1 /* 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #include "webrtc/modules/audio_coding/neteq/neteq_impl.h" 12 13 #include <assert.h> 14 #include <memory.h> // memset 15 16 #include <algorithm> 17 18 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" 19 #include "webrtc/modules/audio_coding/neteq/accelerate.h" 20 #include "webrtc/modules/audio_coding/neteq/background_noise.h" 21 #include "webrtc/modules/audio_coding/neteq/buffer_level_filter.h" 22 #include "webrtc/modules/audio_coding/neteq/comfort_noise.h" 23 #include "webrtc/modules/audio_coding/neteq/decision_logic.h" 24 #include "webrtc/modules/audio_coding/neteq/decoder_database.h" 25 #include "webrtc/modules/audio_coding/neteq/defines.h" 26 #include "webrtc/modules/audio_coding/neteq/delay_manager.h" 27 #include "webrtc/modules/audio_coding/neteq/delay_peak_detector.h" 28 #include "webrtc/modules/audio_coding/neteq/dtmf_buffer.h" 29 #include "webrtc/modules/audio_coding/neteq/dtmf_tone_generator.h" 30 #include "webrtc/modules/audio_coding/neteq/expand.h" 31 #include "webrtc/modules/audio_coding/neteq/interface/audio_decoder.h" 32 #include "webrtc/modules/audio_coding/neteq/merge.h" 33 #include "webrtc/modules/audio_coding/neteq/normal.h" 34 #include "webrtc/modules/audio_coding/neteq/packet_buffer.h" 35 #include "webrtc/modules/audio_coding/neteq/packet.h" 36 #include "webrtc/modules/audio_coding/neteq/payload_splitter.h" 37 #include "webrtc/modules/audio_coding/neteq/post_decode_vad.h" 38 #include "webrtc/modules/audio_coding/neteq/preemptive_expand.h" 39 #include "webrtc/modules/audio_coding/neteq/sync_buffer.h" 40 #include "webrtc/modules/audio_coding/neteq/timestamp_scaler.h" 41 #include "webrtc/modules/interface/module_common_types.h" 42 #include "webrtc/system_wrappers/interface/critical_section_wrapper.h" 43 #include "webrtc/system_wrappers/interface/logging.h" 44 45 // Modify the code to obtain backwards bit-exactness. Once bit-exactness is no 46 // longer required, this #define should be removed (and the code that it 47 // enables). 48 #define LEGACY_BITEXACT 49 50 namespace webrtc { 51 52 NetEqImpl::NetEqImpl(int fs, 53 BufferLevelFilter* buffer_level_filter, 54 DecoderDatabase* decoder_database, 55 DelayManager* delay_manager, 56 DelayPeakDetector* delay_peak_detector, 57 DtmfBuffer* dtmf_buffer, 58 DtmfToneGenerator* dtmf_tone_generator, 59 PacketBuffer* packet_buffer, 60 PayloadSplitter* payload_splitter, 61 TimestampScaler* timestamp_scaler, 62 AccelerateFactory* accelerate_factory, 63 ExpandFactory* expand_factory, 64 PreemptiveExpandFactory* preemptive_expand_factory, 65 bool create_components) 66 : crit_sect_(CriticalSectionWrapper::CreateCriticalSection()), 67 buffer_level_filter_(buffer_level_filter), 68 decoder_database_(decoder_database), 69 delay_manager_(delay_manager), 70 delay_peak_detector_(delay_peak_detector), 71 dtmf_buffer_(dtmf_buffer), 72 dtmf_tone_generator_(dtmf_tone_generator), 73 packet_buffer_(packet_buffer), 74 payload_splitter_(payload_splitter), 75 timestamp_scaler_(timestamp_scaler), 76 vad_(new PostDecodeVad()), 77 expand_factory_(expand_factory), 78 accelerate_factory_(accelerate_factory), 79 preemptive_expand_factory_(preemptive_expand_factory), 80 last_mode_(kModeNormal), 81 decoded_buffer_length_(kMaxFrameSize), 82 decoded_buffer_(new int16_t[decoded_buffer_length_]), 83 playout_timestamp_(0), 84 new_codec_(false), 85 timestamp_(0), 86 reset_decoder_(false), 87 current_rtp_payload_type_(0xFF), // Invalid RTP payload type. 88 current_cng_rtp_payload_type_(0xFF), // Invalid RTP payload type. 89 ssrc_(0), 90 first_packet_(true), 91 error_code_(0), 92 decoder_error_code_(0), 93 decoded_packet_sequence_number_(-1), 94 decoded_packet_timestamp_(0) { 95 if (fs != 8000 && fs != 16000 && fs != 32000 && fs != 48000) { 96 LOG(LS_ERROR) << "Sample rate " << fs << " Hz not supported. " << 97 "Changing to 8000 Hz."; 98 fs = 8000; 99 } 100 LOG(LS_VERBOSE) << "Create NetEqImpl object with fs = " << fs << "."; 101 fs_hz_ = fs; 102 fs_mult_ = fs / 8000; 103 output_size_samples_ = kOutputSizeMs * 8 * fs_mult_; 104 decoder_frame_length_ = 3 * output_size_samples_; 105 WebRtcSpl_Init(); 106 if (create_components) { 107 SetSampleRateAndChannels(fs, 1); // Default is 1 channel. 108 } 109 } 110 111 NetEqImpl::~NetEqImpl() { 112 LOG(LS_INFO) << "Deleting NetEqImpl object."; 113 } 114 115 int NetEqImpl::InsertPacket(const WebRtcRTPHeader& rtp_header, 116 const uint8_t* payload, 117 int length_bytes, 118 uint32_t receive_timestamp) { 119 CriticalSectionScoped lock(crit_sect_.get()); 120 LOG(LS_VERBOSE) << "InsertPacket: ts=" << rtp_header.header.timestamp << 121 ", sn=" << rtp_header.header.sequenceNumber << 122 ", pt=" << static_cast<int>(rtp_header.header.payloadType) << 123 ", ssrc=" << rtp_header.header.ssrc << 124 ", len=" << length_bytes; 125 int error = InsertPacketInternal(rtp_header, payload, length_bytes, 126 receive_timestamp, false); 127 if (error != 0) { 128 LOG_FERR1(LS_WARNING, InsertPacketInternal, error); 129 error_code_ = error; 130 return kFail; 131 } 132 return kOK; 133 } 134 135 int NetEqImpl::InsertSyncPacket(const WebRtcRTPHeader& rtp_header, 136 uint32_t receive_timestamp) { 137 CriticalSectionScoped lock(crit_sect_.get()); 138 LOG(LS_VERBOSE) << "InsertPacket-Sync: ts=" 139 << rtp_header.header.timestamp << 140 ", sn=" << rtp_header.header.sequenceNumber << 141 ", pt=" << static_cast<int>(rtp_header.header.payloadType) << 142 ", ssrc=" << rtp_header.header.ssrc; 143 144 const uint8_t kSyncPayload[] = { 's', 'y', 'n', 'c' }; 145 int error = InsertPacketInternal( 146 rtp_header, kSyncPayload, sizeof(kSyncPayload), receive_timestamp, true); 147 148 if (error != 0) { 149 LOG_FERR1(LS_WARNING, InsertPacketInternal, error); 150 error_code_ = error; 151 return kFail; 152 } 153 return kOK; 154 } 155 156 int NetEqImpl::GetAudio(size_t max_length, int16_t* output_audio, 157 int* samples_per_channel, int* num_channels, 158 NetEqOutputType* type) { 159 CriticalSectionScoped lock(crit_sect_.get()); 160 LOG(LS_VERBOSE) << "GetAudio"; 161 int error = GetAudioInternal(max_length, output_audio, samples_per_channel, 162 num_channels); 163 LOG(LS_VERBOSE) << "Produced " << *samples_per_channel << 164 " samples/channel for " << *num_channels << " channel(s)"; 165 if (error != 0) { 166 LOG_FERR1(LS_WARNING, GetAudioInternal, error); 167 error_code_ = error; 168 return kFail; 169 } 170 if (type) { 171 *type = LastOutputType(); 172 } 173 return kOK; 174 } 175 176 int NetEqImpl::RegisterPayloadType(enum NetEqDecoder codec, 177 uint8_t rtp_payload_type) { 178 CriticalSectionScoped lock(crit_sect_.get()); 179 LOG_API2(static_cast<int>(rtp_payload_type), codec); 180 int ret = decoder_database_->RegisterPayload(rtp_payload_type, codec); 181 if (ret != DecoderDatabase::kOK) { 182 LOG_FERR2(LS_WARNING, RegisterPayload, rtp_payload_type, codec); 183 switch (ret) { 184 case DecoderDatabase::kInvalidRtpPayloadType: 185 error_code_ = kInvalidRtpPayloadType; 186 break; 187 case DecoderDatabase::kCodecNotSupported: 188 error_code_ = kCodecNotSupported; 189 break; 190 case DecoderDatabase::kDecoderExists: 191 error_code_ = kDecoderExists; 192 break; 193 default: 194 error_code_ = kOtherError; 195 } 196 return kFail; 197 } 198 return kOK; 199 } 200 201 int NetEqImpl::RegisterExternalDecoder(AudioDecoder* decoder, 202 enum NetEqDecoder codec, 203 uint8_t rtp_payload_type) { 204 CriticalSectionScoped lock(crit_sect_.get()); 205 LOG_API2(static_cast<int>(rtp_payload_type), codec); 206 if (!decoder) { 207 LOG(LS_ERROR) << "Cannot register external decoder with NULL pointer"; 208 assert(false); 209 return kFail; 210 } 211 const int sample_rate_hz = AudioDecoder::CodecSampleRateHz(codec); 212 int ret = decoder_database_->InsertExternal(rtp_payload_type, codec, 213 sample_rate_hz, decoder); 214 if (ret != DecoderDatabase::kOK) { 215 LOG_FERR2(LS_WARNING, InsertExternal, rtp_payload_type, codec); 216 switch (ret) { 217 case DecoderDatabase::kInvalidRtpPayloadType: 218 error_code_ = kInvalidRtpPayloadType; 219 break; 220 case DecoderDatabase::kCodecNotSupported: 221 error_code_ = kCodecNotSupported; 222 break; 223 case DecoderDatabase::kDecoderExists: 224 error_code_ = kDecoderExists; 225 break; 226 case DecoderDatabase::kInvalidSampleRate: 227 error_code_ = kInvalidSampleRate; 228 break; 229 case DecoderDatabase::kInvalidPointer: 230 error_code_ = kInvalidPointer; 231 break; 232 default: 233 error_code_ = kOtherError; 234 } 235 return kFail; 236 } 237 return kOK; 238 } 239 240 int NetEqImpl::RemovePayloadType(uint8_t rtp_payload_type) { 241 CriticalSectionScoped lock(crit_sect_.get()); 242 LOG_API1(static_cast<int>(rtp_payload_type)); 243 int ret = decoder_database_->Remove(rtp_payload_type); 244 if (ret == DecoderDatabase::kOK) { 245 return kOK; 246 } else if (ret == DecoderDatabase::kDecoderNotFound) { 247 error_code_ = kDecoderNotFound; 248 } else { 249 error_code_ = kOtherError; 250 } 251 LOG_FERR1(LS_WARNING, Remove, rtp_payload_type); 252 return kFail; 253 } 254 255 bool NetEqImpl::SetMinimumDelay(int delay_ms) { 256 CriticalSectionScoped lock(crit_sect_.get()); 257 if (delay_ms >= 0 && delay_ms < 10000) { 258 assert(delay_manager_.get()); 259 return delay_manager_->SetMinimumDelay(delay_ms); 260 } 261 return false; 262 } 263 264 bool NetEqImpl::SetMaximumDelay(int delay_ms) { 265 CriticalSectionScoped lock(crit_sect_.get()); 266 if (delay_ms >= 0 && delay_ms < 10000) { 267 assert(delay_manager_.get()); 268 return delay_manager_->SetMaximumDelay(delay_ms); 269 } 270 return false; 271 } 272 273 int NetEqImpl::LeastRequiredDelayMs() const { 274 CriticalSectionScoped lock(crit_sect_.get()); 275 assert(delay_manager_.get()); 276 return delay_manager_->least_required_delay_ms(); 277 } 278 279 void NetEqImpl::SetPlayoutMode(NetEqPlayoutMode mode) { 280 CriticalSectionScoped lock(crit_sect_.get()); 281 if (!decision_logic_.get() || mode != decision_logic_->playout_mode()) { 282 // The reset() method calls delete for the old object. 