI); 3117 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 3118 Args, II->getName()); 3119 CI->setCallingConv(II->getCallingConv()); 3120 CI->setAttributes(II->getAttributes()); 3121 // If the invoke produced a value, the call does now instead. 3122 II->replaceAllUsesWith(CI); 3123 delete II; 3124 Changed = true; 3125 } 3126 } 3127 } 3128 3129 // If this block is now dead, remove it. 3130 if (pred_begin(BB) == pred_end(BB) && 3131 BB != &BB->getParent()->getEntryBlock()) { 3132 // We know there are no successors, so just nuke the block. 3133 BB->eraseFromParent(); 3134 return true; 3135 } 3136 3137 return Changed; 3138 } 3139 3140 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a 3141 /// integer range comparison into a sub, an icmp and a branch. 3142 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3143 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3144 3145 // Make sure all cases point to the same destination and gather the values. 3146 SmallVector<ConstantInt *, 16> Cases; 3147 SwitchInst::CaseIt I = SI->case_begin(); 3148 Cases.push_back(I.getCaseValue()); 3149 SwitchInst::CaseIt PrevI = I++; 3150 for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) { 3151 if (PrevI.getCaseSuccessor() != I.getCaseSuccessor()) 3152 return false; 3153 Cases.push_back(I.getCaseValue()); 3154 } 3155 assert(Cases.size() == SI->getNumCases() && "Not all cases gathered"); 3156 3157 // Sort the case values, then check if they form a range we can transform. 3158 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3159 for (unsigned I = 1, E = Cases.size(); I != E; ++I) { 3160 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1) 3161 return false; 3162 } 3163 3164 Constant *Offset = ConstantExpr::getNeg(Cases.back()); 3165 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()); 3166 3167 Value *Sub = SI->getCondition(); 3168 if (!Offset->isNullValue()) 3169 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off"); 3170 Value *Cmp; 3171 // If NumCases overflowed, then all possible values jump to the successor. 3172 if (NumCases->isNullValue() && SI->getNumCases() != 0) 3173 Cmp = ConstantInt::getTrue(SI->getContext()); 3174 else 3175 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3176 BranchInst *NewBI = Builder.CreateCondBr( 3177 Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest()); 3178 3179 // Update weight for the newly-created conditional branch. 3180 SmallVector<uint64_t, 8> Weights; 3181 bool HasWeights = HasBranchWeights(SI); 3182 if (HasWeights) { 3183 GetBranchWeights(SI, Weights); 3184 if (Weights.size() == 1 + SI->getNumCases()) { 3185 // Combine all weights for the cases to be the true weight of NewBI. 3186 // We assume that the sum of all weights for a Terminator can fit into 32 3187 // bits. 3188 uint32_t NewTrueWeight = 0; 3189 for (unsigned I = 1, E = Weights.size(); I != E; ++I) 3190 NewTrueWeight += (uint32_t)Weights[I]; 3191 NewBI->setMetadata(LLVMContext::MD_prof, 3192 MDBuilder(SI->getContext()). 3193 createBranchWeights(NewTrueWeight, 3194 (uint32_t)Weights[0])); 3195 } 3196 } 3197 3198 // Prune obsolete incoming values off the successor's PHI nodes. 3199 for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin(); 3200 isa<PHINode>(BBI); ++BBI) { 3201 for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I) 3202 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3203 } 3204 SI->eraseFromParent(); 3205 3206 return true; 3207 } 3208 3209 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch 3210 /// and use it to remove dead cases. 3211 static bool EliminateDeadSwitchCases(SwitchInst *SI) { 3212 Value *Cond = SI->getCondition(); 3213 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3214 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3215 computeKnownBits(Cond, KnownZero, KnownOne); 3216 3217 // Gather dead cases. 3218 SmallVector<ConstantInt*, 8> DeadCases; 3219 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3220 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3221 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3222 DeadCases.push_back(I.getCaseValue()); 3223 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3224 << I.getCaseValue() << "' is dead.\n"); 3225 } 3226 } 3227 3228 SmallVector<uint64_t, 8> Weights; 3229 bool HasWeight = HasBranchWeights(SI); 3230 if (HasWeight) { 3231 GetBranchWeights(SI, Weights); 3232 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3233 } 3234 3235 // Remove dead cases from the switch. 3236 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3237 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3238 assert(Case != SI->case_default() && 3239 "Case was not found. Probably mistake in DeadCases forming."); 3240 if (HasWeight) { 3241 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3242 Weights.pop_back(); 3243 } 3244 3245 // Prune unused values from PHI nodes. 3246 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3247 SI->removeCase(Case); 3248 } 3249 if (HasWeight && Weights.size() >= 2) { 3250 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3251 SI->setMetadata(LLVMContext::MD_prof, 3252 MDBuilder(SI->getParent()->getContext()). 