Home | History | Annotate | Download | only in quick
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "dex/compiler_internals.h"
     18 #include "dex/dataflow_iterator-inl.h"
     19 #include "dex/quick/dex_file_method_inliner.h"
     20 #include "mir_to_lir-inl.h"
     21 #include "thread-inl.h"
     22 
     23 namespace art {
     24 
     25 RegisterClass Mir2Lir::ShortyToRegClass(char shorty_type) {
     26   RegisterClass res;
     27   switch (shorty_type) {
     28     case 'L':
     29       res = kRefReg;
     30       break;
     31     case 'F':
     32       // Expected fallthrough.
     33     case 'D':
     34       res = kFPReg;
     35       break;
     36     default:
     37       res = kCoreReg;
     38   }
     39   return res;
     40 }
     41 
     42 RegisterClass Mir2Lir::LocToRegClass(RegLocation loc) {
     43   RegisterClass res;
     44   if (loc.fp) {
     45     DCHECK(!loc.ref) << "At most, one of ref/fp may be set";
     46     res = kFPReg;
     47   } else if (loc.ref) {
     48     res = kRefReg;
     49   } else {
     50     res = kCoreReg;
     51   }
     52   return res;
     53 }
     54 
     55 void Mir2Lir::LockArg(int in_position, bool wide) {
     56   RegStorage reg_arg_low = GetArgMappingToPhysicalReg(in_position);
     57   RegStorage reg_arg_high = wide ? GetArgMappingToPhysicalReg(in_position + 1) :
     58       RegStorage::InvalidReg();
     59 
     60   if (reg_arg_low.Valid()) {
     61     LockTemp(reg_arg_low);
     62   }
     63   if (reg_arg_high.Valid() && reg_arg_low.NotExactlyEquals(reg_arg_high)) {
     64     LockTemp(reg_arg_high);
     65   }
     66 }
     67 
     68 // TODO: simplify when 32-bit targets go hard-float.
     69 RegStorage Mir2Lir::LoadArg(int in_position, RegisterClass reg_class, bool wide) {
     70   ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
     71   int offset = StackVisitor::GetOutVROffset(in_position, cu_->instruction_set);
     72 
     73   if (cu_->instruction_set == kX86) {
     74     /*
     75      * When doing a call for x86, it moves the stack pointer in order to push return.
     76      * Thus, we add another 4 bytes to figure out the out of caller (in of callee).
     77      */
     78     offset += sizeof(uint32_t);
     79   }
     80 
     81   if (cu_->instruction_set == kX86_64) {
     82     /*
     83      * When doing a call for x86, it moves the stack pointer in order to push return.
     84      * Thus, we add another 8 bytes to figure out the out of caller (in of callee).
     85      */
     86     offset += sizeof(uint64_t);
     87   }
     88 
     89   if (cu_->target64) {
     90     RegStorage reg_arg = GetArgMappingToPhysicalReg(in_position);
     91     if (!reg_arg.Valid()) {
     92       RegStorage new_reg =
     93           wide ?  AllocTypedTempWide(false, reg_class) : AllocTypedTemp(false, reg_class);
     94       LoadBaseDisp(TargetPtrReg(kSp), offset, new_reg, wide ? k64 : k32, kNotVolatile);
     95       return new_reg;
     96     } else {
     97       // Check if we need to copy the arg to a different reg_class.
     98       if (!RegClassMatches(reg_class, reg_arg)) {
     99         if (wide) {
    100           RegStorage new_reg = AllocTypedTempWide(false, reg_class);
    101           OpRegCopyWide(new_reg, reg_arg);
    102           reg_arg = new_reg;
    103         } else {
    104           RegStorage new_reg = AllocTypedTemp(false, reg_class);
    105           OpRegCopy(new_reg, reg_arg);
    106           reg_arg = new_reg;
    107         }
    108       }
    109     }
    110     return reg_arg;
    111   }
    112 
    113   RegStorage reg_arg_low = GetArgMappingToPhysicalReg(in_position);
    114   RegStorage reg_arg_high = wide ? GetArgMappingToPhysicalReg(in_position + 1) :
    115       RegStorage::InvalidReg();
    116 
    117   // If the VR is wide and there is no register for high part, we need to load it.
    118   if (wide && !reg_arg_high.Valid()) {
    119     // If the low part is not in a reg, we allocate a pair. Otherwise, we just load to high reg.
    120     if (!reg_arg_low.Valid()) {
    121       RegStorage new_regs = AllocTypedTempWide(false, reg_class);
    122       LoadBaseDisp(TargetPtrReg(kSp), offset, new_regs, k64, kNotVolatile);
    123       return new_regs;  // The reg_class is OK, we can return.
    124     } else {
    125       // Assume that no ABI allows splitting a wide fp reg between a narrow fp reg and memory,
    126       // i.e. the low part is in a core reg. Load the second part in a core reg as well for now.
    127       DCHECK(!reg_arg_low.IsFloat());
    128       reg_arg_high = AllocTemp();
    129       int offset_high = offset + sizeof(uint32_t);
    130       Load32Disp(TargetPtrReg(kSp), offset_high, reg_arg_high);
    131       // Continue below to check the reg_class.
    132     }
    133   }
    134 
    135   // If the low part is not in a register yet, we need to load it.
    136   if (!reg_arg_low.Valid()) {
    137     // Assume that if the low part of a wide arg is passed in memory, so is the high part,
    138     // thus we don't get here for wide args as it's handled above. Big-endian ABIs could
    139     // conceivably break this assumption but Android supports only little-endian architectures.
    140     DCHECK(!wide);
    141     reg_arg_low = AllocTypedTemp(false, reg_class);
    142     Load32Disp(TargetPtrReg(kSp), offset, reg_arg_low);
    143     return reg_arg_low;  // The reg_class is OK, we can return.
    144   }
    145 
    146   RegStorage reg_arg = wide ? RegStorage::MakeRegPair(reg_arg_low, reg_arg_high) : reg_arg_low;
    147   // Check if we need to copy the arg to a different reg_class.
    148   if (!RegClassMatches(reg_class, reg_arg)) {
    149     if (wide) {
    150       RegStorage new_regs = AllocTypedTempWide(false, reg_class);
    151       OpRegCopyWide(new_regs, reg_arg);
    152       reg_arg = new_regs;
    153     } else {
    154       RegStorage new_reg = AllocTypedTemp(false, reg_class);
    155       OpRegCopy(new_reg, reg_arg);
    156       reg_arg = new_reg;
    157     }
    158   }
    159   return reg_arg;
    160 }
    161 
    162 // TODO: simpilfy when 32-bit targets go hard float.
    163 void Mir2Lir::LoadArgDirect(int in_position, RegLocation rl_dest) {
    164   ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
    165   int offset = StackVisitor::GetOutVROffset(in_position, cu_->instruction_set);
    166   if (cu_->instruction_set == kX86) {
    167     /*
    168      * When doing a call for x86, it moves the stack pointer in order to push return.
    169      * Thus, we add another 4 bytes to figure out the out of caller (in of callee).
    170      */
    171     offset += sizeof(uint32_t);
    172   }
    173 
    174   if (cu_->instruction_set == kX86_64) {
    175     /*
    176      * When doing a call for x86, it moves the stack pointer in order to push return.
    177      * Thus, we add another 8 bytes to figure out the out of caller (in of callee).