283 CreateDecisionLogic(mode); 284 } 285 } 286 287 NetEqPlayoutMode NetEqImpl::PlayoutMode() const { 288 CriticalSectionScoped lock(crit_sect_.get()); 289 assert(decision_logic_.get()); 290 return decision_logic_->playout_mode(); 291 } 292 293 int NetEqImpl::NetworkStatistics(NetEqNetworkStatistics* stats) { 294 CriticalSectionScoped lock(crit_sect_.get()); 295 assert(decoder_database_.get()); 296 const int total_samples_in_buffers = packet_buffer_->NumSamplesInBuffer( 297 decoder_database_.get(), decoder_frame_length_) + 298 static_cast<int>(sync_buffer_->FutureLength()); 299 assert(delay_manager_.get()); 300 assert(decision_logic_.get()); 301 stats_.GetNetworkStatistics(fs_hz_, total_samples_in_buffers, 302 decoder_frame_length_, *delay_manager_.get(), 303 *decision_logic_.get(), stats); 304 return 0; 305 } 306 307 void NetEqImpl::WaitingTimes(std::vector<int>* waiting_times) { 308 CriticalSectionScoped lock(crit_sect_.get()); 309 stats_.WaitingTimes(waiting_times); 310 } 311 312 void NetEqImpl::GetRtcpStatistics(RtcpStatistics* stats) { 313 CriticalSectionScoped lock(crit_sect_.get()); 314 if (stats) { 315 rtcp_.GetStatistics(false, stats); 316 } 317 } 318 319 void NetEqImpl::GetRtcpStatisticsNoReset(RtcpStatistics* stats) { 320 CriticalSectionScoped lock(crit_sect_.get()); 321 if (stats) { 322 rtcp_.GetStatistics(true, stats); 323 } 324 } 325 326 void NetEqImpl::EnableVad() { 327 CriticalSectionScoped lock(crit_sect_.get()); 328 assert(vad_.get()); 329 vad_->Enable(); 330 } 331 332 void NetEqImpl::DisableVad() { 333 CriticalSectionScoped lock(crit_sect_.get()); 334 assert(vad_.get()); 335 vad_->Disable(); 336 } 337 338 bool NetEqImpl::GetPlayoutTimestamp(uint32_t* timestamp) { 339 CriticalSectionScoped lock(crit_sect_.get()); 340 if (first_packet_) { 341 // We don't have a valid RTP timestamp until we have decoded our first 342 // RTP packet. 343 return false; 344 } 345 *timestamp = timestamp_scaler_->ToExternal(playout_timestamp_); 346 return true; 347 } 348 349 int NetEqImpl::LastError() { 350 CriticalSectionScoped lock(crit_sect_.get()); 351 return error_code_; 352 } 353 354 int NetEqImpl::LastDecoderError() { 355 CriticalSectionScoped lock(crit_sect_.get()); 356 return decoder_error_code_; 357 } 358 359 void NetEqImpl::FlushBuffers() { 360 CriticalSectionScoped lock(crit_sect_.get()); 361 LOG_API0(); 362 packet_buffer_->Flush(); 363 assert(sync_buffer_.get()); 364 assert(expand_.get()); 365 sync_buffer_->Flush(); 366 sync_buffer_->set_next_index(sync_buffer_->next_index() - 367 expand_->overlap_length()); 368 // Set to wait for new codec. 369 first_packet_ = true; 370 } 371 372 void NetEqImpl::PacketBufferStatistics(int* current_num_packets, 373 int* max_num_packets) const { 374 CriticalSectionScoped lock(crit_sect_.get()); 375 packet_buffer_->BufferStat(current_num_packets, max_num_packets); 376 } 377 378 int NetEqImpl::DecodedRtpInfo(int* sequence_number, uint32_t* timestamp) const { 379 CriticalSectionScoped lock(crit_sect_.get()); 380 if (decoded_packet_sequence_number_ < 0) 381 return -1; 382 *sequence_number = decoded_packet_sequence_number_; 383 *timestamp = decoded_packet_timestamp_; 384 return 0; 385 } 386 387 void NetEqImpl::SetBackgroundNoiseMode(NetEqBackgroundNoiseMode mode) { 388 CriticalSectionScoped lock(crit_sect_.get()); 389 assert(background_noise_.get()); 390 background_noise_->set_mode(mode); 391 } 392 393 NetEqBackgroundNoiseMode NetEqImpl::BackgroundNoiseMode() const { 394 CriticalSectionScoped lock(crit_sect_.get()); 395 assert(background_noise_.get()); 396 return background_noise_->mode(); 397 } 398 399 const SyncBuffer* NetEqImpl::sync_buffer_for_test() const { 400 CriticalSectionScoped lock(crit_sect_.get()); 401 return sync_buffer_.get(); 402 } 403 404 // Methods below this line are private. 405 406 int NetEqImpl::InsertPacketInternal(const WebRtcRTPHeader& rtp_header, 407 const uint8_t* payload, 408 int length_bytes, 409 uint32_t receive_timestamp, 410 bool is_sync_packet) { 411 if (!payload) { 412 LOG_F(LS_ERROR) << "payload == NULL"; 413 return kInvalidPointer; 414 } 415 // Sanity checks for sync-packets. 416 if (is_sync_packet) { 417 if (decoder_database_->IsDtmf(rtp_header.header.payloadType) || 418 decoder_database_->IsRed(rtp_header.header.payloadType) || 419 decoder_database_->IsComfortNoise(rtp_header.header.payloadType)) { 420 LOG_F(LS_ERROR) << "Sync-packet with an unacceptable payload type " 421 << rtp_header.header.payloadType; 422 return kSyncPacketNotAccepted; 423 } 424 if (first_packet_ || 425 rtp_header.header.payloadType != current_rtp_payload_type_ || 426 rtp_header.header.ssrc != ssrc_) { 427 // Even if |current_rtp_payload_type_| is 0xFF, sync-packet isn't 428 // accepted. 429 LOG_F(LS_ERROR) << "Changing codec, SSRC or first packet " 430 "with sync-packet."; 431 return kSyncPacketNotAccepted; 432 } 433 } 434 PacketList packet_list; 435 RTPHeader main_header; 436 { 437 // Convert to Packet. 438 // Create |packet| within this separate scope, since it should not be used 439 // directly once it's been inserted in the packet list. This way, |packet| 440 // is not defined outside of this block. 441 Packet* packet = new Packet; 442 packet->header.markerBit = false; 443 packet->header.payloadType = rtp_header.header.payloadType; 444 packet->header.sequenceNumber = rtp_header.header.sequenceNumber; 445 packet->header.timestamp = rtp_header.header.timestamp; 446 packet->header.ssrc = rtp_header.header.ssrc; 447 packet->header.numCSRCs = 0; 448 packet->payload_length = length_bytes; 449 packet->primary = true; 450 packet->waiting_time = 0; 451 packet->payload = new uint8_t[packet->payload_length]; 452 packet->sync_packet = is_sync_packet; 453 if (!packet->payload) { 454 LOG_F(LS_ERROR) << "Payload pointer is NULL."; 455 } 456 assert(payload); // Already checked above. 457 memcpy(packet->payload, payload, packet->payload_length); 458 // Insert packet in a packet list. 459 packet_list.push_back(packet); 460 // Save main payloads header for later. 461 memcpy(&main_header, &packet->header, sizeof(main_header)); 462 } 463 464 bool update_sample_rate_and_channels = false; 465 // Reinitialize NetEq if it's needed (changed SSRC or first call). 466 if ((main_header.ssrc != ssrc_) || first_packet_) { 467 rtcp_.Init(main_header.sequenceNumber); 468 first_packet_ = false; 469 470 // Flush the packet buffer and DTMF buffer. 471 packet_buffer_->Flush(); 472 dtmf_buffer_->Flush(); 473 474 // Store new SSRC. 475 ssrc_ = main_header.ssrc; 476 477 // Update audio buffer timestamp. 478 sync_buffer_->IncreaseEndTimestamp(main_header.timestamp - timestamp_); 479 480 // Update codecs. 481 timestamp_ = main_header.timestamp; 482 current_rtp_payload_type_ = main_header.payloadType; 483 484 // Set MCU to update codec on next SignalMCU call. 485 new_codec_ = true; 486 487 // Reset timestamp scaling. 488 timestamp_scaler_->Reset(); 489 490 // Triger an update of sampling rate and the number of channels. 491 update_sample_rate_and_channels = true; 492 } 493 494 // Update RTCP statistics, only for regular packets. 495 if (!is_sync_packet) 496 rtcp_.Update(main_header, receive_timestamp); 497 498 // Check for RED payload type, and separate payloads into several packets. 499 if (decoder_database_->IsRed(main_header.payloadType)) { 500 assert(!is_sync_packet); // We had a sanity check for this. 501 if (payload_splitter_->SplitRed(&packet_list) != PayloadSplitter::kOK) { 502 LOG_FERR1(LS_WARNING, SplitRed, packet_list.size()); 503 PacketBuffer::DeleteAllPackets(&packet_list); 504 return kRedundancySplitError; 505 } 506 // Only accept a few RED payloads of the same type as the main data, 507 // DTMF events and CNG. 508 payload_splitter_->CheckRedPayloads(&packet_list, *decoder_database_); 509 // Update the stored main payload header since the main payload has now 510 // changed. 511 memcpy(&main_header, &packet_list.front()->header, sizeof(main_header)); 512 } 513 514 // Check payload types. 515 if (decoder_database_->CheckPayloadTypes(packet_list) == 516 DecoderDatabase::kDecoderNotFound) { 517 LOG_FERR1(LS_WARNING, CheckPayloadTypes, packet_list.size()); 518 PacketBuffer::DeleteAllPackets(&packet_list); 519 return kUnknownRtpPayloadType; 520 } 521 522 // Scale timestamp to internal domain (only for some codecs). 