3253 createBranchWeights(MDWeights)); 3254 } 3255 3256 return !DeadCases.empty(); 3257 } 3258 3259 /// FindPHIForConditionForwarding - If BB would be eligible for simplification 3260 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3261 /// by an unconditional branch), look at the phi node for BB in the successor 3262 /// block and see if the incoming value is equal to CaseValue. If so, return 3263 /// the phi node, and set PhiIndex to BB's index in the phi node. 3264 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3265 BasicBlock *BB, 3266 int *PhiIndex) { 3267 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3268 return nullptr; // BB must be empty to be a candidate for simplification. 3269 if (!BB->getSinglePredecessor()) 3270 return nullptr; // BB must be dominated by the switch. 3271 3272 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3273 if (!Branch || !Branch->isUnconditional()) 3274 return nullptr; // Terminator must be unconditional branch. 3275 3276 BasicBlock *Succ = Branch->getSuccessor(0); 3277 3278 BasicBlock::iterator I = Succ->begin(); 3279 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3280 int Idx = PHI->getBasicBlockIndex(BB); 3281 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3282 3283 Value *InValue = PHI->getIncomingValue(Idx); 3284 if (InValue != CaseValue) continue; 3285 3286 *PhiIndex = Idx; 3287 return PHI; 3288 } 3289 3290 return nullptr; 3291 } 3292 3293 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch 3294 /// instruction to a phi node dominated by the switch, if that would mean that 3295 /// some of the destination blocks of the switch can be folded away. 3296 /// Returns true if a change is made. 3297 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3298 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3299 ForwardingNodesMap ForwardingNodes; 3300 3301 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3302 ConstantInt *CaseValue = I.getCaseValue(); 3303 BasicBlock *CaseDest = I.getCaseSuccessor(); 3304 3305 int PhiIndex; 3306 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3307 &PhiIndex); 3308 if (!PHI) continue; 3309 3310 ForwardingNodes[PHI].push_back(PhiIndex); 3311 } 3312 3313 bool Changed = false; 3314 3315 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3316 E = ForwardingNodes.end(); I != E; ++I) { 3317 PHINode *Phi = I->first; 3318 SmallVectorImpl<int> &Indexes = I->second; 3319 3320 if (Indexes.size() < 2) continue; 3321 3322 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3323 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3324 Changed = true; 3325 } 3326 3327 return Changed; 3328 } 3329 3330 /// ValidLookupTableConstant - Return true if the backend will be able to handle 3331 /// initializing an array of constants like C. 3332 static bool ValidLookupTableConstant(Constant *C) { 3333 if (C->isThreadDependent()) 3334 return false; 3335 if (C->isDLLImportDependent()) 3336 return false; 3337 3338 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3339 return CE->isGEPWithNoNotionalOverIndexing(); 3340 3341 return isa<ConstantFP>(C) || 3342 isa<ConstantInt>(C) || 3343 isa<ConstantPointerNull>(C) || 3344 isa<GlobalValue>(C) || 3345 isa<UndefValue>(C); 3346 } 3347 3348 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up 3349 /// its constant value in ConstantPool, returning 0 if it's not there. 3350 static Constant *LookupConstant(Value *V, 3351 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3352 if (Constant *C = dyn_cast<Constant>(V)) 3353 return C; 3354 return ConstantPool.lookup(V); 3355 } 3356 3357 /// ConstantFold - Try to fold instruction I into a constant. This works for 3358 /// simple instructions such as binary operations where both operands are 3359 /// constant or can be replaced by constants from the ConstantPool. Returns the 3360 /// resulting constant on success, 0 otherwise. 3361 static Constant * 3362 ConstantFold(Instruction *I, 3363 const SmallDenseMap<Value *, Constant *> &ConstantPool, 3364 const DataLayout *DL) { 3365 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 3366 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 3367 if (!A) 3368 return nullptr; 3369 if (A->isAllOnesValue()) 3370 return LookupConstant(Select->getTrueValue(), ConstantPool); 3371 if (A->isNullValue()) 3372 return LookupConstant(Select->getFalseValue(), ConstantPool); 3373 return nullptr; 3374 } 3375 3376 SmallVector<Constant *, 4> COps; 3377 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 3378 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 3379 COps.push_back(A); 3380 else 3381 return nullptr; 3382 } 3383 3384 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) 3385 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 3386 COps[1], DL); 3387 3388 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL); 3389 } 3390 3391 /// GetCaseResults - Try to determine the resulting constant values in phi nodes 3392 /// at the common destination basic block, *CommonDest, for one of the case 3393 /// destionations CaseDest corresponding to value CaseVal (0 for the default 3394 /// case), of a switch instruction SI. 3395 static bool 3396 GetCaseResults(SwitchInst *SI, 3397 ConstantInt *CaseVal, 3398 BasicBlock *CaseDest, 3399 BasicBlock **CommonDest, 3400 SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res, 3401 const DataLayout *DL) { 3402 // The block from which we enter the common destination. 