1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_JSREGEXP_H_ 6 #define V8_JSREGEXP_H_ 7 8 #include "src/allocation.h" 9 #include "src/assembler.h" 10 #include "src/zone-inl.h" 11 12 namespace v8 { 13 namespace internal { 14 15 class NodeVisitor; 16 class RegExpCompiler; 17 class RegExpMacroAssembler; 18 class RegExpNode; 19 class RegExpTree; 20 class BoyerMooreLookahead; 21 22 class RegExpImpl { 23 public: 24 // Whether V8 is compiled with native regexp support or not. 25 static bool UsesNativeRegExp() { 26 #ifdef V8_INTERPRETED_REGEXP 27 return false; 28 #else 29 return true; 30 #endif 31 } 32 33 // Creates a regular expression literal in the old space. 34 // This function calls the garbage collector if necessary. 35 MUST_USE_RESULT static MaybeHandle<Object> CreateRegExpLiteral( 36 Handle<JSFunction> constructor, 37 Handle<String> pattern, 38 Handle<String> flags); 39 40 // Returns a string representation of a regular expression. 41 // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4. 42 // This function calls the garbage collector if necessary. 43 static Handle<String> ToString(Handle<Object> value); 44 45 // Parses the RegExp pattern and prepares the JSRegExp object with 46 // generic data and choice of implementation - as well as what 47 // the implementation wants to store in the data field. 48 // Returns false if compilation fails. 49 MUST_USE_RESULT static MaybeHandle<Object> Compile( 50 Handle<JSRegExp> re, 51 Handle<String> pattern, 52 Handle<String> flags); 53 54 // See ECMA-262 section 15.10.6.2. 55 // This function calls the garbage collector if necessary. 56 MUST_USE_RESULT static MaybeHandle<Object> Exec( 57 Handle<JSRegExp> regexp, 58 Handle<String> subject, 59 int index, 60 Handle<JSArray> lastMatchInfo); 61 62 // Prepares a JSRegExp object with Irregexp-specific data. 63 static void IrregexpInitialize(Handle<JSRegExp> re, 64 Handle<String> pattern, 65 JSRegExp::Flags flags, 66 int capture_register_count); 67 68 69 static void AtomCompile(Handle<JSRegExp> re, 70 Handle<String> pattern, 71 JSRegExp::Flags flags, 72 Handle<String> match_pattern); 73 74 75 static int AtomExecRaw(Handle<JSRegExp> regexp, 76 Handle<String> subject, 77 int index, 78 int32_t* output, 79 int output_size); 80 81 82 static Handle<Object> AtomExec(Handle<JSRegExp> regexp, 83 Handle<String> subject, 84 int index, 85 Handle<JSArray> lastMatchInfo); 86 87 enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 }; 88 89 // Prepare a RegExp for being executed one or more times (using 90 // IrregexpExecOnce) on the subject. 91 // This ensures that the regexp is compiled for the subject, and that 92 // the subject is flat. 93 // Returns the number of integer spaces required by IrregexpExecOnce 94 // as its "registers" argument. If the regexp cannot be compiled, 95 // an exception is set as pending, and this function returns negative. 96 static int IrregexpPrepare(Handle<JSRegExp> regexp, 97 Handle<String> subject); 98 99 // Execute a regular expression on the subject, starting from index. 100 // If matching succeeds, return the number of matches. This can be larger 101 // than one in the case of global regular expressions. 102 // The captures and subcaptures are stored into the registers vector. 103 // If matching fails, returns RE_FAILURE. 104 // If execution fails, sets a pending exception and returns RE_EXCEPTION. 105 static int IrregexpExecRaw(Handle<JSRegExp> regexp, 106 Handle<String> subject, 107 int index, 108 int32_t* output, 109 int output_size); 110 111 // Execute an Irregexp bytecode pattern. 112 // On a successful match, the result is a JSArray containing 113 // captured positions. On a failure, the result is the null value. 114 // Returns an empty handle in case of an exception. 115 MUST_USE_RESULT static MaybeHandle<Object> IrregexpExec( 116 Handle<JSRegExp> regexp, 117 Handle<String> subject, 118 int index, 119 Handle<JSArray> lastMatchInfo); 120 121 // Set last match info. If match is NULL, then setting captures is omitted. 122 static Handle<JSArray> SetLastMatchInfo(Handle<JSArray> last_match_info, 123 Handle<String> subject, 124 int capture_count, 125 int32_t* match); 126 127 128 class GlobalCache { 129 public: 130 GlobalCache(Handle<JSRegExp> regexp, 131 Handle<String> subject, 132 bool is_global, 133 Isolate* isolate); 134 135 INLINE(~GlobalCache()); 136 137 // Fetch the next entry in the cache for global regexp match results. 138 // This does not set the last match info. Upon failure, NULL is returned. 139 // The cause can be checked with Result(). The previous 140 // result is still in available in memory when a failure happens. 141 INLINE(int32_t* FetchNext()); 142 143 INLINE(int32_t* LastSuccessfulMatch()); 144 145 INLINE(bool HasException()) { return num_matches_ < 0; } 146 147 private: 148 int num_matches_; 149 int max_matches_; 150 int current_match_index_; 151 int registers_per_match_; 152 // Pointer to the last set of captures. 153 int32_t* register_array_; 154 int register_array_size_; 155 Handle<JSRegExp> regexp_; 156 Handle<String> subject_; 157 }; 158 159 160 // Array index in the lastMatchInfo array. 161 static const int kLastCaptureCount = 0; 162 static const int kLastSubject = 1; 163 static const int kLastInput = 2; 164 static const int kFirstCapture = 3; 165 static const int kLastMatchOverhead = 3; 166 167 // Direct offset into the lastMatchInfo array. 168 static const int kLastCaptureCountOffset = 169 FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize; 170 static const int kLastSubjectOffset = 171 FixedArray::kHeaderSize + kLastSubject * kPointerSize; 172 static const int kLastInputOffset = 173 FixedArray::kHeaderSize + kLastInput * kPointerSize; 174 static const int kFirstCaptureOffset = 175 FixedArray::kHeaderSize + kFirstCapture * kPointerSize; 176 177 // Used to access the lastMatchInfo array. 178 static int GetCapture(FixedArray* array, int index) { 179 return Smi::cast(array->get(index + kFirstCapture))->value(); 180 } 181 182 static void SetLastCaptureCount(FixedArray* array, int to) { 183 array->set(kLastCaptureCount, Smi::FromInt(to)); 184 } 185 186 static void SetLastSubject(FixedArray* array, String* to) { 187 array->set(kLastSubject, to); 188 } 189 190 static void SetLastInput(FixedArray* array, String* to) { 191 array->set(kLastInput, to); 192 } 193 194 static void SetCapture(FixedArray* array, int index, int to) { 195 array->set(index + kFirstCapture, Smi::FromInt(to)); 196 } 197 198 static int GetLastCaptureCount(FixedArray* array) { 199 return Smi::cast(array->get(kLastCaptureCount))->value(); 200 } 201 202 // For acting on the JSRegExp data FixedArray. 