523 timestamp_scaler_->ToInternal(&packet_list); 524 525 // Process DTMF payloads. Cycle through the list of packets, and pick out any 526 // DTMF payloads found. 527 PacketList::iterator it = packet_list.begin(); 528 while (it != packet_list.end()) { 529 Packet* current_packet = (*it); 530 assert(current_packet); 531 assert(current_packet->payload); 532 if (decoder_database_->IsDtmf(current_packet->header.payloadType)) { 533 assert(!current_packet->sync_packet); // We had a sanity check for this. 534 DtmfEvent event; 535 int ret = DtmfBuffer::ParseEvent( 536 current_packet->header.timestamp, 537 current_packet->payload, 538 current_packet->payload_length, 539 &event); 540 if (ret != DtmfBuffer::kOK) { 541 LOG_FERR2(LS_WARNING, ParseEvent, ret, 542 current_packet->payload_length); 543 PacketBuffer::DeleteAllPackets(&packet_list); 544 return kDtmfParsingError; 545 } 546 if (dtmf_buffer_->InsertEvent(event) != DtmfBuffer::kOK) { 547 LOG_FERR0(LS_WARNING, InsertEvent); 548 PacketBuffer::DeleteAllPackets(&packet_list); 549 return kDtmfInsertError; 550 } 551 // TODO(hlundin): Let the destructor of Packet handle the payload. 552 delete [] current_packet->payload; 553 delete current_packet; 554 it = packet_list.erase(it); 555 } else { 556 ++it; 557 } 558 } 559 560 // Check for FEC in packets, and separate payloads into several packets. 561 int ret = payload_splitter_->SplitFec(&packet_list, decoder_database_.get()); 562 if (ret != PayloadSplitter::kOK) { 563 LOG_FERR1(LS_WARNING, SplitFec, packet_list.size()); 564 PacketBuffer::DeleteAllPackets(&packet_list); 565 switch (ret) { 566 case PayloadSplitter::kUnknownPayloadType: 567 return kUnknownRtpPayloadType; 568 default: 569 return kOtherError; 570 } 571 } 572 573 // Split payloads into smaller chunks. This also verifies that all payloads 574 // are of a known payload type. SplitAudio() method is protected against 575 // sync-packets. 576 ret = payload_splitter_->SplitAudio(&packet_list, *decoder_database_); 577 if (ret != PayloadSplitter::kOK) { 578 LOG_FERR1(LS_WARNING, SplitAudio, packet_list.size()); 579 PacketBuffer::DeleteAllPackets(&packet_list); 580 switch (ret) { 581 case PayloadSplitter::kUnknownPayloadType: 582 return kUnknownRtpPayloadType; 583 case PayloadSplitter::kFrameSplitError: 584 return kFrameSplitError; 585 default: 586 return kOtherError; 587 } 588 } 589 590 // Update bandwidth estimate, if the packet is not sync-packet. 591 if (!packet_list.empty() && !packet_list.front()->sync_packet) { 592 // The list can be empty here if we got nothing but DTMF payloads. 593 AudioDecoder* decoder = 594 decoder_database_->GetDecoder(main_header.payloadType); 595 assert(decoder); // Should always get a valid object, since we have 596 // already checked that the payload types are known. 597 decoder->IncomingPacket(packet_list.front()->payload, 598 packet_list.front()->payload_length, 599 packet_list.front()->header.sequenceNumber, 600 packet_list.front()->header.timestamp, 601 receive_timestamp); 602 } 603 604 // Insert packets in buffer. 605 int temp_bufsize = packet_buffer_->NumPacketsInBuffer(); 606 ret = packet_buffer_->InsertPacketList( 607 &packet_list, 608 *decoder_database_, 609 ¤t_rtp_payload_type_, 610 ¤t_cng_rtp_payload_type_); 611 if (ret == PacketBuffer::kFlushed) { 612 // Reset DSP timestamp etc. if packet buffer flushed. 613 new_codec_ = true; 614 update_sample_rate_and_channels = true; 615 LOG_F(LS_WARNING) << "Packet buffer flushed"; 616 } else if (ret != PacketBuffer::kOK) { 617 LOG_FERR1(LS_WARNING, InsertPacketList, packet_list.size()); 618 PacketBuffer::DeleteAllPackets(&packet_list); 619 return kOtherError; 620 } 621 if (current_rtp_payload_type_ != 0xFF) { 622 const DecoderDatabase::DecoderInfo* dec_info = 623 decoder_database_->GetDecoderInfo(current_rtp_payload_type_); 624 if (!dec_info) { 625 assert(false); // Already checked that the payload type is known. 626 } 627 } 628 629 if (update_sample_rate_and_channels && !packet_buffer_->Empty()) { 630 // We do not use |current_rtp_payload_type_| to |set payload_type|, but 631 // get the next RTP header from |packet_buffer_| to obtain the payload type. 632 // The reason for it is the following corner case. If NetEq receives a 633 // CNG packet with a sample rate different than the current CNG then it 634 // flushes its buffer, assuming send codec must have been changed. However, 635 // payload type of the hypothetically new send codec is not known. 636 const RTPHeader* rtp_header = packet_buffer_->NextRtpHeader(); 637 assert(rtp_header); 638 int payload_type = rtp_header->payloadType; 639 AudioDecoder* decoder = decoder_database_->GetDecoder(payload_type); 640 assert(decoder); // Payloads are already checked to be valid. 641 const DecoderDatabase::DecoderInfo* decoder_info = 642 decoder_database_->GetDecoderInfo(payload_type); 643 assert(decoder_info); 644 if (decoder_info->fs_hz != fs_hz_ || 645 decoder->channels() != algorithm_buffer_->Channels()) 646 SetSampleRateAndChannels(decoder_info->fs_hz, decoder->channels()); 647 } 648 649 // TODO(hlundin): Move this code to DelayManager class. 650 const DecoderDatabase::DecoderInfo* dec_info = 651 decoder_database_->GetDecoderInfo(main_header.payloadType); 652 assert(dec_info); // Already checked that the payload type is known. 653 delay_manager_->LastDecoderType(dec_info->codec_type); 654 if (delay_manager_->last_pack_cng_or_dtmf() == 0) { 655 // Calculate the total speech length carried in each packet. 656 temp_bufsize = packet_buffer_->NumPacketsInBuffer() - temp_bufsize; 657 temp_bufsize *= decoder_frame_length_; 658 659 if ((temp_bufsize > 0) && 660 (temp_bufsize != decision_logic_->packet_length_samples())) { 661 decision_logic_->set_packet_length_samples(temp_bufsize); 662 delay_manager_->SetPacketAudioLength((1000 * temp_bufsize) / fs_hz_); 663 } 664 665 // Update statistics. 666 if ((int32_t) (main_header.timestamp - timestamp_) >= 0 && 667 !new_codec_) { 668 // Only update statistics if incoming packet is not older than last played 669 // out packet, and if new codec flag is not set. 670 delay_manager_->Update(main_header.sequenceNumber, main_header.timestamp, 671 fs_hz_); 672 } 673 } else if (delay_manager_->last_pack_cng_or_dtmf() == -1) { 674 // This is first "normal" packet after CNG or DTMF. 675 // Reset packet time counter and measure time until next packet, 676 // but don't update statistics. 677 delay_manager_->set_last_pack_cng_or_dtmf(0); 678 delay_manager_->ResetPacketIatCount(); 679 } 680 return 0; 681 } 682 683 int NetEqImpl::GetAudioInternal(size_t max_length, int16_t* output, 684 int* samples_per_channel, int* num_channels) { 685 PacketList packet_list; 686 DtmfEvent dtmf_event; 687 Operations operation; 688 bool play_dtmf; 689 int return_value = GetDecision(&operation, &packet_list, &dtmf_event, 690 &play_dtmf); 691 if (return_value != 0) { 692 LOG_FERR1(LS_WARNING, GetDecision, return_value); 693 assert(false); 694 last_mode_ = kModeError; 695 return return_value; 696 } 697 LOG(LS_VERBOSE) << "GetDecision returned operation=" << operation << 698 " and " << packet_list.size() << " packet(s)"; 699 700 AudioDecoder::SpeechType speech_type; 701 int length = 0; 702 int decode_return_value = Decode(&packet_list, &operation, 703 &length, &speech_type); 704 705 assert(vad_.get()); 706 bool sid_frame_available = 707 (operation == kRfc3389Cng && !packet_list.empty()); 708 vad_->Update(decoded_buffer_.get(), length, speech_type, 709 sid_frame_available, fs_hz_); 710 711 algorithm_buffer_->Clear(); 712 switch (operation) { 713 case kNormal: { 714 DoNormal(decoded_buffer_.get(), length, speech_type, play_dtmf); 715 break; 716 } 717 case kMerge: { 718 DoMerge(decoded_buffer_.get(), length, speech_type, play_dtmf); 719 break; 720 } 721 case kExpand: { 722 return_value = DoExpand(play_dtmf); 723 break; 724 } 725 case kAccelerate: { 726 return_value = DoAccelerate(decoded_buffer_.get(), length, speech_type, 727 play_dtmf); 728 break; 729 } 730 case kPreemptiveExpand: { 731 return_value = DoPreemptiveExpand(decoded_buffer_.get(), length, 732 speech_type, play_dtmf); 733 break; 734 } 735 case kRfc3389Cng: 736 case kRfc3389CngNoPacket: { 737 return_value = DoRfc3389Cng(&packet_list, play_dtmf); 738 break; 739 } 740 case kCodecInternalCng: { 741 // This handles the case when there is no transmission and the decoder 742 // should produce internal comfort noise. 743 // TODO(hlundin): Write test for codec-internal CNG. 744 DoCodecInternalCng(); 745 break; 746 } 747 case kDtmf: { 748 // TODO(hlundin): Write test for this. 749 return_value = DoDtmf(dtmf_event, &play_dtmf); 750 break; 751 } 752 case kAlternativePlc: { 753 // TODO(hlundin): Write test for this. 754 DoAlternativePlc(false); 755 break; 756 } 757 case kAlternativePlcIncreaseTimestamp: { 758 // TODO(hlundin): Write test for this. 759 DoAlternativePlc(true); 760 break; 761 } 762 case kAudioRepetitionIncreaseTimestamp: { 763 // TODO(hlundin): Write test for this. 764 sync_buffer_->IncreaseEndTimestamp(output_size_samples_); 765 // Skipping break on purpose. Execution should move on into the 766 // next case. 767 } 768 case kAudioRepetition: { 769 // TODO(hlundin): Write test for this. 770 // Copy last |output_size_samples_| from |sync_buffer_| to 771 // |algorithm_buffer|. 