Home | History | Annotate | Download | only in verifier
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_VERIFIER_REGISTER_LINE_H_
     18 #define ART_RUNTIME_VERIFIER_REGISTER_LINE_H_
     19 
     20 #include <memory>
     21 #include <vector>
     22 
     23 #include "dex_instruction.h"
     24 #include "reg_type.h"
     25 #include "safe_map.h"
     26 
     27 namespace art {
     28 namespace verifier {
     29 
     30 class MethodVerifier;
     31 
     32 /*
     33  * Register type categories, for type checking.
     34  *
     35  * The spec says category 1 includes boolean, byte, char, short, int, float, reference, and
     36  * returnAddress. Category 2 includes long and double.
     37  *
     38  * We treat object references separately, so we have "category1nr". We don't support jsr/ret, so
     39  * there is no "returnAddress" type.
     40  */
     41 enum TypeCategory {
     42   kTypeCategoryUnknown = 0,
     43   kTypeCategory1nr = 1,         // boolean, byte, char, short, int, float
     44   kTypeCategory2 = 2,           // long, double
     45   kTypeCategoryRef = 3,         // object reference
     46 };
     47 
     48 // During verification, we associate one of these with every "interesting" instruction. We track
     49 // the status of all registers, and (if the method has any monitor-enter instructions) maintain a
     50 // stack of entered monitors (identified by code unit offset).
     51 class RegisterLine {
     52  public:
     53   static RegisterLine* Create(size_t num_regs, MethodVerifier* verifier) {
     54     void* memory = operator new(sizeof(RegisterLine) + (num_regs * sizeof(uint16_t)));
     55     RegisterLine* rl = new (memory) RegisterLine(num_regs, verifier);
     56     return rl;
     57   }
     58 
     59   // Implement category-1 "move" instructions. Copy a 32-bit value from "vsrc" to "vdst".
     60   void CopyRegister1(uint32_t vdst, uint32_t vsrc, TypeCategory cat)
     61       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
     62 
     63   // Implement category-2 "move" instructions. Copy a 64-bit value from "vsrc" to "vdst". This
     64   // copies both halves of the register.
     65   void CopyRegister2(uint32_t vdst, uint32_t vsrc)
     66       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
     67 
     68   // Implement "move-result". Copy the category-1 value from the result register to another
     69   // register, and reset the result register.
     70   void CopyResultRegister1(uint32_t vdst, bool is_reference)
     71       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
     72 
     73   // Implement "move-result-wide". Copy the category-2 value from the result register to another
     74   // register, and reset the result register.
     75   void CopyResultRegister2(uint32_t vdst)
     76       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
     77 
     78   // Set the invisible result register to unknown
     79   void SetResultTypeToUnknown() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
     80 
     81   // Set the type of register N, verifying that the register is valid.  If "newType" is the "Lo"
     82   // part of a 64-bit value, register N+1 will be set to "newType+1".
     83   // The register index was validated during the static pass, so we don't need to check it here.
     84   bool SetRegisterType(uint32_t vdst, RegType& new_type)
     85       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
     86 
     87   bool SetRegisterTypeWide(uint32_t vdst, RegType& new_type1, RegType& new_type2)
     88       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
     89 
     90   /* Set the type of the "result" register. */
     91   void SetResultRegisterType(RegType& new_type)
     92       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
     93 
     94   void SetResultRegisterTypeWide(RegType& new_type1, RegType& new_type2)
     95       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
     96 
     97   // Get the type of register vsrc.
     98   RegType& GetRegisterType(uint32_t vsrc) const;
     99 
    100   bool VerifyRegisterType(uint32_t vsrc, RegType& check_type)
    101       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    102 
    103   bool VerifyRegisterTypeWide(uint32_t vsrc, RegType& check_type1, RegType& check_type2)
    104       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    105 
    106   void CopyFromLine(const RegisterLine* src) {
    107     DCHECK_EQ(num_regs_, src->num_regs_);
    108     memcpy(&line_, &src->line_, num_regs_ * sizeof(uint16_t));
    109     monitors_ = src->monitors_;
    110     reg_to_lock_depths_ = src->reg_to_lock_depths_;
    111   }
    112 
    113   std::string Dump() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    114 
    115   void FillWithGarbage() {
    116     memset(&line_, 0xf1, num_regs_ * sizeof(uint16_t));
    117     while (!monitors_.empty()) {
    118       monitors_.pop_back();
    119     }
    120     reg_to_lock_depths_.clear();
    121   }
    122 
    123   /*
    124    * We're creating a new instance of class C at address A. Any registers holding instances
    125    * previously created at address A must be initialized by now. If not, we mark them as "conflict"
    126    * to prevent them from being used (otherwise, MarkRefsAsInitialized would mark the old ones and
    127    * the new ones at the same time).
    128    */
    129   void MarkUninitRefsAsInvalid(RegType& uninit_type)
    130       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    131 
    132   /*
    133    * Update all registers holding "uninit_type" to instead hold the corresponding initialized
    134    * reference type. This is called when an appropriate constructor is invoked -- all copies of
    135    * the reference must be marked as initialized.