203 static int IrregexpMaxRegisterCount(FixedArray* re); 204 static void SetIrregexpMaxRegisterCount(FixedArray* re, int value); 205 static int IrregexpNumberOfCaptures(FixedArray* re); 206 static int IrregexpNumberOfRegisters(FixedArray* re); 207 static ByteArray* IrregexpByteCode(FixedArray* re, bool is_ascii); 208 static Code* IrregexpNativeCode(FixedArray* re, bool is_ascii); 209 210 // Limit the space regexps take up on the heap. In order to limit this we 211 // would like to keep track of the amount of regexp code on the heap. This 212 // is not tracked, however. As a conservative approximation we track the 213 // total regexp code compiled including code that has subsequently been freed 214 // and the total executable memory at any point. 215 static const int kRegExpExecutableMemoryLimit = 16 * MB; 216 static const int kRegWxpCompiledLimit = 1 * MB; 217 218 private: 219 static bool CompileIrregexp( 220 Handle<JSRegExp> re, Handle<String> sample_subject, bool is_ascii); 221 static inline bool EnsureCompiledIrregexp( 222 Handle<JSRegExp> re, Handle<String> sample_subject, bool is_ascii); 223 }; 224 225 226 // Represents the location of one element relative to the intersection of 227 // two sets. Corresponds to the four areas of a Venn diagram. 228 enum ElementInSetsRelation { 229 kInsideNone = 0, 230 kInsideFirst = 1, 231 kInsideSecond = 2, 232 kInsideBoth = 3 233 }; 234 235 236 // Represents code units in the range from from_ to to_, both ends are 237 // inclusive. 238 class CharacterRange { 239 public: 240 CharacterRange() : from_(0), to_(0) { } 241 // For compatibility with the CHECK_OK macro 242 CharacterRange(void* null) { ASSERT_EQ(NULL, null); } //NOLINT 243 CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { } 244 static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges, 245 Zone* zone); 246 static Vector<const int> GetWordBounds(); 247 static inline CharacterRange Singleton(uc16 value) { 248 return CharacterRange(value, value); 249 } 250 static inline CharacterRange Range(uc16 from, uc16 to) { 251 ASSERT(from <= to); 252 return CharacterRange(from, to); 253 } 254 static inline CharacterRange Everything() { 255 return CharacterRange(0, 0xFFFF); 256 } 257 bool Contains(uc16 i) { return from_ <= i && i <= to_; } 258 uc16 from() const { return from_; } 259 void set_from(uc16 value) { from_ = value; } 260 uc16 to() const { return to_; } 261 void set_to(uc16 value) { to_ = value; } 262 bool is_valid() { return from_ <= to_; } 263 bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; } 264 bool IsSingleton() { return (from_ == to_); } 265 void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_ascii, 266 Zone* zone); 267 static void Split(ZoneList<CharacterRange>* base, 268 Vector<const int> overlay, 269 ZoneList<CharacterRange>** included, 270 ZoneList<CharacterRange>** excluded, 271 Zone* zone); 272 // Whether a range list is in canonical form: Ranges ordered by from value, 273 // and ranges non-overlapping and non-adjacent. 274 static bool IsCanonical(ZoneList<CharacterRange>* ranges); 275 // Convert range list to canonical form. The characters covered by the ranges 276 // will still be the same, but no character is in more than one range, and 277 // adjacent ranges are merged. The resulting list may be shorter than the 278 // original, but cannot be longer. 279 static void Canonicalize(ZoneList<CharacterRange>* ranges); 280 // Negate the contents of a character range in canonical form. 281 static void Negate(ZoneList<CharacterRange>* src, 282 ZoneList<CharacterRange>* dst, 283 Zone* zone); 284 static const int kStartMarker = (1 << 24); 285 static const int kPayloadMask = (1 << 24) - 1; 286 287 private: 288 uc16 from_; 289 uc16 to_; 290 }; 291 292 293 // A set of unsigned integers that behaves especially well on small 294 // integers (< 32). May do zone-allocation. 295 class OutSet: public ZoneObject { 296 public: 297 OutSet() : first_(0), remaining_(NULL), successors_(NULL) { } 298 OutSet* Extend(unsigned value, Zone* zone); 299 bool Get(unsigned value) const; 300 static const unsigned kFirstLimit = 32; 301 302 private: 303 // Destructively set a value in this set. In most cases you want 304 // to use Extend instead to ensure that only one instance exists 305 // that contains the same values. 306 void Set(unsigned value, Zone* zone); 307 308 // The successors are a list of sets that contain the same values 309 // as this set and the one more value that is not present in this 310 // set. 311 ZoneList<OutSet*>* successors(Zone* zone) { return successors_; } 312 313 OutSet(uint32_t first, ZoneList<unsigned>* remaining) 314 : first_(first), remaining_(remaining), successors_(NULL) { } 315 uint32_t first_; 316 ZoneList<unsigned>* remaining_; 317 ZoneList<OutSet*>* successors_; 318 friend class Trace; 319 }; 320 321 322 // A mapping from integers, specified as ranges, to a set of integers. 323 // Used for mapping character ranges to choices. 324 class DispatchTable : public ZoneObject { 325 public: 326 explicit DispatchTable(Zone* zone) : tree_(zone) { } 327 328 class Entry { 329 public: 330 Entry() : from_(0), to_(0), out_set_(NULL) { } 331 Entry(uc16 from, uc16 to, OutSet* out_set) 332 : from_(from), to_(to), out_set_(out_set) { } 333 uc16 from() { return from_; } 334 uc16 to() { return to_; } 335 void set_to(uc16 value) { to_ = value; } 336 void AddValue(int value, Zone* zone) { 337 out_set_ = out_set_->Extend(value, zone); 338 } 339 OutSet* out_set() { return out_set_; } 340 private: 341 uc16 from_; 342 uc16 to_; 343 OutSet* out_set_; 344 }; 345 346 class Config { 347 public: 348 typedef uc16 Key; 349 typedef Entry Value; 350 static const uc16 kNoKey; 351 static const Entry NoValue() { return Value(); } 352 static inline int Compare(uc16 a, uc16 b) { 353 if (a == b) 354 return 0; 355 else if (a < b) 356 return -1; 357 else 358 return 1; 359 } 360 }; 361 362 void AddRange(CharacterRange range, int value, Zone* zone); 363 OutSet* Get(uc16 value); 364 void Dump(); 365 366 template <typename Callback> 367 void ForEach(Callback* callback) { 368 return tree()->ForEach(callback); 369 } 370 371 private: 372 // There can't be a static empty set since it