772 algorithm_buffer_->PushBackFromIndex( 773 *sync_buffer_, sync_buffer_->Size() - output_size_samples_); 774 expand_->Reset(); 775 break; 776 } 777 case kUndefined: { 778 LOG_F(LS_ERROR) << "Invalid operation kUndefined."; 779 assert(false); // This should not happen. 780 last_mode_ = kModeError; 781 return kInvalidOperation; 782 } 783 } // End of switch. 784 if (return_value < 0) { 785 return return_value; 786 } 787 788 if (last_mode_ != kModeRfc3389Cng) { 789 comfort_noise_->Reset(); 790 } 791 792 // Copy from |algorithm_buffer| to |sync_buffer_|. 793 sync_buffer_->PushBack(*algorithm_buffer_); 794 795 // Extract data from |sync_buffer_| to |output|. 796 size_t num_output_samples_per_channel = output_size_samples_; 797 size_t num_output_samples = output_size_samples_ * sync_buffer_->Channels(); 798 if (num_output_samples > max_length) { 799 LOG(LS_WARNING) << "Output array is too short. " << max_length << " < " << 800 output_size_samples_ << " * " << sync_buffer_->Channels(); 801 num_output_samples = max_length; 802 num_output_samples_per_channel = static_cast<int>( 803 max_length / sync_buffer_->Channels()); 804 } 805 int samples_from_sync = static_cast<int>( 806 sync_buffer_->GetNextAudioInterleaved(num_output_samples_per_channel, 807 output)); 808 *num_channels = static_cast<int>(sync_buffer_->Channels()); 809 LOG(LS_VERBOSE) << "Sync buffer (" << *num_channels << " channel(s)):" << 810 " insert " << algorithm_buffer_->Size() << " samples, extract " << 811 samples_from_sync << " samples"; 812 if (samples_from_sync != output_size_samples_) { 813 LOG_F(LS_ERROR) << "samples_from_sync != output_size_samples_"; 814 // TODO(minyue): treatment of under-run, filling zeros 815 memset(output, 0, num_output_samples * sizeof(int16_t)); 816 *samples_per_channel = output_size_samples_; 817 return kSampleUnderrun; 818 } 819 *samples_per_channel = output_size_samples_; 820 821 // Should always have overlap samples left in the |sync_buffer_|. 822 assert(sync_buffer_->FutureLength() >= expand_->overlap_length()); 823 824 if (play_dtmf) { 825 return_value = DtmfOverdub(dtmf_event, sync_buffer_->Channels(), output); 826 } 827 828 // Update the background noise parameters if last operation wrote data 829 // straight from the decoder to the |sync_buffer_|. That is, none of the 830 // operations that modify the signal can be followed by a parameter update. 831 if ((last_mode_ == kModeNormal) || 832 (last_mode_ == kModeAccelerateFail) || 833 (last_mode_ == kModePreemptiveExpandFail) || 834 (last_mode_ == kModeRfc3389Cng) || 835 (last_mode_ == kModeCodecInternalCng)) { 836 background_noise_->Update(*sync_buffer_, *vad_.get()); 837 } 838 839 if (operation == kDtmf) { 840 // DTMF data was written the end of |sync_buffer_|. 841 // Update index to end of DTMF data in |sync_buffer_|. 842 sync_buffer_->set_dtmf_index(sync_buffer_->Size()); 843 } 844 845 if (last_mode_ != kModeExpand) { 846 // If last operation was not expand, calculate the |playout_timestamp_| from 847 // the |sync_buffer_|. However, do not update the |playout_timestamp_| if it 848 // would be moved "backwards". 849 uint32_t temp_timestamp = sync_buffer_->end_timestamp() - 850 static_cast<uint32_t>(sync_buffer_->FutureLength()); 851 if (static_cast<int32_t>(temp_timestamp - playout_timestamp_) > 0) { 852 playout_timestamp_ = temp_timestamp; 853 } 854 } else { 855 // Use dead reckoning to estimate the |playout_timestamp_|. 856 playout_timestamp_ += output_size_samples_; 857 } 858 859 if (decode_return_value) return decode_return_value; 860 return return_value; 861 } 862 863 int NetEqImpl::GetDecision(Operations* operation, 864 PacketList* packet_list, 865 DtmfEvent* dtmf_event, 866 bool* play_dtmf) { 867 // Initialize output variables. 868 *play_dtmf = false; 869 *operation = kUndefined; 870 871 // Increment time counters. 872 packet_buffer_->IncrementWaitingTimes(); 873 stats_.IncreaseCounter(output_size_samples_, fs_hz_); 874 875 assert(sync_buffer_.get()); 876 uint32_t end_timestamp = sync_buffer_->end_timestamp(); 877 if (!new_codec_) { 878 packet_buffer_->DiscardOldPackets(end_timestamp); 879 } 880 const RTPHeader* header = packet_buffer_->NextRtpHeader(); 881 882 if (decision_logic_->CngRfc3389On() || last_mode_ == kModeRfc3389Cng) { 883 // Because of timestamp peculiarities, we have to "manually" disallow using 884 // a CNG packet with the same timestamp as the one that was last played. 885 // This can happen when using redundancy and will cause the timing to shift. 886 while (header && decoder_database_->IsComfortNoise(header->payloadType) && 887 (end_timestamp >= header->timestamp || 888 end_timestamp + decision_logic_->generated_noise_samples() > 889 header->timestamp)) { 890 // Don't use this packet, discard it. 891 if (packet_buffer_->DiscardNextPacket() != PacketBuffer::kOK) { 892 assert(false); // Must be ok by design. 893 } 894 // Check buffer again. 895 if (!new_codec_) { 896 packet_buffer_->DiscardOldPackets(end_timestamp); 897 } 898 header = packet_buffer_->NextRtpHeader(); 899 } 900 } 901 902 assert(expand_.get()); 903 const int samples_left = static_cast<int>(sync_buffer_->FutureLength() - 904 expand_->overlap_length()); 905 if (last_mode_ == kModeAccelerateSuccess || 906 last_mode_ == kModeAccelerateLowEnergy || 907 last_mode_ == kModePreemptiveExpandSuccess || 908 last_mode_ == kModePreemptiveExpandLowEnergy) { 909 // Subtract (samples_left + output_size_samples_) from sampleMemory. 910 decision_logic_->AddSampleMemory(-(samples_left + output_size_samples_)); 911 } 912 913 // Check if it is time to play a DTMF event. 914 if (dtmf_buffer_->GetEvent(end_timestamp + 915 decision_logic_->generated_noise_samples(), 916 dtmf_event)) { 917 *play_dtmf = true; 918 } 919 920 // Get instruction. 921 assert(sync_buffer_.get()); 922 assert(expand_.get()); 923 *operation = decision_logic_->GetDecision(*sync_buffer_, 924 *expand_, 925 decoder_frame_length_, 926 header, 927 last_mode_, 928 *play_dtmf, 929 &reset_decoder_); 930 931 // Check if we already have enough samples in the |sync_buffer_|. If so, 932 // change decision to normal, unless the decision was merge, accelerate, or 933 // preemptive expand. 934 if (samples_left >= output_size_samples_ && 935 *operation != kMerge && 936 *operation != kAccelerate && 937 *operation != kPreemptiveExpand) { 938 *operation = kNormal; 939 return 0; 940 } 941 942 decision_logic_->ExpandDecision(*operation); 943 944 // Check conditions for reset. 945 if (new_codec_ || *operation == kUndefined) { 946 // The only valid reason to get kUndefined is that new_codec_ is set. 947 assert(new_codec_); 948 if (*play_dtmf && !header) { 949 timestamp_ = dtmf_event->timestamp; 950 } else { 951 assert(header); 952 if (!header) { 953 LOG_F(LS_ERROR) << "Packet missing where it shouldn't."; 954 return -1; 955 } 956 timestamp_ = header->timestamp; 957 if (*operation == kRfc3389CngNoPacket 958 #ifndef LEGACY_BITEXACT 959 // Without this check, it can happen that a non-CNG packet is sent to 960 // the CNG decoder as if it was a SID frame. This is clearly a bug, 961 // but is kept for now to maintain bit-exactness with the test 962 // vectors. 963 && decoder_database_->IsComfortNoise(header->payloadType) 964 #endif 965 ) { 966 // Change decision to CNG packet, since we do have a CNG packet, but it 967 // was considered too early to use. Now, use it anyway. 968 *operation = kRfc3389Cng; 969 } else if (*operation != kRfc3389Cng) { 970 *operation = kNormal; 971 } 972 } 973 // Adjust |sync_buffer_| timestamp before setting |end_timestamp| to the 974 // new value. 975 sync_buffer_->IncreaseEndTimestamp(timestamp_ - end_timestamp); 976 end_timestamp = timestamp_; 977 new_codec_ = false; 978 decision_logic_->SoftReset(); 979 buffer_level_filter_->Reset(); 980 delay_manager_->Reset(); 981 stats_.ResetMcu(); 982 } 983 984 int required_samples = output_size_samples_; 985 const int samples_10_ms = 80 * fs_mult_; 986 const int samples_20_ms = 2 * samples_10_ms; 987 const int samples_30_ms = 3 * samples_10_ms; 988 989 switch (*operation) { 990 case kExpand: { 991 timestamp_ = end_timestamp; 992 return 0; 993 } 994 case kRfc3389CngNoPacket: 995 case kCodecInternalCng: { 996 return 0; 997 } 998 case kDtmf: { 999 // TODO(hlundin): Write test for this. 1000 // Update timestamp. 1001 timestamp_ = end_timestamp; 1002 if (decision_logic_->generated_noise_samples() > 0 && 1003 last_mode_ != kModeDtmf) { 1004 // Make a jump in timestamp due to the recently played comfort noise. 