    178      */
    179     offset += sizeof(uint64_t);
    180   }
    181 
    182   if (!rl_dest.wide) {
    183     RegStorage reg = GetArgMappingToPhysicalReg(in_position);
    184     if (reg.Valid()) {
    185       OpRegCopy(rl_dest.reg, reg);
    186     } else {
    187       Load32Disp(TargetPtrReg(kSp), offset, rl_dest.reg);
    188     }
    189   } else {
    190     if (cu_->target64) {
    191       RegStorage reg = GetArgMappingToPhysicalReg(in_position);
    192       if (reg.Valid()) {
    193         OpRegCopy(rl_dest.reg, reg);
    194       } else {
    195         LoadBaseDisp(TargetPtrReg(kSp), offset, rl_dest.reg, k64, kNotVolatile);
    196       }
    197       return;
    198     }
    199 
    200     RegStorage reg_arg_low = GetArgMappingToPhysicalReg(in_position);
    201     RegStorage reg_arg_high = GetArgMappingToPhysicalReg(in_position + 1);
    202 
    203     if (reg_arg_low.Valid() && reg_arg_high.Valid()) {
    204       OpRegCopyWide(rl_dest.reg, RegStorage::MakeRegPair(reg_arg_low, reg_arg_high));
    205     } else if (reg_arg_low.Valid() && !reg_arg_high.Valid()) {
    206       OpRegCopy(rl_dest.reg, reg_arg_low);
    207       int offset_high = offset + sizeof(uint32_t);
    208       Load32Disp(TargetPtrReg(kSp), offset_high, rl_dest.reg.GetHigh());
    209     } else if (!reg_arg_low.Valid() && reg_arg_high.Valid()) {
    210       OpRegCopy(rl_dest.reg.GetHigh(), reg_arg_high);
    211       Load32Disp(TargetPtrReg(kSp), offset, rl_dest.reg.GetLow());
    212     } else {
    213       LoadBaseDisp(TargetPtrReg(kSp), offset, rl_dest.reg, k64, kNotVolatile);
    214     }
    215   }
    216 }
    217 
    218 bool Mir2Lir::GenSpecialIGet(MIR* mir, const InlineMethod& special) {
    219   // FastInstance() already checked by DexFileMethodInliner.
    220   const InlineIGetIPutData& data = special.d.ifield_data;
    221   if (data.method_is_static != 0u || data.object_arg != 0u) {
    222     // The object is not "this" and has to be null-checked.
    223     return false;
    224   }
    225 
    226   bool wide = (data.op_variant == InlineMethodAnalyser::IGetVariant(Instruction::IGET_WIDE));
    227   bool ref = (data.op_variant == InlineMethodAnalyser::IGetVariant(Instruction::IGET_OBJECT));
    228   OpSize size = LoadStoreOpSize(wide, ref);
    229 
    230   // Point of no return - no aborts after this
    231   GenPrintLabel(mir);
    232   LockArg(data.object_arg);
    233   RegStorage reg_obj = LoadArg(data.object_arg, kRefReg);
    234   RegisterClass reg_class = RegClassForFieldLoadStore(size, data.is_volatile);
    235   RegisterClass ret_reg_class = ShortyToRegClass(cu_->shorty[0]);
    236   RegLocation rl_dest = wide ? GetReturnWide(ret_reg_class) : GetReturn(ret_reg_class);
    237   RegStorage r_result = rl_dest.reg;
    238   if (!RegClassMatches(reg_class, r_result)) {
    239     r_result = wide ? AllocTypedTempWide(rl_dest.fp, reg_class)
    240                     : AllocTypedTemp(rl_dest.fp, reg_class);
    241   }
    242   if (ref) {
    243     LoadRefDisp(reg_obj, data.field_offset, r_result, data.is_volatile ? kVolatile : kNotVolatile);
    244   } else {
    245     LoadBaseDisp(reg_obj, data.field_offset, r_result, size, data.is_volatile ? kVolatile :
    246         kNotVolatile);
    247   }
    248   if (r_result.NotExactlyEquals(rl_dest.reg)) {
    249     if (wide) {
    250       OpRegCopyWide(rl_dest.reg, r_result);
    251     } else {
    252       OpRegCopy(rl_dest.reg, r_result);
    253     }
    254   }
    255   return true;
    256 }
    257 
    258 bool Mir2Lir::GenSpecialIPut(MIR* mir, const InlineMethod& special) {
    259   // FastInstance() already checked by DexFileMethodInliner.
    260   const InlineIGetIPutData& data = special.d.ifield_data;
    261   if (data.method_is_static != 0u || data.object_arg != 0u) {
    262     // The object is not "this" and has to be null-checked.
    263     return false;
    264   }
    265   if (data.return_arg_plus1 != 0u) {
    266     // The setter returns a method argument which we don't support here.
    267     return false;
    268   }
    269 
    270   bool wide = (data.op_variant == InlineMethodAnalyser::IPutVariant(Instruction::IPUT_WIDE));
    271   bool ref = (data.op_variant == InlineMethodAnalyser::IGetVariant(Instruction::IGET_OBJECT));
    272   OpSize size = LoadStoreOpSize(wide, ref);
    273 
    274   // Point of no return - no aborts after this
    275   GenPrintLabel(mir);
    276   LockArg(data.object_arg);
    277   LockArg(data.src_arg, wide);
    278   RegStorage reg_obj = LoadArg(data.object_arg, kRefReg);
    279   RegisterClass reg_class = RegClassForFieldLoadStore(size, data.is_volatile);
    280   RegStorage reg_src = LoadArg(data.src_arg, reg_class, wide);
    281   if (ref) {
    282     StoreRefDisp(reg_obj, data.field_offset, reg_src, data.is_volatile ? kVolatile : kNotVolatile);
    283   } else {
    284     StoreBaseDisp(reg_obj, data.field_offset, reg_src, size, data.is_volatile ? kVolatile :
    285         kNotVolatile);
    286   }
    287   if (ref) {
    288     MarkGCCard(reg_src, reg_obj);
    289   }
    290   return true;
    291 }
    292 
    293 bool Mir2Lir::GenSpecialIdentity(MIR* mir, const InlineMethod& special) {
    294   const InlineReturnArgData& data = special.d.return_data;
    295   bool wide = (data.is_wide != 0u);
    296 
    297   // Point of no return - no aborts after this
    298   GenPrintLabel(mir);
    299   LockArg(data.arg, wide);
    300   RegisterClass reg_class = ShortyToRegClass(cu_->shorty[0]);
    301   RegLocation rl_dest = wide ? GetReturnWide(reg_class) : GetReturn(reg_class);
    302   LoadArgDirect(data.arg, rl_dest);
    303   return true;
    304 }
    305 
    306 /*
    307  * Special-case code generation for simple non-throwing leaf methods.