3403 BasicBlock *Pred = SI->getParent(); 3404 3405 // If CaseDest is empty except for some side-effect free instructions through 3406 // which we can constant-propagate the CaseVal, continue to its successor. 3407 SmallDenseMap<Value*, Constant*> ConstantPool; 3408 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 3409 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 3410 ++I) { 3411 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 3412 // If the terminator is a simple branch, continue to the next block. 3413 if (T->getNumSuccessors() != 1) 3414 return false; 3415 Pred = CaseDest; 3416 CaseDest = T->getSuccessor(0); 3417 } else if (isa<DbgInfoIntrinsic>(I)) { 3418 // Skip debug intrinsic. 3419 continue; 3420 } else if (Constant *C = ConstantFold(I, ConstantPool, DL)) { 3421 // Instruction is side-effect free and constant. 3422 ConstantPool.insert(std::make_pair(I, C)); 3423 } else { 3424 break; 3425 } 3426 } 3427 3428 // If we did not have a CommonDest before, use the current one. 3429 if (!*CommonDest) 3430 *CommonDest = CaseDest; 3431 // If the destination isn't the common one, abort. 3432 if (CaseDest != *CommonDest) 3433 return false; 3434 3435 // Get the values for this case from phi nodes in the destination block. 3436 BasicBlock::iterator I = (*CommonDest)->begin(); 3437 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3438 int Idx = PHI->getBasicBlockIndex(Pred); 3439 if (Idx == -1) 3440 continue; 3441 3442 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 3443 ConstantPool); 3444 if (!ConstVal) 3445 return false; 3446 3447 // Note: If the constant comes from constant-propagating the case value 3448 // through the CaseDest basic block, it will be safe to remove the 3449 // instructions in that block. They cannot be used (except in the phi nodes 3450 // we visit) outside CaseDest, because that block does not dominate its 3451 // successor. If it did, we would not be in this phi node. 3452 3453 // Be conservative about which kinds of constants we support. 3454 if (!ValidLookupTableConstant(ConstVal)) 3455 return false; 3456 3457 Res.push_back(std::make_pair(PHI, ConstVal)); 3458 } 3459 3460 return Res.size() > 0; 3461 } 3462 3463 namespace { 3464 /// SwitchLookupTable - This class represents a lookup table that can be used 3465 /// to replace a switch. 3466 class SwitchLookupTable { 3467 public: 3468 /// SwitchLookupTable - Create a lookup table to use as a switch replacement 3469 /// with the contents of Values, using DefaultValue to fill any holes in the 3470 /// table. 3471 SwitchLookupTable(Module &M, 3472 uint64_t TableSize, 3473 ConstantInt *Offset, 3474 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3475 Constant *DefaultValue, 3476 const DataLayout *DL); 3477 3478 /// BuildLookup - Build instructions with Builder to retrieve the value at 3479 /// the position given by Index in the lookup table. 3480 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 3481 3482 /// WouldFitInRegister - Return true if a table with TableSize elements of 3483 /// type ElementType would fit in a target-legal register. 3484 static bool WouldFitInRegister(const DataLayout *DL, 3485 uint64_t TableSize, 3486 const Type *ElementType); 3487 3488 private: 3489 // Depending on the contents of the table, it can be represented in 3490 // different ways. 3491 enum { 3492 // For tables where each element contains the same value, we just have to 3493 // store that single value and return it for each lookup. 3494 SingleValueKind, 3495 3496 // For small tables with integer elements, we can pack them into a bitmap 3497 // that fits into a target-legal register. Values are retrieved by 3498 // shift and mask operations. 3499 BitMapKind, 3500 3501 // The table is stored as an array of values. Values are retrieved by load 3502 // instructions from the table. 3503 ArrayKind 3504 } Kind; 3505 3506 // For SingleValueKind, this is the single value. 3507 Constant *SingleValue; 3508 3509 // For BitMapKind, this is the bitmap. 3510 ConstantInt *BitMap; 3511 IntegerType *BitMapElementTy; 3512 3513 // For ArrayKind, this is the array. 3514 GlobalVariable *Array; 3515 }; 3516 } 3517 3518 SwitchLookupTable::SwitchLookupTable(Module &M, 3519 uint64_t TableSize, 3520 ConstantInt *Offset, 3521 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3522 Constant *DefaultValue, 3523 const DataLayout *DL) 3524 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 3525 Array(nullptr) { 3526 assert(Values.size() && "Can't build lookup table without values!"); 3527 assert(TableSize >= Values.size() && "Can't fit values in table!"); 3528 3529 // If all values in the table are equal, this is that value. 3530 SingleValue = Values.begin()->second; 3531 3532 Type *ValueType = Values.begin()->second->getType(); 3533 3534 // Build up the table contents. 3535 SmallVector<Constant*, 64> TableContents(TableSize); 3536 for (size_t I = 0, E = Values.size(); I != E; ++I) { 3537 ConstantInt *CaseVal = Values[I].first; 3538 Constant *CaseRes = Values[I].second; 3539 assert(CaseRes->getType() == ValueType); 3540 3541 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 3542 .getLimitedValue(); 3543 TableContents[Idx] = CaseRes; 3544 3545 if (CaseRes != SingleValue) 3546 SingleValue = nullptr; 3547 } 3548 3549 // Fill in any holes in the table with the default result. 