1005 uint32_t timestamp_jump = decision_logic_->generated_noise_samples(); 1006 sync_buffer_->IncreaseEndTimestamp(timestamp_jump); 1007 timestamp_ += timestamp_jump; 1008 } 1009 decision_logic_->set_generated_noise_samples(0); 1010 return 0; 1011 } 1012 case kAccelerate: { 1013 // In order to do a accelerate we need at least 30 ms of audio data. 1014 if (samples_left >= samples_30_ms) { 1015 // Already have enough data, so we do not need to extract any more. 1016 decision_logic_->set_sample_memory(samples_left); 1017 decision_logic_->set_prev_time_scale(true); 1018 return 0; 1019 } else if (samples_left >= samples_10_ms && 1020 decoder_frame_length_ >= samples_30_ms) { 1021 // Avoid decoding more data as it might overflow the playout buffer. 1022 *operation = kNormal; 1023 return 0; 1024 } else if (samples_left < samples_20_ms && 1025 decoder_frame_length_ < samples_30_ms) { 1026 // Build up decoded data by decoding at least 20 ms of audio data. Do 1027 // not perform accelerate yet, but wait until we only need to do one 1028 // decoding. 1029 required_samples = 2 * output_size_samples_; 1030 *operation = kNormal; 1031 } 1032 // If none of the above is true, we have one of two possible situations: 1033 // (1) 20 ms <= samples_left < 30 ms and decoder_frame_length_ < 30 ms; or 1034 // (2) samples_left < 10 ms and decoder_frame_length_ >= 30 ms. 1035 // In either case, we move on with the accelerate decision, and decode one 1036 // frame now. 1037 break; 1038 } 1039 case kPreemptiveExpand: { 1040 // In order to do a preemptive expand we need at least 30 ms of decoded 1041 // audio data. 1042 if ((samples_left >= samples_30_ms) || 1043 (samples_left >= samples_10_ms && 1044 decoder_frame_length_ >= samples_30_ms)) { 1045 // Already have enough data, so we do not need to extract any more. 1046 // Or, avoid decoding more data as it might overflow the playout buffer. 1047 // Still try preemptive expand, though. 1048 decision_logic_->set_sample_memory(samples_left); 1049 decision_logic_->set_prev_time_scale(true); 1050 return 0; 1051 } 1052 if (samples_left < samples_20_ms && 1053 decoder_frame_length_ < samples_30_ms) { 1054 // Build up decoded data by decoding at least 20 ms of audio data. 1055 // Still try to perform preemptive expand. 1056 required_samples = 2 * output_size_samples_; 1057 } 1058 // Move on with the preemptive expand decision. 1059 break; 1060 } 1061 case kMerge: { 1062 required_samples = 1063 std::max(merge_->RequiredFutureSamples(), required_samples); 1064 break; 1065 } 1066 default: { 1067 // Do nothing. 1068 } 1069 } 1070 1071 // Get packets from buffer. 1072 int extracted_samples = 0; 1073 if (header && 1074 *operation != kAlternativePlc && 1075 *operation != kAlternativePlcIncreaseTimestamp && 1076 *operation != kAudioRepetition && 1077 *operation != kAudioRepetitionIncreaseTimestamp) { 1078 sync_buffer_->IncreaseEndTimestamp(header->timestamp - end_timestamp); 1079 if (decision_logic_->CngOff()) { 1080 // Adjustment of timestamp only corresponds to an actual packet loss 1081 // if comfort noise is not played. If comfort noise was just played, 1082 // this adjustment of timestamp is only done to get back in sync with the 1083 // stream timestamp; no loss to report. 1084 stats_.LostSamples(header->timestamp - end_timestamp); 1085 } 1086 1087 if (*operation != kRfc3389Cng) { 1088 // We are about to decode and use a non-CNG packet. 1089 decision_logic_->SetCngOff(); 1090 } 1091 // Reset CNG timestamp as a new packet will be delivered. 1092 // (Also if this is a CNG packet, since playedOutTS is updated.) 1093 decision_logic_->set_generated_noise_samples(0); 1094 1095 extracted_samples = ExtractPackets(required_samples, packet_list); 1096 if (extracted_samples < 0) { 1097 LOG_F(LS_WARNING) << "Failed to extract packets from buffer."; 1098 return kPacketBufferCorruption; 1099 } 1100 } 1101 1102 if (*operation == kAccelerate || 1103 *operation == kPreemptiveExpand) { 1104 decision_logic_->set_sample_memory(samples_left + extracted_samples); 1105 decision_logic_->set_prev_time_scale(true); 1106 } 1107 1108 if (*operation == kAccelerate) { 1109 // Check that we have enough data (30ms) to do accelerate. 1110 if (extracted_samples + samples_left < samples_30_ms) { 1111 // TODO(hlundin): Write test for this. 1112 // Not enough, do normal operation instead. 1113 *operation = kNormal; 1114 } 1115 } 1116 1117 timestamp_ = end_timestamp; 1118 return 0; 1119 } 1120 1121 int NetEqImpl::Decode(PacketList* packet_list, Operations* operation, 1122 int* decoded_length, 1123 AudioDecoder::SpeechType* speech_type) { 1124 *speech_type = AudioDecoder::kSpeech; 1125 AudioDecoder* decoder = NULL; 1126 if (!packet_list->empty()) { 1127 const Packet* packet = packet_list->front(); 1128 int payload_type = packet->header.payloadType; 1129 if (!decoder_database_->IsComfortNoise(payload_type)) { 1130 decoder = decoder_database_->GetDecoder(payload_type); 1131 assert(decoder); 1132 if (!decoder) { 1133 LOG_FERR1(LS_WARNING, GetDecoder, payload_type); 1134 PacketBuffer::DeleteAllPackets(packet_list); 1135 return kDecoderNotFound; 1136 } 1137 bool decoder_changed; 1138 decoder_database_->SetActiveDecoder(payload_type, &decoder_changed); 1139 if (decoder_changed) { 1140 // We have a new decoder. Re-init some values. 1141 const DecoderDatabase::DecoderInfo* decoder_info = decoder_database_ 1142 ->GetDecoderInfo(payload_type); 1143 assert(decoder_info); 1144 if (!decoder_info) { 1145 LOG_FERR1(LS_WARNING, GetDecoderInfo, payload_type); 1146 PacketBuffer::DeleteAllPackets(packet_list); 1147 return kDecoderNotFound; 1148 } 1149 // If sampling rate or number of channels has changed, we need to make 1150 // a reset. 1151 if (decoder_info->fs_hz != fs_hz_ || 1152 decoder->channels() != algorithm_buffer_->Channels()) { 1153 // TODO(tlegrand): Add unittest to cover this event. 1154 SetSampleRateAndChannels(decoder_info->fs_hz, decoder->channels()); 1155 } 1156 sync_buffer_->set_end_timestamp(timestamp_); 1157 playout_timestamp_ = timestamp_; 1158 } 1159 } 1160 } 1161 1162 if (reset_decoder_) { 1163 // TODO(hlundin): Write test for this. 1164 // Reset decoder. 1165 if (decoder) { 1166 decoder->Init(); 1167 } 1168 // Reset comfort noise decoder. 1169 AudioDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder(); 1170 if (cng_decoder) { 1171 cng_decoder->Init(); 1172 } 1173 reset_decoder_ = false; 1174 } 1175 1176 #ifdef LEGACY_BITEXACT 1177 // Due to a bug in old SignalMCU, it could happen that CNG operation was 1178 // decided, but a speech packet was provided. The speech packet will be used 1179 // to update the comfort noise decoder, as if it was a SID frame, which is 1180 // clearly wrong. 1181 if (*operation == kRfc3389Cng) { 1182 return 0; 1183 } 1184 #endif 1185 1186 *decoded_length = 0; 1187 // Update codec-internal PLC state. 1188 if ((*operation == kMerge) && decoder && decoder->HasDecodePlc()) { 1189 decoder->DecodePlc(1, &decoded_buffer_[*decoded_length]); 1190 } 1191 1192 int return_value = DecodeLoop(packet_list, operation, decoder, 1193 decoded_length, speech_type); 1194 1195 if (*decoded_length < 0) { 1196 // Error returned from the decoder. 1197 *decoded_length = 0; 1198 sync_buffer_->IncreaseEndTimestamp(decoder_frame_length_); 1199 int error_code = 0; 1200 if (decoder) 1201 error_code = decoder->ErrorCode(); 1202 if (error_code != 0) { 1203 // Got some error code from the decoder. 1204 decoder_error_code_ = error_code; 1205 return_value = kDecoderErrorCode; 1206 } else { 1207 // Decoder does not implement error codes. Return generic error. 1208 return_value = kOtherDecoderError; 1209 } 1210 LOG_FERR2(LS_WARNING, DecodeLoop, error_code, packet_list->size()); 1211 *operation = kExpand; // Do expansion to get data instead. 1212 } 1213 if (*speech_type != AudioDecoder::kComfortNoise) { 1214 // Don't increment timestamp if codec returned CNG speech type 1215 // since in this case, the we will increment the CNGplayedTS counter. 1216 // Increase with number of samples per channel. 1217 assert(*decoded_length == 0 || 1218 (decoder && decoder->channels() == sync_buffer_->Channels())); 1219 sync_buffer_->IncreaseEndTimestamp( 1220 *decoded_length / static_cast<int>(sync_buffer_->Channels())); 1221 } 1222 return return_value; 1223 } 1224 1225 int NetEqImpl::DecodeLoop(PacketList* packet_list, Operations* operation, 1226 AudioDecoder* decoder, int* decoded_length, 1227 AudioDecoder::SpeechType* speech_type) { 1228 Packet* packet = NULL; 1229 if (!packet_list->empty()) { 1230 packet = packet_list->front(); 1231 } 1232 // Do decoding. 1233 while (packet && 1234 !decoder_database_->IsComfortNoise(packet->header.payloadType)) { 1235 assert(decoder); // At this point, we must have a decoder object. 1236 // The number of channels in the |sync_buffer_| should be the same as the 1237 // number decoder channels. 1238 assert(sync_buffer_->Channels() == decoder->channels()); 1239 assert(decoded_buffer_length_ >= kMaxFrameSize * decoder->channels()); 1240 assert(*operation == kNormal || *operation == kAccelerate || 1241 *operation == kMerge || *operation == kPreemptiveExpand); 1242 packet_list->pop_front(); 1243 int payload_length = packet->payload_length; 1244 int16_t decode_length; 1245 if (packet->sync_packet) { 1246 // Decode to silence with the same frame size as the last decode. 