    308  */
    309 bool Mir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special) {
    310   DCHECK(special.flags & kInlineSpecial);
    311   current_dalvik_offset_ = mir->offset;
    312   MIR* return_mir = nullptr;
    313   bool successful = false;
    314 
    315   switch (special.opcode) {
    316     case kInlineOpNop:
    317       successful = true;
    318       DCHECK_EQ(mir->dalvikInsn.opcode, Instruction::RETURN_VOID);
    319       return_mir = mir;
    320       break;
    321     case kInlineOpNonWideConst: {
    322       successful = true;
    323       RegLocation rl_dest = GetReturn(ShortyToRegClass(cu_->shorty[0]));
    324       GenPrintLabel(mir);
    325       LoadConstant(rl_dest.reg, static_cast<int>(special.d.data));
    326       return_mir = bb->GetNextUnconditionalMir(mir_graph_, mir);
    327       break;
    328     }
    329     case kInlineOpReturnArg:
    330       successful = GenSpecialIdentity(mir, special);
    331       return_mir = mir;
    332       break;
    333     case kInlineOpIGet:
    334       successful = GenSpecialIGet(mir, special);
    335       return_mir = bb->GetNextUnconditionalMir(mir_graph_, mir);
    336       break;
    337     case kInlineOpIPut:
    338       successful = GenSpecialIPut(mir, special);
    339       return_mir = bb->GetNextUnconditionalMir(mir_graph_, mir);
    340       break;
    341     default:
    342       break;
    343   }
    344 
    345   if (successful) {
    346     if (kIsDebugBuild) {
    347       // Clear unreachable catch entries.
    348       mir_graph_->catches_.clear();
    349     }
    350 
    351     // Handle verbosity for return MIR.
    352     if (return_mir != nullptr) {
    353       current_dalvik_offset_ = return_mir->offset;
    354       // Not handling special identity case because it already generated code as part
    355       // of the return. The label should have been added before any code was generated.
    356       if (special.opcode != kInlineOpReturnArg) {
    357         GenPrintLabel(return_mir);
    358       }
    359     }
    360     GenSpecialExitSequence();
    361 
    362     core_spill_mask_ = 0;
    363     num_core_spills_ = 0;
    364     fp_spill_mask_ = 0;
    365     num_fp_spills_ = 0;
    366     frame_size_ = 0;
    367     core_vmap_table_.clear();
    368     fp_vmap_table_.clear();
    369   }
    370 
    371   return successful;
    372 }
    373 
    374 /*
    375  * Target-independent code generation.  Use only high-level
    376  * load/store utilities here, or target-dependent genXX() handlers
    377  * when necessary.
    378  */
    379 void Mir2Lir::CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list) {
    380   RegLocation rl_src[3];
    381   RegLocation rl_dest = mir_graph_->GetBadLoc();
    382   RegLocation rl_result = mir_graph_->GetBadLoc();
    383   Instruction::Code opcode = mir->dalvikInsn.opcode;
    384   int opt_flags = mir->optimization_flags;
    385   uint32_t vB = mir->dalvikInsn.vB;
    386   uint32_t vC = mir->dalvikInsn.vC;
    387   DCHECK(CheckCorePoolSanity()) << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " @ 0x:"
    388                                 << std::hex << current_dalvik_offset_;
    389 
    390   // Prep Src and Dest locations.
    391   int next_sreg = 0;
    392   int next_loc = 0;
    393   uint64_t attrs = MIRGraph::GetDataFlowAttributes(opcode);
    394   rl_src[0] = rl_src[1] = rl_src[2] = mir_graph_->GetBadLoc();
    395   if (attrs & DF_UA) {
    396     if (attrs & DF_A_WIDE) {
    397       rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg);
    398       next_sreg+= 2;
    399     } else {
    400       rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg);
    401       next_sreg++;
    402     }
    403   }
    404   if (attrs & DF_UB) {
    405     if (attrs & DF_B_WIDE) {
    406       rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg);
    407       next_sreg+= 2;
    408     } else {
    409       rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg);
    410       next_sreg++;
    411     }
    412   }
    413   if (attrs & DF_UC) {
    414     if (attrs & DF_C_WIDE) {
    415       rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg);
    416     } else {
    417       rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg);
    418     }
    419   }
    420   if (attrs & DF_DA) {
    421     if (attrs & DF_A_WIDE) {
    422       rl_dest = mir_graph_->GetDestWide(mir);
    423     } else {
    424       rl_dest = mir_graph_->GetDest(mir);
    425     }
    426   }
    427   switch (opcode) {
    428     case Instruction::NOP:
    429       break;
    430 
    431     case Instruction::MOVE_EXCEPTION:
    432       GenMoveException(rl_dest);
    433       break;
    434 
    435     case Instruction::RETURN_VOID:
    436       if (((cu_->access_flags & kAccConstructor) != 0) &&
    437           cu_->compiler_driver->RequiresConstructorBarrier(Thread::Current(), cu_->dex_file,
    438                                                           cu_->class_def_idx)) {
    439         GenMemBarrier(kStoreStore);
    440       }
    441       if (!kLeafOptimization || !mir_graph_->MethodIsLeaf()) {
    442         GenSuspendTest(opt_flags);
    443       }
    444       break;
    445 
    446     case Instruction::RETURN_OBJECT:
    447       DCHECK(rl_src[0].ref);
    448       // Intentional fallthrough.
    449     case Instruction::RETURN:
    450       if (!kLeafOptimization || !mir_graph_->MethodIsLeaf()) {
    451         GenSuspendTest(opt_flags);
    452       }
    453       DCHECK_EQ(LocToRegClass(rl_src[0]), ShortyToRegClass(cu_->shorty[0]));
    454       StoreValue(GetReturn(LocToRegClass(rl_src[0])), rl_src[0]);
    455       break;
    456 
    457     case Instruction::RETURN_WIDE:
    458       if (!kLeafOptimization || !mir_graph_->MethodIsLeaf()) {
    459         GenSuspendTest(opt_flags);
    460       }
    461       DCHECK_EQ(LocToRegClass(rl_src[0]), ShortyToRegClass(cu_->shorty[0]));
    462       StoreValueWide(GetReturnWide(LocToRegClass(rl_src[0])), rl_src[0]);
    463       break;
    464 
    465     case Instruction::MOVE_RESULT_WIDE:
    466       if ((opt_flags & MIR_INLINED) != 0) {
    467         break;  // Nop - combined w/ previous invoke.
    468       }
    469       StoreValueWide(rl_dest, GetReturnWide(LocToRegClass(rl_dest)));
    470       break;
    471 
    472     case Instruction::MOVE_RESULT:
    473     case Instruction::MOVE_RESULT_OBJECT:
    474       if ((opt_flags & MIR_INLINED) != 0) {
    475         break;  // Nop - combined w/ previous invoke.