3550 if (Values.size() < TableSize) { 3551 assert(DefaultValue && 3552 "Need a default value to fill the lookup table holes."); 3553 assert(DefaultValue->getType() == ValueType); 3554 for (uint64_t I = 0; I < TableSize; ++I) { 3555 if (!TableContents[I]) 3556 TableContents[I] = DefaultValue; 3557 } 3558 3559 if (DefaultValue != SingleValue) 3560 SingleValue = nullptr; 3561 } 3562 3563 // If each element in the table contains the same value, we only need to store 3564 // that single value. 3565 if (SingleValue) { 3566 Kind = SingleValueKind; 3567 return; 3568 } 3569 3570 // If the type is integer and the table fits in a register, build a bitmap. 3571 if (WouldFitInRegister(DL, TableSize, ValueType)) { 3572 IntegerType *IT = cast<IntegerType>(ValueType); 3573 APInt TableInt(TableSize * IT->getBitWidth(), 0); 3574 for (uint64_t I = TableSize; I > 0; --I) { 3575 TableInt <<= IT->getBitWidth(); 3576 // Insert values into the bitmap. Undef values are set to zero. 3577 if (!isa<UndefValue>(TableContents[I - 1])) { 3578 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 3579 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 3580 } 3581 } 3582 BitMap = ConstantInt::get(M.getContext(), TableInt); 3583 BitMapElementTy = IT; 3584 Kind = BitMapKind; 3585 ++NumBitMaps; 3586 return; 3587 } 3588 3589 // Store the table in an array. 3590 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 3591 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 3592 3593 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 3594 GlobalVariable::PrivateLinkage, 3595 Initializer, 3596 "switch.table"); 3597 Array->setUnnamedAddr(true); 3598 Kind = ArrayKind; 3599 } 3600 3601 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 3602 switch (Kind) { 3603 case SingleValueKind: 3604 return SingleValue; 3605 case BitMapKind: { 3606 // Type of the bitmap (e.g. i59). 3607 IntegerType *MapTy = BitMap->getType(); 3608 3609 // Cast Index to the same type as the bitmap. 3610 // Note: The Index is <= the number of elements in the table, so 3611 // truncating it to the width of the bitmask is safe. 3612 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 3613 3614 // Multiply the shift amount by the element width. 3615 ShiftAmt = Builder.CreateMul(ShiftAmt, 3616 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 3617 "switch.shiftamt"); 3618 3619 // Shift down. 3620 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 3621 "switch.downshift"); 3622 // Mask off. 3623 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 3624 "switch.masked"); 3625 } 3626 case ArrayKind: { 3627 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 3628 Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices, 3629 "switch.gep"); 3630 return Builder.CreateLoad(GEP, "switch.load"); 3631 } 3632 } 3633 llvm_unreachable("Unknown lookup table kind!"); 3634 } 3635 3636 bool SwitchLookupTable::WouldFitInRegister(const DataLayout *DL, 3637 uint64_t TableSize, 3638 const Type *ElementType) { 3639 if (!DL) 3640 return false; 3641 const IntegerType *IT = dyn_cast<IntegerType>(ElementType); 3642 if (!IT) 3643 return false; 3644 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 3645 // are <= 15, we could try to narrow the type. 3646 3647 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 3648 if (TableSize >= UINT_MAX/IT->getBitWidth()) 3649 return false; 3650 return DL->fitsInLegalInteger(TableSize * IT->getBitWidth()); 3651 } 3652 3653 /// ShouldBuildLookupTable - Determine whether a lookup table should be built 3654 /// for this switch, based on the number of cases, size of the table and the 3655 /// types of the results. 3656 static bool ShouldBuildLookupTable(SwitchInst *SI, 3657 uint64_t TableSize, 3658 const TargetTransformInfo &TTI, 3659 const DataLayout *DL, 3660 const SmallDenseMap<PHINode*, Type*>& ResultTypes) { 3661 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 3662 return false; // TableSize overflowed, or mul below might overflow. 3663 3664 bool AllTablesFitInRegister = true; 3665 bool HasIllegalType = false; 3666 for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(), 3667 E = ResultTypes.end(); I != E; ++I) { 3668 Type *Ty = I->second; 3669 3670 // Saturate this flag to true. 3671 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 3672 3673 // Saturate this flag to false. 3674 AllTablesFitInRegister = AllTablesFitInRegister && 3675 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 3676 3677 // If both flags saturate, we're done. NOTE: This *only* works with 3678 // saturating flags, and all flags have to saturate first due to the 3679 // non-deterministic behavior of iterating over a dense map. 3680 if (HasIllegalType && !AllTablesFitInRegister) 3681 break; 3682 } 3683 3684 // If each table would fit in a register, we should build it anyway. 3685 if (AllTablesFitInRegister) 3686 return true; 3687 3688 // Don't build a table that doesn't fit in-register if it has illegal types. 3689 if (HasIllegalType) 3690 return false; 3691 3692 // The table density should be at least 40%. This is the same criterion as for 3693 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 3694 // FIXME: Find the best cut-off. 3695 return SI->getNumCases() * 10 >= TableSize * 4; 3696 } 3697 3698 /// SwitchToLookupTable - If the switch is only used to initialize one or more 3699 /// phi nodes in a common successor block with different constant values, 3700 /// replace the switch with lookup tables. 