1247 LOG(LS_VERBOSE) << "Decoding sync-packet: " << 1248 " ts=" << packet->header.timestamp << 1249 ", sn=" << packet->header.sequenceNumber << 1250 ", pt=" << static_cast<int>(packet->header.payloadType) << 1251 ", ssrc=" << packet->header.ssrc << 1252 ", len=" << packet->payload_length; 1253 memset(&decoded_buffer_[*decoded_length], 0, decoder_frame_length_ * 1254 decoder->channels() * sizeof(decoded_buffer_[0])); 1255 decode_length = decoder_frame_length_; 1256 } else if (!packet->primary) { 1257 // This is a redundant payload; call the special decoder method. 1258 LOG(LS_VERBOSE) << "Decoding packet (redundant):" << 1259 " ts=" << packet->header.timestamp << 1260 ", sn=" << packet->header.sequenceNumber << 1261 ", pt=" << static_cast<int>(packet->header.payloadType) << 1262 ", ssrc=" << packet->header.ssrc << 1263 ", len=" << packet->payload_length; 1264 decode_length = decoder->DecodeRedundant( 1265 packet->payload, packet->payload_length, 1266 &decoded_buffer_[*decoded_length], speech_type); 1267 } else { 1268 LOG(LS_VERBOSE) << "Decoding packet: ts=" << packet->header.timestamp << 1269 ", sn=" << packet->header.sequenceNumber << 1270 ", pt=" << static_cast<int>(packet->header.payloadType) << 1271 ", ssrc=" << packet->header.ssrc << 1272 ", len=" << packet->payload_length; 1273 decode_length = decoder->Decode(packet->payload, 1274 packet->payload_length, 1275 &decoded_buffer_[*decoded_length], 1276 speech_type); 1277 } 1278 1279 delete[] packet->payload; 1280 delete packet; 1281 packet = NULL; 1282 if (decode_length > 0) { 1283 *decoded_length += decode_length; 1284 // Update |decoder_frame_length_| with number of samples per channel. 1285 decoder_frame_length_ = decode_length / 1286 static_cast<int>(decoder->channels()); 1287 LOG(LS_VERBOSE) << "Decoded " << decode_length << " samples (" << 1288 decoder->channels() << " channel(s) -> " << decoder_frame_length_ << 1289 " samples per channel)"; 1290 } else if (decode_length < 0) { 1291 // Error. 1292 LOG_FERR2(LS_WARNING, Decode, decode_length, payload_length); 1293 *decoded_length = -1; 1294 PacketBuffer::DeleteAllPackets(packet_list); 1295 break; 1296 } 1297 if (*decoded_length > static_cast<int>(decoded_buffer_length_)) { 1298 // Guard against overflow. 1299 LOG_F(LS_WARNING) << "Decoded too much."; 1300 PacketBuffer::DeleteAllPackets(packet_list); 1301 return kDecodedTooMuch; 1302 } 1303 if (!packet_list->empty()) { 1304 packet = packet_list->front(); 1305 } else { 1306 packet = NULL; 1307 } 1308 } // End of decode loop. 1309 1310 // If the list is not empty at this point, either a decoding error terminated 1311 // the while-loop, or list must hold exactly one CNG packet. 1312 assert(packet_list->empty() || *decoded_length < 0 || 1313 (packet_list->size() == 1 && packet && 1314 decoder_database_->IsComfortNoise(packet->header.payloadType))); 1315 return 0; 1316 } 1317 1318 void NetEqImpl::DoNormal(const int16_t* decoded_buffer, size_t decoded_length, 1319 AudioDecoder::SpeechType speech_type, bool play_dtmf) { 1320 assert(normal_.get()); 1321 assert(mute_factor_array_.get()); 1322 normal_->Process(decoded_buffer, decoded_length, last_mode_, 1323 mute_factor_array_.get(), algorithm_buffer_.get()); 1324 if (decoded_length != 0) { 1325 last_mode_ = kModeNormal; 1326 } 1327 1328 // If last packet was decoded as an inband CNG, set mode to CNG instead. 1329 if ((speech_type == AudioDecoder::kComfortNoise) 1330 || ((last_mode_ == kModeCodecInternalCng) 1331 && (decoded_length == 0))) { 1332 // TODO(hlundin): Remove second part of || statement above. 1333 last_mode_ = kModeCodecInternalCng; 1334 } 1335 1336 if (!play_dtmf) { 1337 dtmf_tone_generator_->Reset(); 1338 } 1339 } 1340 1341 void NetEqImpl::DoMerge(int16_t* decoded_buffer, size_t decoded_length, 1342 AudioDecoder::SpeechType speech_type, bool play_dtmf) { 1343 assert(mute_factor_array_.get()); 1344 assert(merge_.get()); 1345 int new_length = merge_->Process(decoded_buffer, decoded_length, 1346 mute_factor_array_.get(), 1347 algorithm_buffer_.get()); 1348 1349 // Update in-call and post-call statistics. 1350 if (expand_->MuteFactor(0) == 0) { 1351 // Expand generates only noise. 1352 stats_.ExpandedNoiseSamples(new_length - static_cast<int>(decoded_length)); 1353 } else { 1354 // Expansion generates more than only noise. 1355 stats_.ExpandedVoiceSamples(new_length - static_cast<int>(decoded_length)); 1356 } 1357 1358 last_mode_ = kModeMerge; 1359 // If last packet was decoded as an inband CNG, set mode to CNG instead. 1360 if (speech_type == AudioDecoder::kComfortNoise) { 1361 last_mode_ = kModeCodecInternalCng; 1362 } 1363 expand_->Reset(); 1364 if (!play_dtmf) { 1365 dtmf_tone_generator_->Reset(); 1366 } 1367 } 1368 1369 int NetEqImpl::DoExpand(bool play_dtmf) { 1370 while ((sync_buffer_->FutureLength() - expand_->overlap_length()) < 1371 static_cast<size_t>(output_size_samples_)) { 1372 algorithm_buffer_->Clear(); 1373 int return_value = expand_->Process(algorithm_buffer_.get()); 1374 int length = static_cast<int>(algorithm_buffer_->Size()); 1375 1376 // Update in-call and post-call statistics. 1377 if (expand_->MuteFactor(0) == 0) { 1378 // Expand operation generates only noise. 1379 stats_.ExpandedNoiseSamples(length); 1380 } else { 1381 // Expand operation generates more than only noise. 1382 stats_.ExpandedVoiceSamples(length); 1383 } 1384 1385 last_mode_ = kModeExpand; 1386 1387 if (return_value < 0) { 1388 return return_value; 1389 } 1390 1391 sync_buffer_->PushBack(*algorithm_buffer_); 1392 algorithm_buffer_->Clear(); 1393 } 1394 if (!play_dtmf) { 1395 dtmf_tone_generator_->Reset(); 1396 } 1397 return 0; 1398 } 1399 1400 int NetEqImpl::DoAccelerate(int16_t* decoded_buffer, size_t decoded_length, 1401 AudioDecoder::SpeechType speech_type, 1402 bool play_dtmf) { 1403 const size_t required_samples = 240 * fs_mult_; // Must have 30 ms. 1404 size_t borrowed_samples_per_channel = 0; 1405 size_t num_channels = algorithm_buffer_->Channels(); 1406 size_t decoded_length_per_channel = decoded_length / num_channels; 1407 if (decoded_length_per_channel < required_samples) { 1408 // Must move data from the |sync_buffer_| in order to get 30 ms. 1409 borrowed_samples_per_channel = static_cast<int>(required_samples - 1410 decoded_length_per_channel); 1411 memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels], 1412 decoded_buffer, 1413 sizeof(int16_t) * decoded_length); 1414 sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel, 1415 decoded_buffer); 1416 decoded_length = required_samples * num_channels; 1417 } 1418 1419 int16_t samples_removed; 1420 Accelerate::ReturnCodes return_code = accelerate_->Process( 1421 decoded_buffer, decoded_length, algorithm_buffer_.get(), 1422 &samples_removed); 1423 stats_.AcceleratedSamples(samples_removed); 1424 switch (return_code) { 1425 case Accelerate::kSuccess: 1426 last_mode_ = kModeAccelerateSuccess; 1427 break; 1428 case Accelerate::kSuccessLowEnergy: 1429 last_mode_ = kModeAccelerateLowEnergy; 1430 break; 1431 case Accelerate::kNoStretch: 1432 last_mode_ = kModeAccelerateFail; 1433 break; 1434 case Accelerate::kError: 1435 // TODO(hlundin): Map to kModeError instead? 1436 last_mode_ = kModeAccelerateFail; 1437 return kAccelerateError; 1438 } 1439 1440 if (borrowed_samples_per_channel > 0) { 1441 // Copy borrowed samples back to the |sync_buffer_|. 1442 size_t length = algorithm_buffer_->Size(); 1443 if (length < borrowed_samples_per_channel) { 1444 // This destroys the beginning of the buffer, but will not cause any 1445 // problems. 1446 sync_buffer_->ReplaceAtIndex(*algorithm_buffer_, 1447 sync_buffer_->Size() - 1448 borrowed_samples_per_channel); 1449 sync_buffer_->PushFrontZeros(borrowed_samples_per_channel - length); 1450 algorithm_buffer_->PopFront(length); 1451 assert(algorithm_buffer_->Empty()); 1452 } else { 1453 sync_buffer_->ReplaceAtIndex(*algorithm_buffer_, 1454 borrowed_samples_per_channel, 1455 sync_buffer_->Size() - 1456 borrowed_samples_per_channel); 1457 algorithm_buffer_->PopFront(borrowed_samples_per_channel); 1458 } 1459 } 1460 1461 // If last packet was decoded as an inband CNG, set mode to CNG instead. 