    136    */
    137   void MarkRefsAsInitialized(RegType& uninit_type)
    138       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    139 
    140   /*
    141    * Update all registers to be Conflict except vsrc.
    142    */
    143   void MarkAllRegistersAsConflicts();
    144   void MarkAllRegistersAsConflictsExcept(uint32_t vsrc);
    145   void MarkAllRegistersAsConflictsExceptWide(uint32_t vsrc);
    146 
    147   /*
    148    * Check constraints on constructor return. Specifically, make sure that the "this" argument got
    149    * initialized.
    150    * The "this" argument to <init> uses code offset kUninitThisArgAddr, which puts it at the start
    151    * of the list in slot 0. If we see a register with an uninitialized slot 0 reference, we know it
    152    * somehow didn't get initialized.
    153    */
    154   bool CheckConstructorReturn() const;
    155 
    156   // Compare two register lines. Returns 0 if they match.
    157   // Using this for a sort is unwise, since the value can change based on machine endianness.
    158   int CompareLine(const RegisterLine* line2) const {
    159     DCHECK(monitors_ == line2->monitors_);
    160     // TODO: DCHECK(reg_to_lock_depths_ == line2->reg_to_lock_depths_);
    161     return memcmp(&line_, &line2->line_, num_regs_ * sizeof(uint16_t));
    162   }
    163 
    164   size_t NumRegs() const {
    165     return num_regs_;
    166   }
    167 
    168   /*
    169    * Get the "this" pointer from a non-static method invocation. This returns the RegType so the
    170    * caller can decide whether it needs the reference to be initialized or not. (Can also return
    171    * kRegTypeZero if the reference can only be zero at this point.)
    172    *
    173    * The argument count is in vA, and the first argument is in vC, for both "simple" and "range"
    174    * versions. We just need to make sure vA is >= 1 and then return vC.
    175    */
    176   RegType& GetInvocationThis(const Instruction* inst, bool is_range)
    177       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    178 
    179   /*
    180    * Verify types for a simple two-register instruction (e.g. "neg-int").
    181    * "dst_type" is stored into vA, and "src_type" is verified against vB.
    182    */
    183   void CheckUnaryOp(const Instruction* inst, RegType& dst_type,
    184                     RegType& src_type)
    185       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    186 
    187   void CheckUnaryOpWide(const Instruction* inst,
    188                         RegType& dst_type1, RegType& dst_type2,
    189                         RegType& src_type1, RegType& src_type2)
    190       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    191 
    192   void CheckUnaryOpToWide(const Instruction* inst,
    193                           RegType& dst_type1, RegType& dst_type2,
    194                           RegType& src_type)
    195       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    196 
    197   void CheckUnaryOpFromWide(const Instruction* inst,
    198                             RegType& dst_type,
    199                             RegType& src_type1, RegType& src_type2)
    200       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    201 
    202   /*
    203    * Verify types for a simple three-register instruction (e.g. "add-int").
    204    * "dst_type" is stored into vA, and "src_type1"/"src_type2" are verified
    205    * against vB/vC.
    206    */
    207   void CheckBinaryOp(const Instruction* inst,
    208                      RegType& dst_type, RegType& src_type1, RegType& src_type2,
    209                      bool check_boolean_op)
    210       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    211 
    212   void CheckBinaryOpWide(const Instruction* inst,
    213                          RegType& dst_type1, RegType& dst_type2,
    214                          RegType& src_type1_1, RegType& src_type1_2,
    215                          RegType& src_type2_1, RegType& src_type2_2)
    216       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    217 
    218   void CheckBinaryOpWideShift(const Instruction* inst,
    219                               RegType& long_lo_type, RegType& long_hi_type,
    220                               RegType& int_type)
    221       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    222 
    223   /*
    224    * Verify types for a binary "2addr" operation. "src_type1"/"src_type2"
    225    * are verified against vA/vB, then "dst_type" is stored into vA.
    226    */
    227   void CheckBinaryOp2addr(const Instruction* inst,
    228                           RegType& dst_type,
    229                           RegType& src_type1, RegType& src_type2,
    230                           bool check_boolean_op)
    231       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    232 
    233   void CheckBinaryOp2addrWide(const Instruction* inst,
    234                               RegType& dst_type1, RegType& dst_type2,
    235                               RegType& src_type1_1, RegType& src_type1_2,
    236                               RegType& src_type2_1, RegType& src_type2_2)
    237       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    238 
    239   void CheckBinaryOp2addrWideShift(const Instruction* inst,
    240                                    RegType& long_lo_type, RegType& long_hi_type,
    241                                    RegType& int_type)
    242       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    243 
    244   /*
    245    * Verify types for A two-register instruction with a literal constant (e.g. "add-int/lit8").
    246    * "dst_type" is stored into vA, and "src_type" is verified against vB.
    247    *
    248    * If "check_boolean_op" is set, we use the constant value in vC.