allocates its 373 // successors in a zone and caches them. 374 OutSet* empty() { return &empty_; } 375 OutSet empty_; 376 ZoneSplayTree<Config>* tree() { return &tree_; } 377 ZoneSplayTree<Config> tree_; 378 }; 379 380 381 #define FOR_EACH_NODE_TYPE(VISIT) \ 382 VISIT(End) \ 383 VISIT(Action) \ 384 VISIT(Choice) \ 385 VISIT(BackReference) \ 386 VISIT(Assertion) \ 387 VISIT(Text) 388 389 390 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \ 391 VISIT(Disjunction) \ 392 VISIT(Alternative) \ 393 VISIT(Assertion) \ 394 VISIT(CharacterClass) \ 395 VISIT(Atom) \ 396 VISIT(Quantifier) \ 397 VISIT(Capture) \ 398 VISIT(Lookahead) \ 399 VISIT(BackReference) \ 400 VISIT(Empty) \ 401 VISIT(Text) 402 403 404 #define FORWARD_DECLARE(Name) class RegExp##Name; 405 FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE) 406 #undef FORWARD_DECLARE 407 408 409 class TextElement V8_FINAL BASE_EMBEDDED { 410 public: 411 enum TextType { 412 ATOM, 413 CHAR_CLASS 414 }; 415 416 static TextElement Atom(RegExpAtom* atom); 417 static TextElement CharClass(RegExpCharacterClass* char_class); 418 419 int cp_offset() const { return cp_offset_; } 420 void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; } 421 int length() const; 422 423 TextType text_type() const { return text_type_; } 424 425 RegExpTree* tree() const { return tree_; } 426 427 RegExpAtom* atom() const { 428 ASSERT(text_type() == ATOM); 429 return reinterpret_cast<RegExpAtom*>(tree()); 430 } 431 432 RegExpCharacterClass* char_class() const { 433 ASSERT(text_type() == CHAR_CLASS); 434 return reinterpret_cast<RegExpCharacterClass*>(tree()); 435 } 436 437 private: 438 TextElement(TextType text_type, RegExpTree* tree) 439 : cp_offset_(-1), text_type_(text_type), tree_(tree) {} 440 441 int cp_offset_; 442 TextType text_type_; 443 RegExpTree* tree_; 444 }; 445 446 447 class Trace; 448 449 450 struct NodeInfo { 451 NodeInfo() 452 : being_analyzed(false), 453 been_analyzed(false), 454 follows_word_interest(false), 455 follows_newline_interest(false), 456 follows_start_interest(false), 457 at_end(false), 458 visited(false), 459 replacement_calculated(false) { } 460 461 // Returns true if the interests and assumptions of this node 462 // matches the given one. 463 bool Matches(NodeInfo* that) { 464 return (at_end == that->at_end) && 465 (follows_word_interest == that->follows_word_interest) && 466 (follows_newline_interest == that->follows_newline_interest) && 467 (follows_start_interest == that->follows_start_interest); 468 } 469 470 // Updates the interests of this node given the interests of the 471 // node preceding it. 472 void AddFromPreceding(NodeInfo* that) { 473 at_end |= that->at_end; 474 follows_word_interest |= that->follows_word_interest; 475 follows_newline_interest |= that->follows_newline_interest; 476 follows_start_interest |= that->follows_start_interest; 477 } 478 479 bool HasLookbehind() { 480 return follows_word_interest || 481 follows_newline_interest || 482 follows_start_interest; 483 } 484 485 // Sets the interests of this node to include the interests of the 486 // following node. 487 void AddFromFollowing(NodeInfo* that) { 488 follows_word_interest |= that->follows_word_interest; 489 follows_newline_interest |= that->follows_newline_interest; 490 follows_start_interest |= that->follows_start_interest; 491 } 492 493 void ResetCompilationState() { 494 being_analyzed = false; 495 been_analyzed = false; 496 } 497 498 bool being_analyzed: 1; 499 bool been_analyzed: 1; 500 501 // These bits are set of this node has to know what the preceding 502 // character was. 503 bool follows_word_interest: 1; 504 bool follows_newline_interest: 1; 505 bool follows_start_interest: 1; 506 507 bool at_end: 1; 508 bool visited: 1; 509 bool replacement_calculated: 1; 510 }; 511 512 513 // Details of a quick mask-compare check that can look ahead in the 514 // input stream. 515 class QuickCheckDetails { 516 public: 517 QuickCheckDetails() 518 : characters_(0), 519 mask_(0), 520 value_(0), 521 cannot_match_(false) { } 522 explicit QuickCheckDetails(int characters) 523 : characters_(characters), 524 mask_(0), 525 value_(0), 526 cannot_match_(false) { } 527 bool Rationalize(bool ascii); 528 // Merge in the information from another branch of an alternation. 529 void Merge(QuickCheckDetails* other, int from_index); 530 // Advance the current position by some amount. 531 void Advance(int by, bool ascii); 532 void Clear(); 533 bool cannot_match() { return cannot_match_; } 534 void set_cannot_match() { cannot_match_ = true; } 535 struct Position { 536 Position() : mask(0), value(0), determines_perfectly(false) { } 537 uc16 mask; 538 uc16 value; 539 bool determines_perfectly; 540 }; 541 int characters() { return characters_; } 542 void set_characters(int characters) { characters_ = characters; } 543 Position* positions(int index) { 544 ASSERT(index >= 0); 545 ASSERT(index < characters_); 546 return positions_ + index; 547 } 548 uint32_t mask() { return mask_; } 549 uint32_t value() { return value_; } 550 551 private: 552 // How many characters do we have quick check information from. This is 553 // the same for all branches of a choice node. 554 int characters_; 555 Position positions_[4]; 556 // These values are the condensate of the above array after Rationalize(). 557 uint32_t mask_; 558 uint32_t value_; 559 // If set to true, there is no way this quick check can match at all. 560 // E.g., if it requires to be at the start of the input, and isn't. 561 bool cannot_match_; 562 }; 563 564 565 extern int kUninitializedRegExpNodePlaceHolder; 566 567 568 class RegExpNode: public ZoneObject { 569 public: 570 explicit RegExpNode(Zone* zone) 571 : replacement_(NULL), trace_count_(0), zone_(zone) { 572 bm_info_[0] = bm_info_[1] = NULL; 573 } 574 virtual ~RegExpNode(); 575 virtual void Accept(NodeVisitor* visitor) = 0; 576 // Generates a goto to this node or actually generates the code at this point. 577 virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0; 578 // How many characters must this node consume at a minimum in order to 579 // succeed. If we have found at least 'still_to_find' characters that 580 // must be consumed there is no need to ask any following nodes whether 581 // they are sure to eat any more characters. The not_at_start argument is 582 // used to indicate that we know we are not at the start of the input. In 583 // this case anchored branches will always fail and can be ignored when 584 // determining how many characters are consumed on success. 