    476       }
    477       StoreValue(rl_dest, GetReturn(LocToRegClass(rl_dest)));
    478       break;
    479 
    480     case Instruction::MOVE:
    481     case Instruction::MOVE_OBJECT:
    482     case Instruction::MOVE_16:
    483     case Instruction::MOVE_OBJECT_16:
    484     case Instruction::MOVE_FROM16:
    485     case Instruction::MOVE_OBJECT_FROM16:
    486       StoreValue(rl_dest, rl_src[0]);
    487       break;
    488 
    489     case Instruction::MOVE_WIDE:
    490     case Instruction::MOVE_WIDE_16:
    491     case Instruction::MOVE_WIDE_FROM16:
    492       StoreValueWide(rl_dest, rl_src[0]);
    493       break;
    494 
    495     case Instruction::CONST:
    496     case Instruction::CONST_4:
    497     case Instruction::CONST_16:
    498       GenConst(rl_dest, vB);
    499       break;
    500 
    501     case Instruction::CONST_HIGH16:
    502       GenConst(rl_dest, vB << 16);
    503       break;
    504 
    505     case Instruction::CONST_WIDE_16:
    506     case Instruction::CONST_WIDE_32:
    507       GenConstWide(rl_dest, static_cast<int64_t>(static_cast<int32_t>(vB)));
    508       break;
    509 
    510     case Instruction::CONST_WIDE:
    511       GenConstWide(rl_dest, mir->dalvikInsn.vB_wide);
    512       break;
    513 
    514     case Instruction::CONST_WIDE_HIGH16:
    515       rl_result = EvalLoc(rl_dest, kAnyReg, true);
    516       LoadConstantWide(rl_result.reg, static_cast<int64_t>(vB) << 48);
    517       StoreValueWide(rl_dest, rl_result);
    518       break;
    519 
    520     case Instruction::MONITOR_ENTER:
    521       GenMonitorEnter(opt_flags, rl_src[0]);
    522       break;
    523 
    524     case Instruction::MONITOR_EXIT:
    525       GenMonitorExit(opt_flags, rl_src[0]);
    526       break;
    527 
    528     case Instruction::CHECK_CAST: {
    529       GenCheckCast(mir->offset, vB, rl_src[0]);
    530       break;
    531     }
    532     case Instruction::INSTANCE_OF:
    533       GenInstanceof(vC, rl_dest, rl_src[0]);
    534       break;
    535 
    536     case Instruction::NEW_INSTANCE:
    537       GenNewInstance(vB, rl_dest);
    538       break;
    539 
    540     case Instruction::THROW:
    541       GenThrow(rl_src[0]);
    542       break;
    543 
    544     case Instruction::ARRAY_LENGTH:
    545       int len_offset;
    546       len_offset = mirror::Array::LengthOffset().Int32Value();
    547       rl_src[0] = LoadValue(rl_src[0], kRefReg);
    548       GenNullCheck(rl_src[0].reg, opt_flags);
    549       rl_result = EvalLoc(rl_dest, kCoreReg, true);
    550       Load32Disp(rl_src[0].reg, len_offset, rl_result.reg);
    551       MarkPossibleNullPointerException(opt_flags);
    552       StoreValue(rl_dest, rl_result);
    553       break;
    554 
    555     case Instruction::CONST_STRING:
    556     case Instruction::CONST_STRING_JUMBO:
    557       GenConstString(vB, rl_dest);
    558       break;
    559 
    560     case Instruction::CONST_CLASS:
    561       GenConstClass(vB, rl_dest);
    562       break;
    563 
    564     case Instruction::FILL_ARRAY_DATA:
    565       GenFillArrayData(vB, rl_src[0]);
    566       break;
    567 
    568     case Instruction::FILLED_NEW_ARRAY:
    569       GenFilledNewArray(mir_graph_->NewMemCallInfo(bb, mir, kStatic,
    570                         false /* not range */));
    571       break;
    572 
    573     case Instruction::FILLED_NEW_ARRAY_RANGE:
    574       GenFilledNewArray(mir_graph_->NewMemCallInfo(bb, mir, kStatic,
    575                         true /* range */));
    576       break;
    577 
    578     case Instruction::NEW_ARRAY:
    579       GenNewArray(vC, rl_dest, rl_src[0]);
    580       break;
    581 
    582     case Instruction::GOTO:
    583     case Instruction::GOTO_16:
    584     case Instruction::GOTO_32:
    585       if (mir_graph_->IsBackedge(bb, bb->taken) &&
    586           (kLeafOptimization || !mir_graph_->HasSuspendTestBetween(bb, bb->taken))) {
    587         GenSuspendTestAndBranch(opt_flags, &label_list[bb->taken]);
    588       } else {
    589         OpUnconditionalBranch(&label_list[bb->taken]);
    590       }
    591       break;
    592 
    593     case Instruction::PACKED_SWITCH:
    594       GenPackedSwitch(mir, vB, rl_src[0]);
    595       break;
    596 
    597     case Instruction::SPARSE_SWITCH:
    598       GenSparseSwitch(mir, vB, rl_src[0]);
    599       break;
    600 
    601     case Instruction::CMPL_FLOAT:
    602     case Instruction::CMPG_FLOAT:
    603     case Instruction::CMPL_DOUBLE:
    604     case Instruction::CMPG_DOUBLE:
    605       GenCmpFP(opcode, rl_dest, rl_src[0], rl_src[1]);
    606       break;
    607 
    608     case Instruction::CMP_LONG:
    609       GenCmpLong(rl_dest, rl_src[0], rl_src[1]);
    610       break;
    611 
    612     case Instruction::IF_EQ:
    613     case Instruction::IF_NE:
    614     case Instruction::IF_LT:
    615     case Instruction::IF_GE:
    616     case Instruction::IF_GT:
    617     case Instruction::IF_LE: {
    618       LIR* taken = &label_list[bb->taken];
    619       LIR* fall_through = &label_list[bb->fall_through];
    620       // Result known at compile time?
    621       if (rl_src[0].is_const && rl_src[1].is_const) {
    622         bool is_taken = EvaluateBranch(opcode, mir_graph_->ConstantValue(rl_src[0].orig_sreg),
    623                                        mir_graph_->ConstantValue(rl_src[1].orig_sreg));
    624         BasicBlockId target_id = is_taken ? bb->taken : bb->fall_through;
    625         if (mir_graph_->IsBackedge(bb, target_id) &&
    626             (kLeafOptimization || !mir_graph_->HasSuspendTestBetween(bb, target_id))) {
    627           GenSuspendTest(opt_flags);
    628         }
    629         OpUnconditionalBranch(&label_list[target_id]);
    630       } else {
    631         if (mir_graph_->IsBackwardsBranch(bb) &&
    632             (kLeafOptimization || !mir_graph_->HasSuspendTestBetween(bb, bb->taken) ||
    633              !mir_graph_->HasSuspendTestBetween(bb, bb->fall_through))) {
    634           GenSuspendTest(opt_flags);
    635         }
    636         GenCompareAndBranch(opcode, rl_src[0], rl_src[1], taken, fall_through);
    637       }
    638       break;
    639       }
    640 
    641     case Instruction::IF_EQZ:
    642     case Instruction::IF_NEZ:
    643     case Instruction::IF_LTZ:
    644     case Instruction::IF_GEZ:
    645     case Instruction::IF_GTZ:
    646     case Instruction::IF_LEZ: {
    647       LIR* taken = &label_list[bb->taken];
    648       LIR* fall_through = &label_list[bb->fall_through];
    649       // Result known at compile time?