3701 static bool SwitchToLookupTable(SwitchInst *SI, 3702 IRBuilder<> &Builder, 3703 const TargetTransformInfo &TTI, 3704 const DataLayout* DL) { 3705 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3706 3707 // Only build lookup table when we have a target that supports it. 3708 if (!TTI.shouldBuildLookupTables()) 3709 return false; 3710 3711 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 3712 // split off a dense part and build a lookup table for that. 3713 3714 // FIXME: This creates arrays of GEPs to constant strings, which means each 3715 // GEP needs a runtime relocation in PIC code. We should just build one big 3716 // string and lookup indices into that. 3717 3718 // Ignore switches with less than three cases. Lookup tables will not make them 3719 // faster, so we don't analyze them. 3720 if (SI->getNumCases() < 3) 3721 return false; 3722 3723 // Figure out the corresponding result for each case value and phi node in the 3724 // common destination, as well as the the min and max case values. 3725 assert(SI->case_begin() != SI->case_end()); 3726 SwitchInst::CaseIt CI = SI->case_begin(); 3727 ConstantInt *MinCaseVal = CI.getCaseValue(); 3728 ConstantInt *MaxCaseVal = CI.getCaseValue(); 3729 3730 BasicBlock *CommonDest = nullptr; 3731 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 3732 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 3733 SmallDenseMap<PHINode*, Constant*> DefaultResults; 3734 SmallDenseMap<PHINode*, Type*> ResultTypes; 3735 SmallVector<PHINode*, 4> PHIs; 3736 3737 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 3738 ConstantInt *CaseVal = CI.getCaseValue(); 3739 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 3740 MinCaseVal = CaseVal; 3741 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 3742 MaxCaseVal = CaseVal; 3743 3744 // Resulting value at phi nodes for this case value. 3745 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 3746 ResultsTy Results; 3747 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 3748 Results, DL)) 3749 return false; 3750 3751 // Append the result from this case to the list for each phi. 3752 for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) { 3753 if (!ResultLists.count(I->first)) 3754 PHIs.push_back(I->first); 3755 ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second)); 3756 } 3757 } 3758 3759 // Keep track of the result types. 3760 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 3761 PHINode *PHI = PHIs[I]; 3762 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 3763 } 3764 3765 uint64_t NumResults = ResultLists[PHIs[0]].size(); 3766 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 3767 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 3768 bool TableHasHoles = (NumResults < TableSize); 3769 3770 // If the table has holes, we need a constant result for the default case 3771 // or a bitmask that fits in a register. 3772 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 3773 bool HasDefaultResults = false; 3774 if (TableHasHoles) { 3775 HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 3776 &CommonDest, DefaultResultsList, DL); 3777 } 3778 bool NeedMask = (TableHasHoles && !HasDefaultResults); 3779 if (NeedMask) { 3780 // As an extra penalty for the validity test we require more cases. 3781 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 3782 return false; 3783 if (!(DL && DL->fitsInLegalInteger(TableSize))) 3784 return false; 3785 } 3786 3787 for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) { 3788 PHINode *PHI = DefaultResultsList[I].first; 3789 Constant *Result = DefaultResultsList[I].second; 3790 DefaultResults[PHI] = Result; 3791 } 3792 3793 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 3794 return false; 3795 3796 // Create the BB that does the lookups. 3797 Module &Mod = *CommonDest->getParent()->getParent(); 3798 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 3799 "switch.lookup", 3800 CommonDest->getParent(), 3801 CommonDest); 3802 3803 // Compute the table index value. 3804 Builder.SetInsertPoint(SI); 3805 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 3806 "switch.tableidx"); 3807 3808 // Compute the maximum table size representable by the integer type we are 3809 // switching upon. 3810 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 3811 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 3812 assert(MaxTableSize >= TableSize && 3813 "It is impossible for a switch to have more entries than the max " 3814 "representable value of its input integer type's size."); 3815 3816 // If we have a fully covered lookup table, unconditionally branch to the 3817 // lookup table BB. Otherwise, check if the condition value is within the case 3818 // range. If it is so, branch to the new BB. Otherwise branch to SI's default 3819 // destination. 3820 const bool GeneratingCoveredLookupTable = MaxTableSize == TableSize; 3821 if (GeneratingCoveredLookupTable) { 3822 Builder.CreateBr(LookupBB); 3823 SI->getDefaultDest()->removePredecessor(SI->getParent()); 3824 } else { 3825 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 3826 MinCaseVal->getType(), TableSize)); 3827 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 3828 } 3829 3830 // Populate the BB that does the lookups. 