1462 if (speech_type == AudioDecoder::kComfortNoise) { 1463 last_mode_ = kModeCodecInternalCng; 1464 } 1465 if (!play_dtmf) { 1466 dtmf_tone_generator_->Reset(); 1467 } 1468 expand_->Reset(); 1469 return 0; 1470 } 1471 1472 int NetEqImpl::DoPreemptiveExpand(int16_t* decoded_buffer, 1473 size_t decoded_length, 1474 AudioDecoder::SpeechType speech_type, 1475 bool play_dtmf) { 1476 const size_t required_samples = 240 * fs_mult_; // Must have 30 ms. 1477 size_t num_channels = algorithm_buffer_->Channels(); 1478 int borrowed_samples_per_channel = 0; 1479 int old_borrowed_samples_per_channel = 0; 1480 size_t decoded_length_per_channel = decoded_length / num_channels; 1481 if (decoded_length_per_channel < required_samples) { 1482 // Must move data from the |sync_buffer_| in order to get 30 ms. 1483 borrowed_samples_per_channel = static_cast<int>(required_samples - 1484 decoded_length_per_channel); 1485 // Calculate how many of these were already played out. 1486 old_borrowed_samples_per_channel = static_cast<int>( 1487 borrowed_samples_per_channel - sync_buffer_->FutureLength()); 1488 old_borrowed_samples_per_channel = std::max( 1489 0, old_borrowed_samples_per_channel); 1490 memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels], 1491 decoded_buffer, 1492 sizeof(int16_t) * decoded_length); 1493 sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel, 1494 decoded_buffer); 1495 decoded_length = required_samples * num_channels; 1496 } 1497 1498 int16_t samples_added; 1499 PreemptiveExpand::ReturnCodes return_code = preemptive_expand_->Process( 1500 decoded_buffer, static_cast<int>(decoded_length), 1501 old_borrowed_samples_per_channel, 1502 algorithm_buffer_.get(), &samples_added); 1503 stats_.PreemptiveExpandedSamples(samples_added); 1504 switch (return_code) { 1505 case PreemptiveExpand::kSuccess: 1506 last_mode_ = kModePreemptiveExpandSuccess; 1507 break; 1508 case PreemptiveExpand::kSuccessLowEnergy: 1509 last_mode_ = kModePreemptiveExpandLowEnergy; 1510 break; 1511 case PreemptiveExpand::kNoStretch: 1512 last_mode_ = kModePreemptiveExpandFail; 1513 break; 1514 case PreemptiveExpand::kError: 1515 // TODO(hlundin): Map to kModeError instead? 1516 last_mode_ = kModePreemptiveExpandFail; 1517 return kPreemptiveExpandError; 1518 } 1519 1520 if (borrowed_samples_per_channel > 0) { 1521 // Copy borrowed samples back to the |sync_buffer_|. 1522 sync_buffer_->ReplaceAtIndex( 1523 *algorithm_buffer_, borrowed_samples_per_channel, 1524 sync_buffer_->Size() - borrowed_samples_per_channel); 1525 algorithm_buffer_->PopFront(borrowed_samples_per_channel); 1526 } 1527 1528 // If last packet was decoded as an inband CNG, set mode to CNG instead. 1529 if (speech_type == AudioDecoder::kComfortNoise) { 1530 last_mode_ = kModeCodecInternalCng; 1531 } 1532 if (!play_dtmf) { 1533 dtmf_tone_generator_->Reset(); 1534 } 1535 expand_->Reset(); 1536 return 0; 1537 } 1538 1539 int NetEqImpl::DoRfc3389Cng(PacketList* packet_list, bool play_dtmf) { 1540 if (!packet_list->empty()) { 1541 // Must have exactly one SID frame at this point. 1542 assert(packet_list->size() == 1); 1543 Packet* packet = packet_list->front(); 1544 packet_list->pop_front(); 1545 if (!decoder_database_->IsComfortNoise(packet->header.payloadType)) { 1546 #ifdef LEGACY_BITEXACT 1547 // This can happen due to a bug in GetDecision. Change the payload type 1548 // to a CNG type, and move on. Note that this means that we are in fact 1549 // sending a non-CNG payload to the comfort noise decoder for decoding. 1550 // Clearly wrong, but will maintain bit-exactness with legacy. 1551 if (fs_hz_ == 8000) { 1552 packet->header.payloadType = 1553 decoder_database_->GetRtpPayloadType(kDecoderCNGnb); 1554 } else if (fs_hz_ == 16000) { 1555 packet->header.payloadType = 1556 decoder_database_->GetRtpPayloadType(kDecoderCNGwb); 1557 } else if (fs_hz_ == 32000) { 1558 packet->header.payloadType = 1559 decoder_database_->GetRtpPayloadType(kDecoderCNGswb32kHz); 1560 } else if (fs_hz_ == 48000) { 1561 packet->header.payloadType = 1562 decoder_database_->GetRtpPayloadType(kDecoderCNGswb48kHz); 1563 } 1564 assert(decoder_database_->IsComfortNoise(packet->header.payloadType)); 1565 #else 1566 LOG(LS_ERROR) << "Trying to decode non-CNG payload as CNG."; 1567 return kOtherError; 1568 #endif 1569 } 1570 // UpdateParameters() deletes |packet|. 1571 if (comfort_noise_->UpdateParameters(packet) == 1572 ComfortNoise::kInternalError) { 1573 LOG_FERR0(LS_WARNING, UpdateParameters); 1574 algorithm_buffer_->Zeros(output_size_samples_); 1575 return -comfort_noise_->internal_error_code(); 1576 } 1577 } 1578 int cn_return = comfort_noise_->Generate(output_size_samples_, 1579 algorithm_buffer_.get()); 1580 expand_->Reset(); 1581 last_mode_ = kModeRfc3389Cng; 1582 if (!play_dtmf) { 1583 dtmf_tone_generator_->Reset(); 1584 } 1585 if (cn_return == ComfortNoise::kInternalError) { 1586 LOG_FERR1(LS_WARNING, comfort_noise_->Generate, cn_return); 1587 decoder_error_code_ = comfort_noise_->internal_error_code(); 1588 return kComfortNoiseErrorCode; 1589 } else if (cn_return == ComfortNoise::kUnknownPayloadType) { 1590 LOG_FERR1(LS_WARNING, comfort_noise_->Generate, cn_return); 1591 return kUnknownRtpPayloadType; 1592 } 1593 return 0; 1594 } 1595 1596 void NetEqImpl::DoCodecInternalCng() { 1597 int length = 0; 1598 // TODO(hlundin): Will probably need a longer buffer for multi-channel. 1599 int16_t decoded_buffer[kMaxFrameSize]; 1600 AudioDecoder* decoder = decoder_database_->GetActiveDecoder(); 1601 if (decoder) { 1602 const uint8_t* dummy_payload = NULL; 1603 AudioDecoder::SpeechType speech_type; 1604 length = decoder->Decode(dummy_payload, 0, decoded_buffer, &speech_type); 1605 } 1606 assert(mute_factor_array_.get()); 1607 normal_->Process(decoded_buffer, length, last_mode_, mute_factor_array_.get(), 1608 algorithm_buffer_.get()); 1609 last_mode_ = kModeCodecInternalCng; 1610 expand_->Reset(); 1611 } 1612 1613 int NetEqImpl::DoDtmf(const DtmfEvent& dtmf_event, bool* play_dtmf) { 1614 // This block of the code and the block further down, handling |dtmf_switch| 1615 // are commented out. Otherwise playing out-of-band DTMF would fail in VoE 1616 // test, DtmfTest.ManualSuccessfullySendsOutOfBandTelephoneEvents. This is 1617 // equivalent to |dtmf_switch| always be false. 1618 // 1619 // See http://webrtc-codereview.appspot.com/1195004/ for discussion 1620 // On this issue. This change might cause some glitches at the point of 1621 // switch from audio to DTMF. Issue 1545 is filed to track this. 1622 // 1623 // bool dtmf_switch = false; 1624 // if ((last_mode_ != kModeDtmf) && dtmf_tone_generator_->initialized()) { 1625 // // Special case; see below. 1626 // // We must catch this before calling Generate, since |initialized| is 1627 // // modified in that call. 1628 // dtmf_switch = true; 1629 // } 1630 1631 int dtmf_return_value = 0; 1632 if (!dtmf_tone_generator_->initialized()) { 1633 // Initialize if not already done. 1634 dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no, 1635 dtmf_event.volume); 1636 } 1637 1638 if (dtmf_return_value == 0) { 1639 // Generate DTMF signal. 1640 dtmf_return_value = dtmf_tone_generator_->Generate(output_size_samples_, 1641 algorithm_buffer_.get()); 1642 } 1643 1644 if (dtmf_return_value < 0) { 1645 algorithm_buffer_->Zeros(output_size_samples_); 1646 return dtmf_return_value; 1647 } 1648 1649 // if (dtmf_switch) { 1650 // // This is the special case where the previous operation was DTMF 1651 // // overdub, but the current instruction is "regular" DTMF. We must make 1652 // // sure that the DTMF does not have any discontinuities. The first DTMF 1653 // // sample that we generate now must be played out immediately, therefore 1654 // // it must be copied to the speech buffer. 1655 // // TODO(hlundin): This code seems incorrect. (Legacy.) Write test and 1656 // // verify correct operation. 1657 // assert(false); 1658 // // Must generate enough data to replace all of the |sync_buffer_| 1659 // // "future". 1660 // int required_length = sync_buffer_->FutureLength(); 1661 // assert(dtmf_tone_generator_->initialized()); 1662 // dtmf_return_value = dtmf_tone_generator_->Generate(required_length, 1663 // algorithm_buffer_); 1664 // assert((size_t) required_length == algorithm_buffer_->Size()); 1665 // if (dtmf_return_value < 0) { 1666 // algorithm_buffer_->Zeros(output_size_samples_); 1667 // return dtmf_return_value; 1668 // } 1669 // 1670 // // Overwrite the "future" part of the speech buffer with the new DTMF 1671 // // data. 1672 // // TODO(hlundin): It seems that this overwriting has gone lost. 1673 // // Not adapted for multi-channel yet. 1674 // assert(algorithm_buffer_->Channels() == 1); 1675 // if (algorithm_buffer_->Channels() != 1) { 1676 // LOG(LS_WARNING) << "DTMF not supported for more than one channel"; 1677 // return kStereoNotSupported; 1678 // } 1679 // // Shuffle the remaining data to the beginning of algorithm buffer. 1680 // algorithm_buffer_->PopFront(sync_buffer_->FutureLength()); 1681 // } 1682 1683 sync_buffer_->IncreaseEndTimestamp(output_size_samples_); 1684 expand_->Reset(); 1685 last_mode_ = kModeDtmf; 1686 1687 // Set to false because the DTMF is already in the algorithm buffer. 1688 *play_dtmf = false; 1689 return 0; 1690 } 1691 1692 void NetEqImpl::DoAlternativePlc(bool increase_timestamp) { 1693 AudioDecoder* decoder = decoder_database_->GetActiveDecoder(); 1694 int length; 1695 if (decoder && decoder->HasDecodePlc()) { 1696 // Use the decoder's packet-loss concealment. 1697 // TODO(hlundin): Will probably need a longer buffer for multi-channel. 1698 int16_t decoded_buffer[kMaxFrameSize]; 1699 length = decoder->DecodePlc(1, decoded_buffer); 1700 if (length > 0) { 1701 algorithm_buffer_->PushBackInterleaved(decoded_buffer, length); 1702 } else { 1703 length = 0; 1704 } 1705 } else { 1706 // Do simple zero-stuffing. 