    650       if (rl_src[0].is_const) {
    651         bool is_taken = EvaluateBranch(opcode, mir_graph_->ConstantValue(rl_src[0].orig_sreg), 0);
    652         BasicBlockId target_id = is_taken ? bb->taken : bb->fall_through;
    653         if (mir_graph_->IsBackedge(bb, target_id) &&
    654             (kLeafOptimization || !mir_graph_->HasSuspendTestBetween(bb, target_id))) {
    655           GenSuspendTest(opt_flags);
    656         }
    657         OpUnconditionalBranch(&label_list[target_id]);
    658       } else {
    659         if (mir_graph_->IsBackwardsBranch(bb) &&
    660             (kLeafOptimization || !mir_graph_->HasSuspendTestBetween(bb, bb->taken) ||
    661              !mir_graph_->HasSuspendTestBetween(bb, bb->fall_through))) {
    662           GenSuspendTest(opt_flags);
    663         }
    664         GenCompareZeroAndBranch(opcode, rl_src[0], taken, fall_through);
    665       }
    666       break;
    667       }
    668 
    669     case Instruction::AGET_WIDE:
    670       GenArrayGet(opt_flags, k64, rl_src[0], rl_src[1], rl_dest, 3);
    671       break;
    672     case Instruction::AGET_OBJECT:
    673       GenArrayGet(opt_flags, kReference, rl_src[0], rl_src[1], rl_dest, 2);
    674       break;
    675     case Instruction::AGET:
    676       GenArrayGet(opt_flags, k32, rl_src[0], rl_src[1], rl_dest, 2);
    677       break;
    678     case Instruction::AGET_BOOLEAN:
    679       GenArrayGet(opt_flags, kUnsignedByte, rl_src[0], rl_src[1], rl_dest, 0);
    680       break;
    681     case Instruction::AGET_BYTE:
    682       GenArrayGet(opt_flags, kSignedByte, rl_src[0], rl_src[1], rl_dest, 0);
    683       break;
    684     case Instruction::AGET_CHAR:
    685       GenArrayGet(opt_flags, kUnsignedHalf, rl_src[0], rl_src[1], rl_dest, 1);
    686       break;
    687     case Instruction::AGET_SHORT:
    688       GenArrayGet(opt_flags, kSignedHalf, rl_src[0], rl_src[1], rl_dest, 1);
    689       break;
    690     case Instruction::APUT_WIDE:
    691       GenArrayPut(opt_flags, k64, rl_src[1], rl_src[2], rl_src[0], 3, false);
    692       break;
    693     case Instruction::APUT:
    694       GenArrayPut(opt_flags, k32, rl_src[1], rl_src[2], rl_src[0], 2, false);
    695       break;
    696     case Instruction::APUT_OBJECT: {
    697       bool is_null = mir_graph_->IsConstantNullRef(rl_src[0]);
    698       bool is_safe = is_null;  // Always safe to store null.
    699       if (!is_safe) {
    700         // Check safety from verifier type information.
    701         const DexCompilationUnit* unit = mir_graph_->GetCurrentDexCompilationUnit();
    702         is_safe = cu_->compiler_driver->IsSafeCast(unit, mir->offset);
    703       }
    704       if (is_null || is_safe) {
    705         // Store of constant null doesn't require an assignability test and can be generated inline
    706         // without fixed register usage or a card mark.
    707         GenArrayPut(opt_flags, kReference, rl_src[1], rl_src[2], rl_src[0], 2, !is_null);
    708       } else {
    709         GenArrayObjPut(opt_flags, rl_src[1], rl_src[2], rl_src[0]);
    710       }
    711       break;
    712     }
    713     case Instruction::APUT_SHORT:
    714     case Instruction::APUT_CHAR:
    715       GenArrayPut(opt_flags, kUnsignedHalf, rl_src[1], rl_src[2], rl_src[0], 1, false);
    716       break;
    717     case Instruction::APUT_BYTE:
    718     case Instruction::APUT_BOOLEAN:
    719       GenArrayPut(opt_flags, kUnsignedByte, rl_src[1], rl_src[2], rl_src[0], 0, false);
    720       break;
    721 
    722     case Instruction::IGET_OBJECT:
    723       GenIGet(mir, opt_flags, kReference, rl_dest, rl_src[0], false, true);
    724       break;
    725 
    726     case Instruction::IGET_WIDE:
    727       GenIGet(mir, opt_flags, k64, rl_dest, rl_src[0], true, false);
    728       break;
    729 
    730     case Instruction::IGET:
    731       GenIGet(mir, opt_flags, k32, rl_dest, rl_src[0], false, false);
    732       break;
    733 
    734     case Instruction::IGET_CHAR:
    735       GenIGet(mir, opt_flags, kUnsignedHalf, rl_dest, rl_src[0], false, false);
    736       break;
    737 
    738     case Instruction::IGET_SHORT:
    739       GenIGet(mir, opt_flags, kSignedHalf, rl_dest, rl_src[0], false, false);
    740       break;
    741 
    742     case Instruction::IGET_BOOLEAN:
    743     case Instruction::IGET_BYTE:
    744       GenIGet(mir, opt_flags, kUnsignedByte, rl_dest, rl_src[0], false, false);
    745       break;
    746 
    747     case Instruction::IPUT_WIDE:
    748       GenIPut(mir, opt_flags, k64, rl_src[0], rl_src[1], true, false);
    749       break;
    750 
    751     case Instruction::IPUT_OBJECT:
    752       GenIPut(mir, opt_flags, kReference, rl_src[0], rl_src[1], false, true);
    753       break;
    754 
    755     case Instruction::IPUT:
    756       GenIPut(mir, opt_flags, k32, rl_src[0], rl_src[1], false, false);
    757       break;
    758 
    759     case Instruction::IPUT_BOOLEAN:
    760     case Instruction::IPUT_BYTE:
    761       GenIPut(mir, opt_flags, kUnsignedByte, rl_src[0], rl_src[1], false, false);
    762       break;
    763 
    764     case Instruction::IPUT_CHAR:
    765       GenIPut(mir, opt_flags, kUnsignedHalf, rl_src[0], rl_src[1], false, false);
    766       break;
    767 
    768     case Instruction::IPUT_SHORT:
    769       GenIPut(mir, opt_flags, kSignedHalf, rl_src[0], rl_src[1], false, false);
    770       break;
    771 
    772     case Instruction::SGET_OBJECT:
    773       GenSget(mir, rl_dest, false, true);
    774       break;
    775     case Instruction::SGET:
    776     case Instruction::SGET_BOOLEAN:
    777     case Instruction::SGET_BYTE:
    778     case Instruction::SGET_CHAR:
    779     case Instruction::SGET_SHORT:
    780       GenSget(mir, rl_dest, false, false);
    781       break;
    782 
    783     case Instruction::SGET_WIDE:
    784       GenSget(mir, rl_dest, true, false);
    785       break;
    786 
    787     case Instruction::SPUT_OBJECT:
    788       GenSput(mir, rl_src[0], false, true);
    789       break;
    790 
    791     case Instruction::SPUT:
    792     case Instruction::SPUT_BOOLEAN:
    793     case Instruction::SPUT_BYTE:
    794     case Instruction::SPUT_CHAR:
    795     case Instruction::SPUT_SHORT:
    796       GenSput(mir, rl_src[0], false, false);
    797       break;
    798 
    799     case Instruction::SPUT_WIDE:
    800       GenSput(mir, rl_src[0], true, false);
    801       break;
    802 
    803     case Instruction::INVOKE_STATIC_RANGE:
    804       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kStatic, true));
    805       if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
    806         // If the invocation is not inlined, we can assume there is already a
    807         // suspend check at the return site
    808         mir_graph_->AppendGenSuspendTestList(bb);
    809       }
    810       break;
    811     case Instruction::INVOKE_STATIC:
    812       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kStatic, false));
    813       if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
    814         mir_graph_->AppendGenSuspendTestList(bb);
    815       }
    816       break;
    817 
    818     case Instruction::INVOKE_DIRECT:
    819       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kDirect, false));
    820       if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
    821         mir_graph_->AppendGenSuspendTestList(bb);
    822       }
    823       break;
    824     case Instruction::INVOKE_DIRECT_RANGE:
    825       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kDirect, true));
    826       if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
    827         mir_graph_->AppendGenSuspendTestList(bb);
    828       }
    829       break;
    830 
    831     case Instruction::INVOKE_VIRTUAL:
    832       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kVirtual, false));
    833       if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
    834         mir_graph_->AppendGenSuspendTestList(bb);
    835       }
    836       break;
    837     case Instruction::INVOKE_VIRTUAL_RANGE:
    838       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kVirtual, true));
    839       if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
    840         mir_graph_->AppendGenSuspendTestList(bb);
    841       }
    842       break;
    843 
    844     case Instruction::INVOKE_SUPER:
    845       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kSuper, false));
    846       if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
    847         mir_graph_->AppendGenSuspendTestList(bb);
    848       }
    849       break;
    850     case Instruction::INVOKE_SUPER_RANGE:
    851       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kSuper, true));
    852       if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
    853         mir_graph_->AppendGenSuspendTestList(bb);
    854       }
    855       break;
    856 
    857     case Instruction::INVOKE_INTERFACE:
    858       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kInterface, false));
    859       if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
    860         mir_graph_->AppendGenSuspendTestList(bb);
    861       }
    862       break;
    863     case Instruction::INVOKE_INTERFACE_RANGE:
    864       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kInterface, true));
    865       if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
    866         mir_graph_->AppendGenSuspendTestList(bb);
    867       }
    868       break;
    869 
    870     case Instruction::NEG_INT:
    871     case Instruction::NOT_INT:
    872       GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[0]);
    873       break;
    874 
    875     case Instruction::NEG_LONG:
    876     case Instruction::NOT_LONG:
    877       GenArithOpLong(opcode, rl_dest, rl_src[0], rl_src[0]);
    878       break;
    879 
    880     case Instruction::NEG_FLOAT:
    881       GenArithOpFloat(opcode, rl_dest, rl_src[0], rl_src[0]);
    882       break;
    883 
    884     case Instruction::NEG_DOUBLE:
    885       GenArithOpDouble(opcode, rl_dest, rl_src[0], rl_src[0]);
    886       break;
    887 
    888     case Instruction::INT_TO_LONG:
    889       GenIntToLong(rl_dest, rl_src[0]);
    890       break;
    891 
    892     case Instruction::LONG_TO_INT:
    893       rl_src[0] = UpdateLocWide(rl_src[0]);
    894       rl_src[0] = NarrowRegLoc(rl_src[0]);
    895       StoreValue(rl_dest, rl_src[0]);
    896       break;
    897 
    898     case Instruction::INT_TO_BYTE:
    899     case Instruction::INT_TO_SHORT:
    900     case Instruction::INT_TO_CHAR:
    901       GenIntNarrowing(opcode, rl_dest, rl_src[0]);
    902       break;
    903 
    904     case Instruction::INT_TO_FLOAT:
    905     case Instruction::INT_TO_DOUBLE:
    906     case Instruction::LONG_TO_FLOAT:
    907     case Instruction::LONG_TO_DOUBLE:
    908     case Instruction::FLOAT_TO_INT:
    909     case Instruction::FLOAT_TO_LONG:
    910     case Instruction::FLOAT_TO_DOUBLE:
    911     case Instruction::DOUBLE_TO_INT:
    912     case Instruction::DOUBLE_TO_LONG:
    913     case Instruction::DOUBLE_TO_FLOAT:
    914       GenConversion(opcode, rl_dest, rl_src[0]);
    915       break;
    916 
    917 
    918     case Instruction::ADD_INT:
    919     case Instruction::ADD_INT_2ADDR:
    920     case Instruction::MUL_INT:
    921     case Instruction::MUL_INT_2ADDR:
    922     case Instruction::AND_INT:
    923     case Instruction::AND_INT_2ADDR:
    924     case Instruction::OR_INT:
    925     case Instruction::OR_INT_2ADDR:
    926     case Instruction::XOR_INT:
    927     case Instruction::XOR_INT_2ADDR:
    928       if (rl_src[0].is_const &&
    929           InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[0]), opcode)) {
    930         GenArithOpIntLit(opcode, rl_dest, rl_src[1],
    931                              mir_graph_->ConstantValue(rl_src[0].orig_sreg));
    932       } else if (rl_src[1].is_const &&
    933                  InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[1]), opcode)) {
    934         GenArithOpIntLit(opcode, rl_dest, rl_src[0],
    935                              mir_graph_->ConstantValue(rl_src[1].orig_sreg));
    936       } else {
    937         GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[1]);
    938       }
    939       break;
    940 
    941     case Instruction::SUB_INT:
    942     case Instruction::SUB_INT_2ADDR:
    943     case Instruction::DIV_INT:
    944     case Instruction::DIV_INT_2ADDR:
    945     case Instruction::REM_INT:
    946     case Instruction::REM_INT_2ADDR:
    947     case Instruction::SHL_INT:
    948     case Instruction::SHL_INT_2ADDR:
    949     case Instruction::SHR_INT:
    950     case Instruction::SHR_INT_2ADDR:
    951     case Instruction::USHR_INT:
    952     case Instruction::USHR_INT_2ADDR:
    953       if (rl_src[1].is_const &&
    954           InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[1]), opcode)) {
    955         GenArithOpIntLit(opcode, rl_dest, rl_src[0], mir_graph_->ConstantValue(rl_src[1]));
    956       } else {
    957         GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[1]);
    958       }
    959       break;
    960 
    961     case Instruction::ADD_LONG:
    962     case Instruction::SUB_LONG:
    963     case Instruction::AND_LONG:
    964     case Instruction::OR_LONG:
    965     case Instruction::XOR_LONG:
    966     case Instruction::ADD_LONG_2ADDR:
    967     case Instruction::SUB_LONG_2ADDR:
    968     case Instruction::AND_LONG_2ADDR:
    969     case Instruction::OR_LONG_2ADDR:
    970     case Instruction::XOR_LONG_2ADDR:
    971       if (rl_src[0].is_const || rl_src[1].is_const) {
    972         GenArithImmOpLong(opcode, rl_dest, rl_src[0], rl_src[1]);
    973         break;
    974       }
    975       // Note: intentional fallthrough.