3831 Builder.SetInsertPoint(LookupBB); 3832 3833 if (NeedMask) { 3834 // Before doing the lookup we do the hole check. 3835 // The LookupBB is therefore re-purposed to do the hole check 3836 // and we create a new LookupBB. 3837 BasicBlock *MaskBB = LookupBB; 3838 MaskBB->setName("switch.hole_check"); 3839 LookupBB = BasicBlock::Create(Mod.getContext(), 3840 "switch.lookup", 3841 CommonDest->getParent(), 3842 CommonDest); 3843 3844 // Build bitmask; fill in a 1 bit for every case. 3845 APInt MaskInt(TableSize, 0); 3846 APInt One(TableSize, 1); 3847 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 3848 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 3849 uint64_t Idx = (ResultList[I].first->getValue() - 3850 MinCaseVal->getValue()).getLimitedValue(); 3851 MaskInt |= One << Idx; 3852 } 3853 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 3854 3855 // Get the TableIndex'th bit of the bitmask. 3856 // If this bit is 0 (meaning hole) jump to the default destination, 3857 // else continue with table lookup. 3858 IntegerType *MapTy = TableMask->getType(); 3859 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy, 3860 "switch.maskindex"); 3861 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, 3862 "switch.shifted"); 3863 Value *LoBit = Builder.CreateTrunc(Shifted, 3864 Type::getInt1Ty(Mod.getContext()), 3865 "switch.lobit"); 3866 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 3867 3868 Builder.SetInsertPoint(LookupBB); 3869 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 3870 } 3871 3872 bool ReturnedEarly = false; 3873 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 3874 PHINode *PHI = PHIs[I]; 3875 3876 // If using a bitmask, use any value to fill the lookup table holes. 3877 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 3878 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI], 3879 DV, DL); 3880 3881 Value *Result = Table.BuildLookup(TableIndex, Builder); 3882 3883 // If the result is used to return immediately from the function, we want to 3884 // do that right here. 3885 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 3886 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 3887 Builder.CreateRet(Result); 3888 ReturnedEarly = true; 3889 break; 3890 } 3891 3892 PHI->addIncoming(Result, LookupBB); 3893 } 3894 3895 if (!ReturnedEarly) 3896 Builder.CreateBr(CommonDest); 3897 3898 // Remove the switch. 3899 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 3900 BasicBlock *Succ = SI->getSuccessor(i); 3901 3902 if (Succ == SI->getDefaultDest()) 3903 continue; 3904 Succ->removePredecessor(SI->getParent()); 3905 } 3906 SI->eraseFromParent(); 3907 3908 ++NumLookupTables; 3909 if (NeedMask) 3910 ++NumLookupTablesHoles; 3911 return true; 3912 } 3913 3914 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 3915 BasicBlock *BB = SI->getParent(); 3916 3917 if (isValueEqualityComparison(SI)) { 3918 // If we only have one predecessor, and if it is a branch on this value, 3919 // see if that predecessor totally determines the outcome of this switch. 3920 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3921 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 3922 return SimplifyCFG(BB, TTI, DL) | true; 3923 3924 Value *Cond = SI->getCondition(); 3925 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 3926 if (SimplifySwitchOnSelect(SI, Select)) 3927 return SimplifyCFG(BB, TTI, DL) | true; 3928 3929 // If the block only contains the switch, see if we can fold the block 3930 // away into any preds. 3931 BasicBlock::iterator BBI = BB->begin(); 3932 // Ignore dbg intrinsics. 3933 while (isa<DbgInfoIntrinsic>(BBI)) 3934 ++BBI; 3935 if (SI == &*BBI) 3936 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 3937 return SimplifyCFG(BB, TTI, DL) | true; 3938 } 3939 3940 // Try to transform the switch into an icmp and a branch. 3941 if (TurnSwitchRangeIntoICmp(SI, Builder)) 3942 return SimplifyCFG(BB, TTI, DL) | true; 3943 3944 // Remove unreachable cases. 3945 if (EliminateDeadSwitchCases(SI)) 3946 return SimplifyCFG(BB, TTI, DL) | true; 3947 3948 if (ForwardSwitchConditionToPHI(SI)) 3949 return SimplifyCFG(BB, TTI, DL) | true; 3950 3951 if (SwitchToLookupTable(SI, Builder, TTI, DL)) 3952 return SimplifyCFG(BB, TTI, DL) | true; 3953 3954 return false; 3955 } 3956 3957 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 3958 BasicBlock *BB = IBI->getParent(); 3959 bool Changed = false; 3960 3961 // Eliminate redundant destinations. 3962 SmallPtrSet<Value *, 8> Succs; 3963 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 3964 BasicBlock *Dest = IBI->getDestination(i); 3965 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) { 3966 Dest->removePredecessor(BB); 3967 IBI->removeDestination(i); 3968 --i; --e; 3969 Changed = true; 3970 } 3971 } 3972 3973 if (IBI->getNumDestinations() == 0) { 3974 // If the indirectbr has no successors, change it to unreachable. 3975 new UnreachableInst(IBI->getContext(), IBI); 3976 EraseTerminatorInstAndDCECond(IBI); 3977 return true; 3978 } 3979 3980 if (IBI->getNumDestinations() == 1) { 3981 // If the indirectbr has one successor, change it to a direct branch. 