1707 length = output_size_samples_; 1708 algorithm_buffer_->Zeros(length); 1709 // By not advancing the timestamp, NetEq inserts samples. 1710 stats_.AddZeros(length); 1711 } 1712 if (increase_timestamp) { 1713 sync_buffer_->IncreaseEndTimestamp(length); 1714 } 1715 expand_->Reset(); 1716 } 1717 1718 int NetEqImpl::DtmfOverdub(const DtmfEvent& dtmf_event, size_t num_channels, 1719 int16_t* output) const { 1720 size_t out_index = 0; 1721 int overdub_length = output_size_samples_; // Default value. 1722 1723 if (sync_buffer_->dtmf_index() > sync_buffer_->next_index()) { 1724 // Special operation for transition from "DTMF only" to "DTMF overdub". 1725 out_index = std::min( 1726 sync_buffer_->dtmf_index() - sync_buffer_->next_index(), 1727 static_cast<size_t>(output_size_samples_)); 1728 overdub_length = output_size_samples_ - static_cast<int>(out_index); 1729 } 1730 1731 AudioMultiVector dtmf_output(num_channels); 1732 int dtmf_return_value = 0; 1733 if (!dtmf_tone_generator_->initialized()) { 1734 dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no, 1735 dtmf_event.volume); 1736 } 1737 if (dtmf_return_value == 0) { 1738 dtmf_return_value = dtmf_tone_generator_->Generate(overdub_length, 1739 &dtmf_output); 1740 assert((size_t) overdub_length == dtmf_output.Size()); 1741 } 1742 dtmf_output.ReadInterleaved(overdub_length, &output[out_index]); 1743 return dtmf_return_value < 0 ? dtmf_return_value : 0; 1744 } 1745 1746 int NetEqImpl::ExtractPackets(int required_samples, PacketList* packet_list) { 1747 bool first_packet = true; 1748 uint8_t prev_payload_type = 0; 1749 uint32_t prev_timestamp = 0; 1750 uint16_t prev_sequence_number = 0; 1751 bool next_packet_available = false; 1752 1753 const RTPHeader* header = packet_buffer_->NextRtpHeader(); 1754 assert(header); 1755 if (!header) { 1756 return -1; 1757 } 1758 uint32_t first_timestamp = header->timestamp; 1759 int extracted_samples = 0; 1760 1761 // Packet extraction loop. 1762 do { 1763 timestamp_ = header->timestamp; 1764 int discard_count = 0; 1765 Packet* packet = packet_buffer_->GetNextPacket(&discard_count); 1766 // |header| may be invalid after the |packet_buffer_| operation. 1767 header = NULL; 1768 if (!packet) { 1769 LOG_FERR1(LS_ERROR, GetNextPacket, discard_count) << 1770 "Should always be able to extract a packet here"; 1771 assert(false); // Should always be able to extract a packet here. 1772 return -1; 1773 } 1774 stats_.PacketsDiscarded(discard_count); 1775 // Store waiting time in ms; packets->waiting_time is in "output blocks". 1776 stats_.StoreWaitingTime(packet->waiting_time * kOutputSizeMs); 1777 assert(packet->payload_length > 0); 1778 packet_list->push_back(packet); // Store packet in list. 1779 1780 if (first_packet) { 1781 first_packet = false; 1782 decoded_packet_sequence_number_ = prev_sequence_number = 1783 packet->header.sequenceNumber; 1784 decoded_packet_timestamp_ = prev_timestamp = packet->header.timestamp; 1785 prev_payload_type = packet->header.payloadType; 1786 } 1787 1788 // Store number of extracted samples. 1789 int packet_duration = 0; 1790 AudioDecoder* decoder = decoder_database_->GetDecoder( 1791 packet->header.payloadType); 1792 if (decoder) { 1793 if (packet->sync_packet) { 1794 packet_duration = decoder_frame_length_; 1795 } else { 1796 packet_duration = packet->primary ? 1797 decoder->PacketDuration(packet->payload, packet->payload_length) : 1798 decoder->PacketDurationRedundant(packet->payload, 1799 packet->payload_length); 1800 } 1801 } else { 1802 LOG_FERR1(LS_WARNING, GetDecoder, packet->header.payloadType) << 1803 "Could not find a decoder for a packet about to be extracted."; 1804 assert(false); 1805 } 1806 if (packet_duration <= 0) { 1807 // Decoder did not return a packet duration. Assume that the packet 1808 // contains the same number of samples as the previous one. 1809 packet_duration = decoder_frame_length_; 1810 } 1811 extracted_samples = packet->header.timestamp - first_timestamp + 1812 packet_duration; 1813 1814 // Check what packet is available next. 1815 header = packet_buffer_->NextRtpHeader(); 1816 next_packet_available = false; 1817 if (header && prev_payload_type == header->payloadType) { 1818 int16_t seq_no_diff = header->sequenceNumber - prev_sequence_number; 1819 int32_t ts_diff = header->timestamp - prev_timestamp; 1820 if (seq_no_diff == 1 || 1821 (seq_no_diff == 0 && ts_diff == decoder_frame_length_)) { 1822 // The next sequence number is available, or the next part of a packet 1823 // that was split into pieces upon insertion. 1824 next_packet_available = true; 1825 } 1826 prev_sequence_number = header->sequenceNumber; 1827 } 1828 } while (extracted_samples < required_samples && next_packet_available); 1829 1830 return extracted_samples; 1831 } 1832 1833 void NetEqImpl::UpdatePlcComponents(int fs_hz, size_t channels) { 1834 // Delete objects and create new ones. 1835 expand_.reset(expand_factory_->Create(background_noise_.get(), 1836 sync_buffer_.get(), &random_vector_, 1837 fs_hz, channels)); 1838 merge_.reset(new Merge(fs_hz, channels, expand_.get(), sync_buffer_.get())); 1839 } 1840 1841 void NetEqImpl::SetSampleRateAndChannels(int fs_hz, size_t channels) { 1842 LOG_API2(fs_hz, channels); 1843 // TODO(hlundin): Change to an enumerator and skip assert. 1844 assert(fs_hz == 8000 || fs_hz == 16000 || fs_hz == 32000 || fs_hz == 48000); 1845 assert(channels > 0); 1846 1847 fs_hz_ = fs_hz; 1848 fs_mult_ = fs_hz / 8000; 1849 output_size_samples_ = kOutputSizeMs * 8 * fs_mult_; 1850 decoder_frame_length_ = 3 * output_size_samples_; // Initialize to 30ms. 1851 1852 last_mode_ = kModeNormal; 1853 1854 // Create a new array of mute factors and set all to 1. 1855 mute_factor_array_.reset(new int16_t[channels]); 1856 for (size_t i = 0; i < channels; ++i) { 1857 mute_factor_array_[i] = 16384; // 1.0 in Q14. 1858 } 1859 1860 // Reset comfort noise decoder, if there is one active. 1861 AudioDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder(); 1862 if (cng_decoder) { 1863 cng_decoder->Init(); 1864 } 1865 1866 // Reinit post-decode VAD with new sample rate. 1867 assert(vad_.get()); // Cannot be NULL here. 1868 vad_->Init(); 1869 1870 // Delete algorithm buffer and create a new one. 1871 algorithm_buffer_.reset(new AudioMultiVector(channels)); 1872 1873 // Delete sync buffer and create a new one. 1874 sync_buffer_.reset(new SyncBuffer(channels, kSyncBufferSize * fs_mult_)); 1875 1876 1877 // Delete BackgroundNoise object and create a new one, while preserving its 1878 // mode. 1879 NetEqBackgroundNoiseMode current_mode = kBgnOn; 1880 if (background_noise_.get()) 1881 current_mode = background_noise_->mode(); 1882 background_noise_.reset(new BackgroundNoise(channels)); 1883 background_noise_->set_mode(current_mode); 1884 1885 // Reset random vector. 1886 random_vector_.Reset(); 1887 1888 UpdatePlcComponents(fs_hz, channels); 1889 1890 // Move index so that we create a small set of future samples (all 0). 1891 sync_buffer_->set_next_index(sync_buffer_->next_index() - 1892 expand_->overlap_length()); 1893 1894 normal_.reset(new Normal(fs_hz, decoder_database_.get(), *background_noise_, 1895 expand_.get())); 1896 accelerate_.reset( 1897 accelerate_factory_->Create(fs_hz, channels, *background_noise_)); 1898 preemptive_expand_.reset(preemptive_expand_factory_->Create( 1899 fs_hz, channels, 1900 *background_noise_, 1901 static_cast<int>(expand_->overlap_length()))); 1902 1903 // Delete ComfortNoise object and create a new one. 1904 comfort_noise_.reset(new ComfortNoise(fs_hz, decoder_database_.get(), 1905 sync_buffer_.get())); 1906 1907 // Verify that |decoded_buffer_| is long enough. 1908 if (decoded_buffer_length_ < kMaxFrameSize * channels) { 1909 // Reallocate to larger size. 1910 decoded_buffer_length_ = kMaxFrameSize * channels; 1911 decoded_buffer_.reset(new int16_t[decoded_buffer_length_]); 1912 } 1913 1914 // Create DecisionLogic if it is not created yet, then communicate new sample 1915 // rate and output size to DecisionLogic object. 1916 if (!decision_logic_.get()) { 1917 CreateDecisionLogic(kPlayoutOn); 1918 } 1919 decision_logic_->SetSampleRate(fs_hz_, output_size_samples_); 1920 } 1921 1922 NetEqOutputType NetEqImpl::LastOutputType() { 1923 assert(vad_.get()); 1924 assert(expand_.get()); 1925 if (last_mode_ == kModeCodecInternalCng || last_mode_ == kModeRfc3389Cng) { 1926 return kOutputCNG; 1927 } else if (last_mode_ == kModeExpand && expand_->MuteFactor(0) == 0) { 1928 // Expand mode has faded down to background noise only (very long expand). 1929 return kOutputPLCtoCNG; 1930 } else if (last_mode_ == kModeExpand) { 1931 return kOutputPLC; 1932 } else if (vad_->running() && !vad_->active_speech()) { 1933 return kOutputVADPassive; 1934 } else { 1935 return kOutputNormal; 1936 } 1937 } 1938 1939 void NetEqImpl::CreateDecisionLogic(NetEqPlayoutMode mode) { 1940 decision_logic_.reset(DecisionLogic::Create(fs_hz_, output_size_samples_, 1941 mode, 1942 decoder_database_.get(), 1943 *packet_buffer_.get(), 1944 delay_manager_.get(), 1945 buffer_level_filter_.get())); 1946 } 1947 } // namespace webrtc 1948