585 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0; 586 // Emits some quick code that checks whether the preloaded characters match. 587 // Falls through on certain failure, jumps to the label on possible success. 588 // If the node cannot make a quick check it does nothing and returns false. 589 bool EmitQuickCheck(RegExpCompiler* compiler, 590 Trace* trace, 591 bool preload_has_checked_bounds, 592 Label* on_possible_success, 593 QuickCheckDetails* details_return, 594 bool fall_through_on_failure); 595 // For a given number of characters this returns a mask and a value. The 596 // next n characters are anded with the mask and compared with the value. 597 // A comparison failure indicates the node cannot match the next n characters. 598 // A comparison success indicates the node may match. 599 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 600 RegExpCompiler* compiler, 601 int characters_filled_in, 602 bool not_at_start) = 0; 603 static const int kNodeIsTooComplexForGreedyLoops = -1; 604 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } 605 // Only returns the successor for a text node of length 1 that matches any 606 // character and that has no guards on it. 607 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( 608 RegExpCompiler* compiler) { 609 return NULL; 610 } 611 612 // Collects information on the possible code units (mod 128) that can match if 613 // we look forward. This is used for a Boyer-Moore-like string searching 614 // implementation. TODO(erikcorry): This should share more code with 615 // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit 616 // the number of nodes we are willing to look at in order to create this data. 617 static const int kRecursionBudget = 200; 618 virtual void FillInBMInfo(int offset, 619 int budget, 620 BoyerMooreLookahead* bm, 621 bool not_at_start) { 622 UNREACHABLE(); 623 } 624 625 // If we know that the input is ASCII then there are some nodes that can 626 // never match. This method returns a node that can be substituted for 627 // itself, or NULL if the node can never match. 628 virtual RegExpNode* FilterASCII(int depth, bool ignore_case) { return this; } 629 // Helper for FilterASCII. 630 RegExpNode* replacement() { 631 ASSERT(info()->replacement_calculated); 632 return replacement_; 633 } 634 RegExpNode* set_replacement(RegExpNode* replacement) { 635 info()->replacement_calculated = true; 636 replacement_ = replacement; 637 return replacement; // For convenience. 638 } 639 640 // We want to avoid recalculating the lookahead info, so we store it on the 641 // node. Only info that is for this node is stored. We can tell that the 642 // info is for this node when offset == 0, so the information is calculated 643 // relative to this node. 644 void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) { 645 if (offset == 0) set_bm_info(not_at_start, bm); 646 } 647 648 Label* label() { return &label_; } 649 // If non-generic code is generated for a node (i.e. the node is not at the 650 // start of the trace) then it cannot be reused. This variable sets a limit 651 // on how often we allow that to happen before we insist on starting a new 652 // trace and generating generic code for a node that can be reused by flushing 653 // the deferred actions in the current trace and generating a goto. 654 static const int kMaxCopiesCodeGenerated = 10; 655 656 NodeInfo* info() { return &info_; } 657 658 BoyerMooreLookahead* bm_info(bool not_at_start) { 659 return bm_info_[not_at_start ? 1 : 0]; 660 } 661 662 Zone* zone() const { return zone_; } 663 664 protected: 665 enum LimitResult { DONE, CONTINUE }; 666 RegExpNode* replacement_; 667 668 LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace); 669 670 void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) { 671 bm_info_[not_at_start ? 1 : 0] = bm; 672 } 673 674 private: 675 static const int kFirstCharBudget = 10; 676 Label label_; 677 NodeInfo info_; 678 // This variable keeps track of how many times code has been generated for 679 // this node (in different traces). We don't keep track of where the 680 // generated code is located unless the code is generated at the start of 681 // a trace, in which case it is generic and can be reused by flushing the 682 // deferred operations in the current trace and generating a goto. 683 int trace_count_; 684 BoyerMooreLookahead* bm_info_[2]; 685 686 Zone* zone_; 687 }; 688 689 690 // A simple closed interval. 691 class Interval { 692 public: 693 Interval() : from_(kNone), to_(kNone) { } 694 Interval(int from, int to) : from_(from), to_(to) { } 695 Interval Union(Interval that) { 696 if (that.from_ == kNone) 697 return *this; 698 else if (from_ == kNone) 699 return that; 700 else 701 return Interval(Min(from_, that.from_), Max(to_, that.to_)); 702 } 703 bool Contains(int value) { 704 return (from_ <= value) && (value <= to_); 705 } 706 bool is_empty() { return from_ == kNone; } 707 int from() const { return from_; } 708 int to() const { return to_; } 709 static Interval Empty() { return Interval(); } 710 static const int kNone = -1; 711 private: 712 int from_; 713 int to_; 714 }; 715 716 717 class SeqRegExpNode: public RegExpNode { 718 public: 719 explicit SeqRegExpNode(RegExpNode* on_success) 720 : RegExpNode(on_success->zone()), on_success_(on_success) { } 721 RegExpNode* on_success() { return on_success_; } 722 void set_on_success(RegExpNode* node) { on_success_ = node; } 723 virtual RegExpNode* FilterASCII(int depth, bool ignore_case); 724 virtual void FillInBMInfo(int offset, 725 int budget, 726 BoyerMooreLookahead* bm, 727 bool not_at_start) { 728 on_success_->FillInBMInfo(offset, budget - 1, bm, not_at_start); 729 if (offset == 0) set_bm_info(not_at_start, bm); 730 } 731 732 protected: 733 RegExpNode* FilterSuccessor(int depth, bool ignore_case); 734 735 private: 736 RegExpNode* on_success_; 737 }; 738 739 740 class ActionNode: public SeqRegExpNode { 741 public: 742 enum ActionType { 743 SET_REGISTER, 744 INCREMENT_REGISTER, 745 STORE_POSITION, 746 BEGIN_SUBMATCH, 747 POSITIVE_SUBMATCH_SUCCESS, 748 EMPTY_MATCH_CHECK, 749 CLEAR_CAPTURES 750 }; 751 static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success); 752 static ActionNode* IncrementRegister(int reg, RegExpNode* on_success); 753 static ActionNode* StorePosition(int