3982 BranchInst::Create(IBI->getDestination(0), IBI); 3983 EraseTerminatorInstAndDCECond(IBI); 3984 return true; 3985 } 3986 3987 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 3988 if (SimplifyIndirectBrOnSelect(IBI, SI)) 3989 return SimplifyCFG(BB, TTI, DL) | true; 3990 } 3991 return Changed; 3992 } 3993 3994 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 3995 BasicBlock *BB = BI->getParent(); 3996 3997 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 3998 return true; 3999 4000 // If the Terminator is the only non-phi instruction, simplify the block. 4001 BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime(); 4002 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 4003 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 4004 return true; 4005 4006 // If the only instruction in the block is a seteq/setne comparison 4007 // against a constant, try to simplify the block. 4008 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 4009 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 4010 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 4011 ; 4012 if (I->isTerminator() && 4013 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, DL)) 4014 return true; 4015 } 4016 4017 // If this basic block is ONLY a compare and a branch, and if a predecessor 4018 // branches to us and our successor, fold the comparison into the 4019 // predecessor and use logical operations to update the incoming value 4020 // for PHI nodes in common successor. 4021 if (FoldBranchToCommonDest(BI, DL)) 4022 return SimplifyCFG(BB, TTI, DL) | true; 4023 return false; 4024 } 4025 4026 4027 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 4028 BasicBlock *BB = BI->getParent(); 4029 4030 // Conditional branch 4031 if (isValueEqualityComparison(BI)) { 4032 // If we only have one predecessor, and if it is a branch on this value, 4033 // see if that predecessor totally determines the outcome of this 4034 // switch. 4035 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4036 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 4037 return SimplifyCFG(BB, TTI, DL) | true; 4038 4039 // This block must be empty, except for the setcond inst, if it exists. 4040 // Ignore dbg intrinsics. 4041 BasicBlock::iterator I = BB->begin(); 4042 // Ignore dbg intrinsics. 4043 while (isa<DbgInfoIntrinsic>(I)) 4044 ++I; 4045 if (&*I == BI) { 4046 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 4047 return SimplifyCFG(BB, TTI, DL) | true; 4048 } else if (&*I == cast<Instruction>(BI->getCondition())){ 4049 ++I; 4050 // Ignore dbg intrinsics. 4051 while (isa<DbgInfoIntrinsic>(I)) 4052 ++I; 4053 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 4054 return SimplifyCFG(BB, TTI, DL) | true; 4055 } 4056 } 4057 4058 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 4059 if (SimplifyBranchOnICmpChain(BI, DL, Builder)) 4060 return true; 4061 4062 // If this basic block is ONLY a compare and a branch, and if a predecessor 4063 // branches to us and one of our successors, fold the comparison into the 4064 // predecessor and use logical operations to pick the right destination. 4065 if (FoldBranchToCommonDest(BI, DL)) 4066 return SimplifyCFG(BB, TTI, DL) | true; 4067 4068 // We have a conditional branch to two blocks that are only reachable 4069 // from BI. We know that the condbr dominates the two blocks, so see if 4070 // there is any identical code in the "then" and "else" blocks. If so, we 4071 // can hoist it up to the branching block. 4072 if (BI->getSuccessor(0)->getSinglePredecessor()) { 4073 if (BI->getSuccessor(1)->getSinglePredecessor()) { 4074 if (HoistThenElseCodeToIf(BI, DL)) 4075 return SimplifyCFG(BB, TTI, DL) | true; 4076 } else { 4077 // If Successor #1 has multiple preds, we may be able to conditionally 4078 // execute Successor #0 if it branches to Successor #1. 4079 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 4080 if (Succ0TI->getNumSuccessors() == 1 && 4081 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 4082 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), DL)) 4083 return SimplifyCFG(BB, TTI, DL) | true; 4084 } 4085 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 4086 // If Successor #0 has multiple preds, we may be able to conditionally 4087 // execute Successor #1 if it branches to Successor #0. 4088 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 4089 if (Succ1TI->getNumSuccessors() == 1 && 4090 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 4091 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), DL)) 4092 return SimplifyCFG(BB, TTI, DL) | true; 4093 } 4094 4095 // If this is a branch on a phi node in the current block, thread control 4096 // through this block if any PHI node entries are constants. 4097 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 4098 if (PN->getParent() == BI->getParent()) 4099 if (FoldCondBranchOnPHI(BI, DL)) 4100 return SimplifyCFG(BB, TTI, DL) | true; 4101 4102 // Scan predecessor blocks for conditional branches. 4103 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 4104 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 4105 if (PBI != BI && PBI->isConditional()) 4106 if (SimplifyCondBranchToCondBranch(PBI, BI)) 4107 return SimplifyCFG(BB, TTI, DL) | true; 4108 4109 return false; 4110 } 4111 4112 /// Check if passing a value to an instruction will cause undefined behavior. 