    976 
    977     case Instruction::MUL_LONG:
    978     case Instruction::DIV_LONG:
    979     case Instruction::REM_LONG:
    980     case Instruction::MUL_LONG_2ADDR:
    981     case Instruction::DIV_LONG_2ADDR:
    982     case Instruction::REM_LONG_2ADDR:
    983       GenArithOpLong(opcode, rl_dest, rl_src[0], rl_src[1]);
    984       break;
    985 
    986     case Instruction::SHL_LONG:
    987     case Instruction::SHR_LONG:
    988     case Instruction::USHR_LONG:
    989     case Instruction::SHL_LONG_2ADDR:
    990     case Instruction::SHR_LONG_2ADDR:
    991     case Instruction::USHR_LONG_2ADDR:
    992       if (rl_src[1].is_const) {
    993         GenShiftImmOpLong(opcode, rl_dest, rl_src[0], rl_src[1]);
    994       } else {
    995         GenShiftOpLong(opcode, rl_dest, rl_src[0], rl_src[1]);
    996       }
    997       break;
    998 
    999     case Instruction::ADD_FLOAT:
   1000     case Instruction::SUB_FLOAT:
   1001     case Instruction::MUL_FLOAT:
   1002     case Instruction::DIV_FLOAT:
   1003     case Instruction::REM_FLOAT:
   1004     case Instruction::ADD_FLOAT_2ADDR:
   1005     case Instruction::SUB_FLOAT_2ADDR:
   1006     case Instruction::MUL_FLOAT_2ADDR:
   1007     case Instruction::DIV_FLOAT_2ADDR:
   1008     case Instruction::REM_FLOAT_2ADDR:
   1009       GenArithOpFloat(opcode, rl_dest, rl_src[0], rl_src[1]);
   1010       break;
   1011 
   1012     case Instruction::ADD_DOUBLE:
   1013     case Instruction::SUB_DOUBLE:
   1014     case Instruction::MUL_DOUBLE:
   1015     case Instruction::DIV_DOUBLE:
   1016     case Instruction::REM_DOUBLE:
   1017     case Instruction::ADD_DOUBLE_2ADDR:
   1018     case Instruction::SUB_DOUBLE_2ADDR:
   1019     case Instruction::MUL_DOUBLE_2ADDR:
   1020     case Instruction::DIV_DOUBLE_2ADDR:
   1021     case Instruction::REM_DOUBLE_2ADDR:
   1022       GenArithOpDouble(opcode, rl_dest, rl_src[0], rl_src[1]);
   1023       break;
   1024 
   1025     case Instruction::RSUB_INT:
   1026     case Instruction::ADD_INT_LIT16:
   1027     case Instruction::MUL_INT_LIT16:
   1028     case Instruction::DIV_INT_LIT16:
   1029     case Instruction::REM_INT_LIT16:
   1030     case Instruction::AND_INT_LIT16:
   1031     case Instruction::OR_INT_LIT16:
   1032     case Instruction::XOR_INT_LIT16:
   1033     case Instruction::ADD_INT_LIT8:
   1034     case Instruction::RSUB_INT_LIT8:
   1035     case Instruction::MUL_INT_LIT8:
   1036     case Instruction::DIV_INT_LIT8:
   1037     case Instruction::REM_INT_LIT8:
   1038     case Instruction::AND_INT_LIT8:
   1039     case Instruction::OR_INT_LIT8:
   1040     case Instruction::XOR_INT_LIT8:
   1041     case Instruction::SHL_INT_LIT8:
   1042     case Instruction::SHR_INT_LIT8:
   1043     case Instruction::USHR_INT_LIT8:
   1044       GenArithOpIntLit(opcode, rl_dest, rl_src[0], vC);
   1045       break;
   1046 
   1047     default:
   1048       LOG(FATAL) << "Unexpected opcode: " << opcode;
   1049   }
   1050   DCHECK(CheckCorePoolSanity());
   1051 }  // NOLINT(readability/fn_size)
   1052 
   1053 // Process extended MIR instructions
   1054 void Mir2Lir::HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
   1055   switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
   1056     case kMirOpCopy: {
   1057       RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
   1058       RegLocation rl_dest = mir_graph_->GetDest(mir);
   1059       StoreValue(rl_dest, rl_src);
   1060       break;
   1061     }
   1062     case kMirOpFusedCmplFloat:
   1063       GenFusedFPCmpBranch(bb, mir, false /*gt bias*/, false /*double*/);
   1064       break;
   1065     case kMirOpFusedCmpgFloat:
   1066       GenFusedFPCmpBranch(bb, mir, true /*gt bias*/, false /*double*/);
   1067       break;
   1068     case kMirOpFusedCmplDouble:
   1069       GenFusedFPCmpBranch(bb, mir, false /*gt bias*/, true /*double*/);
   1070       break;
   1071     case kMirOpFusedCmpgDouble:
   1072       GenFusedFPCmpBranch(bb, mir, true /*gt bias*/, true /*double*/);
   1073       break;
   1074     case kMirOpFusedCmpLong:
   1075       GenFusedLongCmpBranch(bb, mir);
   1076       break;
   1077     case kMirOpSelect:
   1078       GenSelect(bb, mir);
   1079       break;
   1080     case kMirOpPhi:
   1081     case kMirOpNop:
   1082     case kMirOpNullCheck:
   1083     case kMirOpRangeCheck:
   1084     case kMirOpDivZeroCheck:
   1085     case kMirOpCheck:
   1086     case kMirOpCheckPart2:
   1087       // Ignore these known opcodes
   1088       break;
   1089     default:
   1090       // Give the backends a chance to handle unknown extended MIR opcodes.
   1091       GenMachineSpecificExtendedMethodMIR(bb, mir);
   1092       break;
   1093   }
   1094 }
   1095 
   1096 void Mir2Lir::GenPrintLabel(MIR* mir) {
   1097   // Mark the beginning of a Dalvik instruction for line tracking.
   1098   if (cu_->verbose) {
   1099      char* inst_str = mir_graph_->GetDalvikDisassembly(mir);
   1100      MarkBoundary(mir->offset, inst_str);
   1101   }
   1102 }
   1103 
   1104 // Handle the content in each basic block.
   1105 bool Mir2Lir::MethodBlockCodeGen(BasicBlock* bb) {
   1106   if (bb->block_type == kDead) return false;
   1107   current_dalvik_offset_ = bb->start_offset;
   1108   MIR* mir;
   1109   int block_id = bb->id;
   1110 
   1111   block_label_list_[block_id].operands[0] = bb->start_offset;
   1112 
   1113   // Insert the block label.
   1114   block_label_list_[block_id].opcode = kPseudoNormalBlockLabel;
   1115   block_label_list_[block_id].flags.fixup = kFixupLabel;
   1116   AppendLIR(&block_label_list_[block_id]);
   1117 
   1118   LIR* head_lir = NULL;
   1119 
   1120   // If this is a catch block, export the start address.
   1121   if (bb->catch_entry) {
   1122     head_lir = NewLIR0(kPseudoExportedPC);
   1123   }
   1124 
   1125   // Free temp registers and reset redundant store tracking.
   1126   ClobberAllTemps();
   1127 
   1128   if (bb->block_type == kEntryBlock) {
   1129     ResetRegPool();
   1130     int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
   1131     GenEntrySequence(&mir_graph_->reg_location_[start_vreg],
   1132                          mir_graph_->reg_location_[mir_graph_->GetMethodSReg()]);
   1133   } else if (bb->block_type == kExitBlock) {
   1134     ResetRegPool();
   1135     GenExitSequence();
   1136   }
   1137 
   1138   for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
   1139     ResetRegPool();
   1140     if (cu_->disable_opt & (1 << kTrackLiveTemps)) {
   1141       ClobberAllTemps();
   1142       // Reset temp allocation to minimize differences when A/B testing.
   1143       reg_pool_->ResetNextTemp();
   1144     }
   1145 
   1146     if (cu_->disable_opt & (1 << kSuppressLoads)) {
   1147       ResetDefTracking();
   1148     }
   1149 
   1150     // Reset temp tracking sanity check.
   1151     if (kIsDebugBuild) {
   1152       live_sreg_ = INVALID_SREG;
   1153     }
   1154 
   1155     current_dalvik_offset_ = mir->offset;
   1156     int opcode = mir->dalvikInsn.opcode;
   1157 
   1158     GenPrintLabel(mir);
   1159 
   1160     // Remember the first LIR for this block.