reg, 754 bool is_capture, 755 RegExpNode* on_success); 756 static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success); 757 static ActionNode* BeginSubmatch(int stack_pointer_reg, 758 int position_reg, 759 RegExpNode* on_success); 760 static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg, 761 int restore_reg, 762 int clear_capture_count, 763 int clear_capture_from, 764 RegExpNode* on_success); 765 static ActionNode* EmptyMatchCheck(int start_register, 766 int repetition_register, 767 int repetition_limit, 768 RegExpNode* on_success); 769 virtual void Accept(NodeVisitor* visitor); 770 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 771 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 772 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 773 RegExpCompiler* compiler, 774 int filled_in, 775 bool not_at_start) { 776 return on_success()->GetQuickCheckDetails( 777 details, compiler, filled_in, not_at_start); 778 } 779 virtual void FillInBMInfo(int offset, 780 int budget, 781 BoyerMooreLookahead* bm, 782 bool not_at_start); 783 ActionType action_type() { return action_type_; } 784 // TODO(erikcorry): We should allow some action nodes in greedy loops. 785 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } 786 787 private: 788 union { 789 struct { 790 int reg; 791 int value; 792 } u_store_register; 793 struct { 794 int reg; 795 } u_increment_register; 796 struct { 797 int reg; 798 bool is_capture; 799 } u_position_register; 800 struct { 801 int stack_pointer_register; 802 int current_position_register; 803 int clear_register_count; 804 int clear_register_from; 805 } u_submatch; 806 struct { 807 int start_register; 808 int repetition_register; 809 int repetition_limit; 810 } u_empty_match_check; 811 struct { 812 int range_from; 813 int range_to; 814 } u_clear_captures; 815 } data_; 816 ActionNode(ActionType action_type, RegExpNode* on_success) 817 : SeqRegExpNode(on_success), 818 action_type_(action_type) { } 819 ActionType action_type_; 820 friend class DotPrinter; 821 }; 822 823 824 class TextNode: public SeqRegExpNode { 825 public: 826 TextNode(ZoneList<TextElement>* elms, 827 RegExpNode* on_success) 828 : SeqRegExpNode(on_success), 829 elms_(elms) { } 830 TextNode(RegExpCharacterClass* that, 831 RegExpNode* on_success) 832 : SeqRegExpNode(on_success), 833 elms_(new(zone()) ZoneList<TextElement>(1, zone())) { 834 elms_->Add(TextElement::CharClass(that), zone()); 835 } 836 virtual void Accept(NodeVisitor* visitor); 837 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 838 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 839 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 840 RegExpCompiler* compiler, 841 int characters_filled_in, 842 bool not_at_start); 843 ZoneList<TextElement>* elements() { return elms_; } 844 void MakeCaseIndependent(bool is_ascii); 845 virtual int GreedyLoopTextLength(); 846 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( 847 RegExpCompiler* compiler); 848 virtual void FillInBMInfo(int offset, 849 int budget, 850 BoyerMooreLookahead* bm, 851 bool not_at_start); 852 void CalculateOffsets(); 853 virtual RegExpNode* FilterASCII(int depth, bool ignore_case); 854 855 private: 856 enum TextEmitPassType { 857 NON_ASCII_MATCH, // Check for characters that can't match. 858 SIMPLE_CHARACTER_MATCH, // Case-dependent single character check. 859 NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs. 860 CASE_CHARACTER_MATCH, // Case-independent single character check. 861 CHARACTER_CLASS_MATCH // Character class. 862 }; 863 static bool SkipPass(int pass, bool ignore_case); 864 static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH; 865 static const int kLastPass = CHARACTER_CLASS_MATCH; 866 void TextEmitPass(RegExpCompiler* compiler, 867 TextEmitPassType pass, 868 bool preloaded, 869 Trace* trace, 870 bool first_element_checked, 871 int* checked_up_to); 872 int Length(); 873 ZoneList<TextElement>* elms_; 874 }; 875 876 877 class AssertionNode: public SeqRegExpNode { 878 public: 879 enum AssertionType { 880 AT_END, 881 AT_START, 882 AT_BOUNDARY, 883 AT_NON_BOUNDARY, 884 AFTER_NEWLINE 885 }; 886 static AssertionNode* AtEnd(RegExpNode* on_success) { 887 return new(on_success->zone()) AssertionNode(AT_END, on_success); 888 } 889 static AssertionNode* AtStart(RegExpNode* on_success) { 890 return new(on_success->zone()) AssertionNode(AT_START, on_success); 891 } 892 static AssertionNode* AtBoundary(RegExpNode* on_success) { 893 return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success); 894 } 895 static AssertionNode* AtNonBoundary(RegExpNode* on_success) { 896 return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success); 897 } 898 static AssertionNode* AfterNewline(RegExpNode* on_success) { 899 return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success); 900 } 901 virtual void Accept(NodeVisitor* visitor); 902 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 903 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 904 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 905 RegExpCompiler* compiler, 906 int filled_in, 907 bool not_at_start); 908 virtual void FillInBMInfo(int offset, 909 int budget, 910 BoyerMooreLookahead* bm, 911 bool not_at_start); 912 AssertionType assertion_type() { return assertion_type_; } 913 914 private: 915 void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace); 916 enum IfPrevious { kIsNonWord, kIsWord }; 917 void BacktrackIfPrevious(RegExpCompiler* compiler, 918 Trace* trace, 919 IfPrevious backtrack_if_previous); 920 AssertionNode(AssertionType t, RegExpNode* on_success) 921 : SeqRegExpNode(on_success), assertion_type_(t) { } 922 AssertionType assertion_type_; 923 }; 924 925 926 class BackReferenceNode: public SeqRegExpNode { 927 public: 928 BackReferenceNode(int start_reg, 929 int end_reg, 930 RegExpNode* on_success) 931 : SeqRegExpNode(on_success), 932 start_reg_(start_reg), 933 end_reg_(end_reg) { } 934 virtual void Accept(NodeVisitor* visitor); 935 int start_register() { return start_reg_; } 936 int end_register() { return end_reg_; } 937 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 938 virtual int EatsAtLeast(int still_to_find, 939 int recursion_depth, 940 bool not_at_start); 941 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 942 RegExpCompiler* compiler, 943 int characters_filled_in, 944 bool not_at_start) { 945 return; 946 } 947 virtual void