    249    */
    250   void CheckLiteralOp(const Instruction* inst,
    251                       RegType& dst_type, RegType& src_type,
    252                       bool check_boolean_op, bool is_lit16)
    253       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    254 
    255   // Verify/push monitor onto the monitor stack, locking the value in reg_idx at location insn_idx.
    256   void PushMonitor(uint32_t reg_idx, int32_t insn_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    257 
    258   // Verify/pop monitor from monitor stack ensuring that we believe the monitor is locked
    259   void PopMonitor(uint32_t reg_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    260 
    261   // Stack of currently held monitors and where they were locked
    262   size_t MonitorStackDepth() const {
    263     return monitors_.size();
    264   }
    265 
    266   // We expect no monitors to be held at certain points, such a method returns. Verify the stack
    267   // is empty, failing and returning false if not.
    268   bool VerifyMonitorStackEmpty() const;
    269 
    270   bool MergeRegisters(const RegisterLine* incoming_line)
    271       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    272 
    273   size_t GetMaxNonZeroReferenceReg(size_t max_ref_reg) {
    274     size_t i = static_cast<int>(max_ref_reg) < 0 ? 0 : max_ref_reg;
    275     for (; i < num_regs_; i++) {
    276       if (GetRegisterType(i).IsNonZeroReferenceTypes()) {
    277         max_ref_reg = i;
    278       }
    279     }
    280     return max_ref_reg;
    281   }
    282 
    283   // Write a bit at each register location that holds a reference
    284   void WriteReferenceBitMap(std::vector<uint8_t>& data, size_t max_bytes);
    285 
    286   size_t GetMonitorEnterCount() {
    287     return monitors_.size();
    288   }
    289 
    290   uint32_t GetMonitorEnterDexPc(size_t i) {
    291     return monitors_[i];
    292   }
    293 
    294  private:
    295   void CopyRegToLockDepth(size_t dst, size_t src) {
    296     auto it = reg_to_lock_depths_.find(src);
    297     if (it != reg_to_lock_depths_.end()) {
    298       reg_to_lock_depths_.Put(dst, it->second);
    299     }
    300   }
    301 
    302   bool IsSetLockDepth(size_t reg, size_t depth) {
    303     auto it = reg_to_lock_depths_.find(reg);
    304     if (it != reg_to_lock_depths_.end()) {
    305       return (it->second & (1 << depth)) != 0;
    306     } else {
    307       return false;
    308     }
    309   }
    310 
    311   void SetRegToLockDepth(size_t reg, size_t depth) {
    312     CHECK_LT(depth, 32u);
    313     DCHECK(!IsSetLockDepth(reg, depth));
    314     auto it = reg_to_lock_depths_.find(reg);
    315     if (it == reg_to_lock_depths_.end()) {
    316       reg_to_lock_depths_.Put(reg, 1 << depth);
    317     } else {
    318       it->second |= (1 << depth);
    319     }
    320   }
    321 
    322   void ClearRegToLockDepth(size_t reg, size_t depth) {
    323     CHECK_LT(depth, 32u);
    324     DCHECK(IsSetLockDepth(reg, depth));
    325     auto it = reg_to_lock_depths_.find(reg);
    326     DCHECK(it != reg_to_lock_depths_.end());
    327     uint32_t depths = it->second ^ (1 << depth);
    328     if (depths != 0) {
    329       it->second = depths;
    330     } else {
    331       reg_to_lock_depths_.erase(it);
    332     }
    333   }
    334 
    335   void ClearAllRegToLockDepths(size_t reg) {
    336     reg_to_lock_depths_.erase(reg);
    337   }
    338 
    339   RegisterLine(size_t num_regs, MethodVerifier* verifier)
    340       : verifier_(verifier), num_regs_(num_regs) {
    341     memset(&line_, 0, num_regs_ * sizeof(uint16_t));
    342     SetResultTypeToUnknown();
    343   }
    344 
    345   // Storage for the result register's type, valid after an invocation
    346   uint16_t result_[2];
    347 
    348   // Back link to the verifier
    349   MethodVerifier* verifier_;
    350 
    351   // Length of reg_types_
    352   const uint32_t num_regs_;
    353   // A stack of monitor enter locations
    354   std::vector<uint32_t, TrackingAllocator<uint32_t, kAllocatorTagVerifier>> monitors_;
    355   // A map from register to a bit vector of indices into the monitors_ stack. As we pop the monitor
    356   // stack we verify that monitor-enter/exit are correctly nested. That is, if there was a
    357   // monitor-enter on v5 and then on v6, we expect the monitor-exit to be on v6 then on v5
    358   AllocationTrackingSafeMap<uint32_t, uint32_t, kAllocatorTagVerifier> reg_to_lock_depths_;
    359 
    360   // An array of RegType Ids associated with each dex register.
    361   uint16_t line_[0];
    362 };
    363 std::ostream& operator<<(std::ostream& os, const RegisterLine& rhs);
    364 
    365 }  // namespace verifier
    366 }  // namespace art
    367 
    368 #endif  // ART_RUNTIME_VERIFIER_REGISTER_LINE_H_
    369