   1161     if (head_lir == NULL) {
   1162       head_lir = &block_label_list_[bb->id];
   1163       // Set the first label as a scheduling barrier.
   1164       DCHECK(!head_lir->flags.use_def_invalid);
   1165       head_lir->u.m.def_mask = &kEncodeAll;
   1166     }
   1167 
   1168     if (opcode == kMirOpCheck) {
   1169       // Combine check and work halves of throwing instruction.
   1170       MIR* work_half = mir->meta.throw_insn;
   1171       mir->dalvikInsn.opcode = work_half->dalvikInsn.opcode;
   1172       mir->meta = work_half->meta;  // Whatever the work_half had, we need to copy it.
   1173       opcode = work_half->dalvikInsn.opcode;
   1174       SSARepresentation* ssa_rep = work_half->ssa_rep;
   1175       work_half->ssa_rep = mir->ssa_rep;
   1176       mir->ssa_rep = ssa_rep;
   1177       work_half->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpCheckPart2);
   1178       work_half->meta.throw_insn = mir;
   1179     }
   1180 
   1181     if (MIR::DecodedInstruction::IsPseudoMirOp(opcode)) {
   1182       HandleExtendedMethodMIR(bb, mir);
   1183       continue;
   1184     }
   1185 
   1186     CompileDalvikInstruction(mir, bb, block_label_list_);
   1187   }
   1188 
   1189   if (head_lir) {
   1190     // Eliminate redundant loads/stores and delay stores into later slots.
   1191     ApplyLocalOptimizations(head_lir, last_lir_insn_);
   1192   }
   1193   return false;
   1194 }
   1195 
   1196 bool Mir2Lir::SpecialMIR2LIR(const InlineMethod& special) {
   1197   cu_->NewTimingSplit("SpecialMIR2LIR");
   1198   // Find the first DalvikByteCode block.
   1199   int num_reachable_blocks = mir_graph_->GetNumReachableBlocks();
   1200   BasicBlock*bb = NULL;
   1201   for (int idx = 0; idx < num_reachable_blocks; idx++) {
   1202     // TODO: no direct access of growable lists.
   1203     int dfs_index = mir_graph_->GetDfsOrder()->Get(idx);
   1204     bb = mir_graph_->GetBasicBlock(dfs_index);
   1205     if (bb->block_type == kDalvikByteCode) {
   1206       break;
   1207     }
   1208   }
   1209   if (bb == NULL) {
   1210     return false;
   1211   }
   1212   DCHECK_EQ(bb->start_offset, 0);
   1213   DCHECK(bb->first_mir_insn != NULL);
   1214 
   1215   // Get the first instruction.
   1216   MIR* mir = bb->first_mir_insn;
   1217 
   1218   // Free temp registers and reset redundant store tracking.
   1219   ResetRegPool();
   1220   ResetDefTracking();
   1221   ClobberAllTemps();
   1222 
   1223   return GenSpecialCase(bb, mir, special);
   1224 }
   1225 
   1226 void Mir2Lir::MethodMIR2LIR() {
   1227   cu_->NewTimingSplit("MIR2LIR");
   1228 
   1229   // Hold the labels of each block.
   1230   block_label_list_ =
   1231       static_cast<LIR*>(arena_->Alloc(sizeof(LIR) * mir_graph_->GetNumBlocks(),
   1232                                       kArenaAllocLIR));
   1233 
   1234   PreOrderDfsIterator iter(mir_graph_);
   1235   BasicBlock* curr_bb = iter.Next();
   1236   BasicBlock* next_bb = iter.Next();
   1237   while (curr_bb != NULL) {
   1238     MethodBlockCodeGen(curr_bb);
   1239     // If the fall_through block is no longer laid out consecutively, drop in a branch.
   1240     BasicBlock* curr_bb_fall_through = mir_graph_->GetBasicBlock(curr_bb->fall_through);
   1241     if ((curr_bb_fall_through != NULL) && (curr_bb_fall_through != next_bb)) {
   1242       OpUnconditionalBranch(&block_label_list_[curr_bb->fall_through]);
   1243     }
   1244     curr_bb = next_bb;
   1245     do {
   1246       next_bb = iter.Next();
   1247     } while ((next_bb != NULL) && (next_bb->block_type == kDead));
   1248   }
   1249   HandleSlowPaths();
   1250 }
   1251 
   1252 //
   1253 // LIR Slow Path
   1254 //
   1255 
   1256 LIR* Mir2Lir::LIRSlowPath::GenerateTargetLabel(int opcode) {
   1257   m2l_->SetCurrentDexPc(current_dex_pc_);
   1258   LIR* target = m2l_->NewLIR0(opcode);
   1259   fromfast_->target = target;
   1260   return target;
   1261 }
   1262 
   1263 
   1264 void Mir2Lir::CheckRegStorageImpl(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp,
   1265                                   bool fail, bool report)
   1266     const  {
   1267   if (rs.Valid()) {
   1268     if (ref == RefCheck::kCheckRef) {
   1269       if (cu_->target64 && !rs.Is64Bit()) {
   1270         if (fail) {
   1271           CHECK(false) << "Reg storage not 64b for ref.";
   1272         } else if (report) {
   1273           LOG(WARNING) << "Reg storage not 64b for ref.";
   1274         }
   1275       }
   1276     }
   1277     if (wide == WidenessCheck::kCheckWide) {
   1278       if (!rs.Is64Bit()) {
   1279         if (fail) {
   1280           CHECK(false) << "Reg storage not 64b for wide.";
   1281         } else if (report) {
   1282           LOG(WARNING) << "Reg storage not 64b for wide.";
   1283         }
   1284       }
   1285     }
   1286     // A tighter check would be nice, but for now soft-float will not check float at all.
   1287     if (fp == FPCheck::kCheckFP && cu_->instruction_set != kArm) {
   1288       if (!rs.IsFloat()) {
   1289         if (fail) {
   1290           CHECK(false) << "Reg storage not float for fp.";
   1291         } else if (report) {
   1292           LOG(WARNING) << "Reg storage not float for fp.";
   1293         }
   1294       }
   1295     } else if (fp == FPCheck::kCheckNotFP) {
   1296       if (rs.IsFloat()) {
   1297         if (fail) {
   1298           CHECK(false) << "Reg storage float for not-fp.";
   1299         } else if (report) {
   1300           LOG(WARNING) << "Reg storage float for not-fp.";
   1301         }
   1302       }
   1303     }
   1304   }
   1305 }
   1306 
   1307 void Mir2Lir::CheckRegLocationImpl(RegLocation rl, bool fail, bool report) const {
   1308   // Regrettably can't use the fp part of rl, as that is not really indicative of where a value
   1309   // will be stored.
   1310   CheckRegStorageImpl(rl.reg, rl.wide ? WidenessCheck::kCheckWide : WidenessCheck::kCheckNotWide,
   1311       rl.ref ? RefCheck::kCheckRef : RefCheck::kCheckNotRef, FPCheck::kIgnoreFP, fail, report);
   1312 }
   1313 
   1314 size_t Mir2Lir::GetInstructionOffset(LIR* lir) {
   1315   UNIMPLEMENTED(FATAL) << "Unsuppored GetInstructionOffset()";
   1316   return 0;
   1317 }
   1318 
   1319 }  // namespace art
   1320