FillInBMInfo(int offset, 948 int budget, 949 BoyerMooreLookahead* bm, 950 bool not_at_start); 951 952 private: 953 int start_reg_; 954 int end_reg_; 955 }; 956 957 958 class EndNode: public RegExpNode { 959 public: 960 enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS }; 961 explicit EndNode(Action action, Zone* zone) 962 : RegExpNode(zone), action_(action) { } 963 virtual void Accept(NodeVisitor* visitor); 964 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 965 virtual int EatsAtLeast(int still_to_find, 966 int recursion_depth, 967 bool not_at_start) { return 0; } 968 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 969 RegExpCompiler* compiler, 970 int characters_filled_in, 971 bool not_at_start) { 972 // Returning 0 from EatsAtLeast should ensure we never get here. 973 UNREACHABLE(); 974 } 975 virtual void FillInBMInfo(int offset, 976 int budget, 977 BoyerMooreLookahead* bm, 978 bool not_at_start) { 979 // Returning 0 from EatsAtLeast should ensure we never get here. 980 UNREACHABLE(); 981 } 982 983 private: 984 Action action_; 985 }; 986 987 988 class NegativeSubmatchSuccess: public EndNode { 989 public: 990 NegativeSubmatchSuccess(int stack_pointer_reg, 991 int position_reg, 992 int clear_capture_count, 993 int clear_capture_start, 994 Zone* zone) 995 : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone), 996 stack_pointer_register_(stack_pointer_reg), 997 current_position_register_(position_reg), 998 clear_capture_count_(clear_capture_count), 999 clear_capture_start_(clear_capture_start) { } 1000 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 1001 1002 private: 1003 int stack_pointer_register_; 1004 int current_position_register_; 1005 int clear_capture_count_; 1006 int clear_capture_start_; 1007 }; 1008 1009 1010 class Guard: public ZoneObject { 1011 public: 1012 enum Relation { LT, GEQ }; 1013 Guard(int reg, Relation op, int value) 1014 : reg_(reg), 1015 op_(op), 1016 value_(value) { } 1017 int reg() { return reg_; } 1018 Relation op() { return op_; } 1019 int value() { return value_; } 1020 1021 private: 1022 int reg_; 1023 Relation op_; 1024 int value_; 1025 }; 1026 1027 1028 class GuardedAlternative { 1029 public: 1030 explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { } 1031 void AddGuard(Guard* guard, Zone* zone); 1032 RegExpNode* node() { return node_; } 1033 void set_node(RegExpNode* node) { node_ = node; } 1034 ZoneList<Guard*>* guards() { return guards_; } 1035 1036 private: 1037 RegExpNode* node_; 1038 ZoneList<Guard*>* guards_; 1039 }; 1040 1041 1042 class AlternativeGeneration; 1043 1044 1045 class ChoiceNode: public RegExpNode { 1046 public: 1047 explicit ChoiceNode(int expected_size, Zone* zone) 1048 : RegExpNode(zone), 1049 alternatives_(new(zone) 1050 ZoneList<GuardedAlternative>(expected_size, zone)), 1051 table_(NULL), 1052 not_at_start_(false), 1053 being_calculated_(false) { } 1054 virtual void Accept(NodeVisitor* visitor); 1055 void AddAlternative(GuardedAlternative node) { 1056 alternatives()->Add(node, zone()); 1057 } 1058 ZoneList<GuardedAlternative>* alternatives() { return alternatives_; } 1059 DispatchTable* GetTable(bool ignore_case); 1060 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 1061 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 1062 int EatsAtLeastHelper(int still_to_find, 1063 int budget, 1064 RegExpNode* ignore_this_node, 1065 bool not_at_start); 1066 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 1067 RegExpCompiler* compiler, 1068 int characters_filled_in, 1069 bool not_at_start); 1070 virtual void FillInBMInfo(int offset, 1071 int budget, 1072 BoyerMooreLookahead* bm, 1073 bool not_at_start); 1074 1075 bool being_calculated() { return being_calculated_; } 1076 bool not_at_start() { return not_at_start_; } 1077 void set_not_at_start() { not_at_start_ = true; } 1078 void set_being_calculated(bool b) { being_calculated_ = b; } 1079 virtual bool try_to_emit_quick_check_for_alternative(int i) { return true; } 1080 virtual RegExpNode* FilterASCII(int depth, bool ignore_case); 1081 1082 protected: 1083 int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative); 1084 ZoneList<GuardedAlternative>* alternatives_; 1085 1086 private: 1087 friend class DispatchTableConstructor; 1088 friend class Analysis; 1089 void GenerateGuard(RegExpMacroAssembler* macro_assembler, 1090 Guard* guard, 1091 Trace* trace); 1092 int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least); 1093 void EmitOutOfLineContinuation(RegExpCompiler* compiler, 1094 Trace* trace, 1095 GuardedAlternative alternative, 1096 AlternativeGeneration* alt_gen, 1097 int preload_characters, 1098 bool next_expects_preload); 1099 DispatchTable* table_; 1100 // If true, this node is never checked at the start of the input. 1101 // Allows a new trace to start with at_start() set to false. 1102 bool not_at_start_; 1103 bool being_calculated_; 1104 }; 1105 1106 1107 class NegativeLookaheadChoiceNode: public ChoiceNode { 1108 public: 1109 explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail, 1110 GuardedAlternative then_do_this, 1111 Zone* zone) 1112 : ChoiceNode(2, zone) { 1113 AddAlternative(this_must_fail); 1114 AddAlternative(then_do_this); 1115 } 1116 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 1117 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 1118 RegExpCompiler* compiler, 1119 int characters_filled_in, 1120 bool not_at_start); 1121 virtual void FillInBMInfo(int offset, 1122 int budget, 1123 BoyerMooreLookahead* bm, 1124 bool not_at_start) { 1125 alternatives_->at(1).node()->FillInBMInfo( 1126 offset, budget - 1, bm, not_at_start); 1127 if (offset == 0) set_bm_info(not_at_start, bm); 1128 } 1129 // For a negative lookahead we don't emit the quick check for the 1130 // alternative that is expected to fail. This is because quick check code 1131 // starts by loading enough characters for the alternative that takes fewest 1132 // characters, but on a negative lookahead the negative branch did not take 1133 // part in that calculation (EatsAtLeast) so the assumptions don't hold. 1134 virtual bool try_to_emit_quick_check_for_alternative(int i) { return i != 0; } 1135 virtual RegExpNode* FilterASCII(int depth, bool ignore_case); 1136 }; 1137 1138 1139 class LoopChoiceNode: public ChoiceNode { 1140 public: 1141 explicit LoopChoiceNode(bool body_can_be_zero_length, Zone* zone) 1142 : ChoiceNode(2, zone), 1143 