4113 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 4114 Constant *C = dyn_cast<Constant>(V); 4115 if (!C) 4116 return false; 4117 4118 if (I->use_empty()) 4119 return false; 4120 4121 if (C->isNullValue()) { 4122 // Only look at the first use, avoid hurting compile time with long uselists 4123 User *Use = *I->user_begin(); 4124 4125 // Now make sure that there are no instructions in between that can alter 4126 // control flow (eg. calls) 4127 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 4128 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 4129 return false; 4130 4131 // Look through GEPs. A load from a GEP derived from NULL is still undefined 4132 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 4133 if (GEP->getPointerOperand() == I) 4134 return passingValueIsAlwaysUndefined(V, GEP); 4135 4136 // Look through bitcasts. 4137 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 4138 return passingValueIsAlwaysUndefined(V, BC); 4139 4140 // Load from null is undefined. 4141 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 4142 if (!LI->isVolatile()) 4143 return LI->getPointerAddressSpace() == 0; 4144 4145 // Store to null is undefined. 4146 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 4147 if (!SI->isVolatile()) 4148 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 4149 } 4150 return false; 4151 } 4152 4153 /// If BB has an incoming value that will always trigger undefined behavior 4154 /// (eg. null pointer dereference), remove the branch leading here. 4155 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 4156 for (BasicBlock::iterator i = BB->begin(); 4157 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 4158 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 4159 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 4160 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 4161 IRBuilder<> Builder(T); 4162 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 4163 BB->removePredecessor(PHI->getIncomingBlock(i)); 4164 // Turn uncoditional branches into unreachables and remove the dead 4165 // destination from conditional branches. 4166 if (BI->isUnconditional()) 4167 Builder.CreateUnreachable(); 4168 else 4169 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 4170 BI->getSuccessor(0)); 4171 BI->eraseFromParent(); 4172 return true; 4173 } 4174 // TODO: SwitchInst. 4175 } 4176 4177 return false; 4178 } 4179 4180 bool SimplifyCFGOpt::run(BasicBlock *BB) { 4181 bool Changed = false; 4182 4183 assert(BB && BB->getParent() && "Block not embedded in function!"); 4184 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 4185 4186 // Remove basic blocks that have no predecessors (except the entry block)... 4187 // or that just have themself as a predecessor. These are unreachable. 4188 if ((pred_begin(BB) == pred_end(BB) && 4189 BB != &BB->getParent()->getEntryBlock()) || 4190 BB->getSinglePredecessor() == BB) { 4191 DEBUG(dbgs() << "Removing BB: \n" << *BB); 4192 DeleteDeadBlock(BB); 4193 return true; 4194 } 4195 4196 // Check to see if we can constant propagate this terminator instruction 4197 // away... 4198 Changed |= ConstantFoldTerminator(BB, true); 4199 4200 // Check for and eliminate duplicate PHI nodes in this block. 4201 Changed |= EliminateDuplicatePHINodes(BB); 4202 4203 // Check for and remove branches that will always cause undefined behavior. 4204 Changed |= removeUndefIntroducingPredecessor(BB); 4205 4206 // Merge basic blocks into their predecessor if there is only one distinct 4207 // pred, and if there is only one distinct successor of the predecessor, and 4208 // if there are no PHI nodes. 4209 // 4210 if (MergeBlockIntoPredecessor(BB)) 4211 return true; 4212 4213 IRBuilder<> Builder(BB); 4214 4215 // If there is a trivial two-entry PHI node in this basic block, and we can 4216 // eliminate it, do so now. 4217 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 4218 if (PN->getNumIncomingValues() == 2) 4219 Changed |= FoldTwoEntryPHINode(PN, DL); 4220 4221 Builder.SetInsertPoint(BB->getTerminator()); 4222 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 4223 if (BI->isUnconditional()) { 4224 if (SimplifyUncondBranch(BI, Builder)) return true; 4225 } else { 4226 if (SimplifyCondBranch(BI, Builder)) return true; 4227 } 4228 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 4229 if (SimplifyReturn(RI, Builder)) return true; 4230 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 4231 if (SimplifyResume(RI, Builder)) return true; 4232 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 4233 if (SimplifySwitch(SI, Builder)) return true; 4234 } else if (UnreachableInst *UI = 4235 dyn_cast<UnreachableInst>(BB->getTerminator())) { 4236 if (SimplifyUnreachable(UI)) return true; 4237 } else if (IndirectBrInst *IBI = 4238 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 4239 if (SimplifyIndirectBr(IBI)) return true; 4240 } 4241 4242 return Changed; 4243 } 4244 4245 /// SimplifyCFG - This function is used to do simplification of a CFG. For 4246 /// example, it adjusts branches to branches to eliminate the extra hop, it 4247 /// eliminates unreachable basic blocks, and does other "peephole" optimization 4248 /// of the CFG. It returns true if a modification was made. 4249 /// 4250 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 4251 const DataLayout *DL) { 4252 return SimplifyCFGOpt(TTI, DL).run(BB); 4253 } 4254