loop_node_(NULL), 1144 continue_node_(NULL), 1145 body_can_be_zero_length_(body_can_be_zero_length) { } 1146 void AddLoopAlternative(GuardedAlternative alt); 1147 void AddContinueAlternative(GuardedAlternative alt); 1148 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 1149 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 1150 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 1151 RegExpCompiler* compiler, 1152 int characters_filled_in, 1153 bool not_at_start); 1154 virtual void FillInBMInfo(int offset, 1155 int budget, 1156 BoyerMooreLookahead* bm, 1157 bool not_at_start); 1158 RegExpNode* loop_node() { return loop_node_; } 1159 RegExpNode* continue_node() { return continue_node_; } 1160 bool body_can_be_zero_length() { return body_can_be_zero_length_; } 1161 virtual void Accept(NodeVisitor* visitor); 1162 virtual RegExpNode* FilterASCII(int depth, bool ignore_case); 1163 1164 private: 1165 // AddAlternative is made private for loop nodes because alternatives 1166 // should not be added freely, we need to keep track of which node 1167 // goes back to the node itself. 1168 void AddAlternative(GuardedAlternative node) { 1169 ChoiceNode::AddAlternative(node); 1170 } 1171 1172 RegExpNode* loop_node_; 1173 RegExpNode* continue_node_; 1174 bool body_can_be_zero_length_; 1175 }; 1176 1177 1178 // Improve the speed that we scan for an initial point where a non-anchored 1179 // regexp can match by using a Boyer-Moore-like table. This is done by 1180 // identifying non-greedy non-capturing loops in the nodes that eat any 1181 // character one at a time. For example in the middle of the regexp 1182 // /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly 1183 // inserted at the start of any non-anchored regexp. 1184 // 1185 // When we have found such a loop we look ahead in the nodes to find the set of 1186 // characters that can come at given distances. For example for the regexp 1187 // /.?foo/ we know that there are at least 3 characters ahead of us, and the 1188 // sets of characters that can occur are [any, [f, o], [o]]. We find a range in 1189 // the lookahead info where the set of characters is reasonably constrained. In 1190 // our example this is from index 1 to 2 (0 is not constrained). We can now 1191 // look 3 characters ahead and if we don't find one of [f, o] (the union of 1192 // [f, o] and [o]) then we can skip forwards by the range size (in this case 2). 1193 // 1194 // For Unicode input strings we do the same, but modulo 128. 1195 // 1196 // We also look at the first string fed to the regexp and use that to get a hint 1197 // of the character frequencies in the inputs. This affects the assessment of 1198 // whether the set of characters is 'reasonably constrained'. 1199 // 1200 // We also have another lookahead mechanism (called quick check in the code), 1201 // which uses a wide load of multiple characters followed by a mask and compare 1202 // to determine whether a match is possible at this point. 1203 enum ContainedInLattice { 1204 kNotYet = 0, 1205 kLatticeIn = 1, 1206 kLatticeOut = 2, 1207 kLatticeUnknown = 3 // Can also mean both in and out. 1208 }; 1209 1210 1211 inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) { 1212 return static_cast<ContainedInLattice>(a | b); 1213 } 1214 1215 1216 ContainedInLattice AddRange(ContainedInLattice a, 1217 const int* ranges, 1218 int ranges_size, 1219 Interval new_range); 1220 1221 1222 class BoyerMoorePositionInfo : public ZoneObject { 1223 public: 1224 explicit BoyerMoorePositionInfo(Zone* zone) 1225 : map_(new(zone) ZoneList<bool>(kMapSize, zone)), 1226 map_count_(0), 1227 w_(kNotYet), 1228 s_(kNotYet), 1229 d_(kNotYet), 1230 surrogate_(kNotYet) { 1231 for (int i = 0; i < kMapSize; i++) { 1232 map_->Add(false, zone); 1233 } 1234 } 1235 1236 bool& at(int i) { return map_->at(i); } 1237 1238 static const int kMapSize = 128; 1239 static const int kMask = kMapSize - 1; 1240 1241 int map_count() const { return map_count_; } 1242 1243 void Set(int character); 1244 void SetInterval(const Interval& interval); 1245 void SetAll(); 1246 bool is_non_word() { return w_ == kLatticeOut; } 1247 bool is_word() { return w_ == kLatticeIn; } 1248 1249 private: 1250 ZoneList<bool>* map_; 1251 int map_count_; // Number of set bits in the map. 1252 ContainedInLattice w_; // The \w character class. 1253 ContainedInLattice s_; // The \s character class. 1254 ContainedInLattice d_; // The \d character class. 1255 ContainedInLattice surrogate_; // Surrogate UTF-16 code units. 1256 }; 1257 1258 1259 class BoyerMooreLookahead : public ZoneObject { 1260 public: 1261 BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone); 1262 1263 int length() { return length_; } 1264 int max_char() { return max_char_; } 1265 RegExpCompiler* compiler() { return compiler_; } 1266 1267 int Count(int map_number) { 1268 return bitmaps_->at(map_number)->map_count(); 1269 } 1270 1271 BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); } 1272 1273 void Set(int map_number, int character) { 1274 if (character > max_char_) return; 1275 BoyerMoorePositionInfo* info = bitmaps_->at(map_number); 1276 info->Set(character); 1277 } 1278 1279 void SetInterval(int map_number, const Interval& interval) { 1280 if (interval.from() > max_char_) return; 1281 BoyerMoorePositionInfo* info = bitmaps_->at(map_number); 1282 if (interval.to() > max_char_) { 1283 info->SetInterval(Interval(interval.from(), max_char_)); 1284 } else { 1285 info->SetInterval(interval); 1286 } 1287 } 1288 1289 void SetAll(int map_number) { 1290 bitmaps_->at(map_number)->SetAll(); 1291 } 1292 1293 void SetRest(int from_map) { 1294 for (int i = from_map; i < length_; i++) SetAll(i); 1295 } 1296 bool EmitSkipInstructions(RegExpMacroAssembler* masm); 1297 1298 private: 1299 // This is the value obtained by EatsAtLeast. If we do not have at least this 1300 // many characters left in the sample string then the match is bound to fail. 1301 // Therefore it is OK to read a character this far ahead of the current match 1302 // point. 1303 int length_; 1304 RegExpCompiler* compiler_; 1305 // 0x7f for ASCII, 0xffff for UTF-16. 1306 int max_char_; 1307 ZoneList<BoyerMoorePositionInfo*>* bitmaps_; 1308 1309 int GetSkipTable(int min_lookahead, 1310 int max_lookahead, 1311 Handle<ByteArray> boolean_skip_table); 1312 bool FindWorthwhileInterval(int* from, int* to); 1313 int FindBestInterval( 1314 int max_number_of_chars, int old_biggest_points, int* from, int* to); 1315 }; 1316 1317 1318 // There are many ways to generate code for a node. This class encapsulates 1319 // the current way we should be generating. In other words it encapsulates 1320 // the current state of the code generator. The effect of this is that we 1321 // generate code for paths that the matcher can take through the regular 1322 // expression. A given node in the regexp can be code-generated several times 1323 // as it can be part of several traces. For example for the regexp: 1324 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part 1325 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code 1326 // to match foo is generated only once (the traces have a common prefix). The 1327 // code to store the capture is deferred and generated (twice) after the places 1328 // where baz has been matched. 1329 class Trace { 1330 public: 1331 // A value for a property that is either known to be true, know to be false, 1332 // or not known. 1333 enum TriBool { 1334 UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1 1335 }; 1336 1337 class DeferredAction { 1338 public: 1339 DeferredAction(ActionNode::ActionType action_type, int reg) 1340 : action_type_(action_type), reg_(reg), next_(NULL) { } 1341 DeferredAction* next() { return next_; } 1342 bool Mentions(int reg); 1343 int reg() { return reg_; } 1344 ActionNode::ActionType action_type() { return action_type_; } 1345 private: 1346 ActionNode::ActionType action_type_; 1347 int reg_; 1348 DeferredAction* next_; 1349 friend class Trace; 1350 }; 1351 1352 class DeferredCapture : public DeferredAction { 1353 public: 1354 DeferredCapture(int reg, bool is_capture, Trace* trace) 1355 : DeferredAction(ActionNode::STORE_POSITION, reg), 1356 cp_offset_(trace->cp_offset()), 1357 is_capture_(is_capture) { } 1358 int cp_offset() { return cp_offset_; } 1359 bool is_capture() { return is_capture_; } 1360 private: 1361 int cp_offset_; 1362 bool is_capture_; 1363 void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; } 1364 }; 1365 1366 class DeferredSetRegister : public DeferredAction { 1367 public: 1368 DeferredSetRegister(int reg, int value) 1369 : DeferredAction(ActionNode::SET_REGISTER, reg), 1370 value_(value) { } 1371 int value() { return value_; } 1372 private: 1373 int value_; 1374 }; 1375 1376 class DeferredClearCaptures : public DeferredAction { 1377 public: 1378 explicit DeferredClearCaptures(Interval range) 1379 : DeferredAction(ActionNode::CLEAR_CAPTURES, -1), 1380 range_(range) { } 1381 Interval range() { return range_; } 1382 private: 1383 Interval range_; 1384 }; 1385 1386 class DeferredIncrementRegister : public DeferredAction { 1387 public: 1388 explicit DeferredIncrementRegister(int reg) 1389 : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { } 1390 }; 1391 1392 Trace() 1393 : cp_offset_(0), 1394 actions_(NULL), 1395 backtrack_(NULL), 1396 stop_node_(NULL), 1397 loop_label_(NULL), 1398 characters_preloaded_(0), 1399 bound_checked_up_to_(0), 1400 flush_budget_(100), 1401 at_start_(UNKNOWN) { } 1402 1403 // End the trace. This involves flushing the deferred actions in the trace 1404 // and pushing a backtrack location onto the backtrack stack. Once this is 1405 // done we can start a new trace or go to one that has already been 1406 // generated. 1407 void Flush(RegExpCompiler* compiler, RegExpNode* successor); 1408 int cp_offset() { return cp_offset_; } 1409 DeferredAction* actions() { return actions_; } 1410 // A trivial trace is one that has no deferred actions or other state that 1411 // affects the assumptions used when generating code. There is no recorded 1412 // backtrack location in a trivial trace, so with a trivial trace we will 1413 // generate code that, on a failure to match, gets the backtrack location 1414 // from the backtrack stack rather than using a direct jump instruction. We 1415 // always start code generation with a trivial trace and non-trivial traces 1416 // are created as we emit code for nodes or add to the list of deferred 1417 // actions in the trace. The location of the code generated for a node using 1418 // a trivial trace is recorded in a label in the node so that gotos can be 1419 // generated to that code. 1420 bool is_trivial() { 1421 return backtrack_ == NULL && 1422 actions_ == NULL && 1423 cp_offset_ == 0 && 1424 characters_preloaded_ == 0 && 1425 bound_checked_up_to_ == 0 && 1426 quick_check_performed_.characters() == 0 && 1427 at_start_ == UNKNOWN; 1428 } 1429 TriBool at_start() { return at_start_; } 1430 void set_at_start(bool at_start) { 1431 at_start_ = at_start ? TRUE_VALUE : FALSE_VALUE; 1432 } 1433 Label* backtrack() { return backtrack_; } 1434 Label* loop_label() { return loop_label_; } 1435 RegExpNode* stop_node() { return stop_node_; } 1436 int characters_preloaded() { return characters_preloaded_; } 1437 int bound_checked_up_to() { return bound_checked_up_to_; } 1438 int flush_budget() { return flush_budget_; } 1439 QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; } 1440 bool mentions_reg(int reg); 1441 // Returns true if a deferred position store exists to the specified 1442 // register and stores the offset in the out-parameter. Otherwise 1443 // returns false. 1444 bool GetStoredPosition(int reg, int* cp_offset); 1445 // These set methods and AdvanceCurrentPositionInTrace should be used only on 1446 // new traces - the intention is that traces are immutable after creation. 1447 void add_action(DeferredAction* new_action) { 1448 ASSERT(new_action->next_ == NULL); 1449 new_action->next_ = actions_; 1450 actions_ = new_action; 1451 } 1452 void set_backtrack(Label* backtrack) { backtrack_ = backtrack; } 1453 void set_stop_node(RegExpNode* node) { stop_node_ = node; } 1454 void set_loop_label(Label* label) { loop_label_ = label; } 1455 void set_characters_preloaded(int count) { characters_preloaded_ = count; } 1456 void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; } 1457 void set_flush_budget(int to) { flush_budget_ = to; } 1458 void set_quick_check_performed(QuickCheckDetails* d) { 1459 quick_check_performed_ = *d; 1460 } 1461 void InvalidateCurrentCharacter(); 1462 void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler); 1463 1464 private: 1465 int FindAffectedRegisters(OutSet* affected_registers, Zone* zone); 1466 void PerformDeferredActions(RegExpMacroAssembler* macro, 1467 int max_register, 1468 const OutSet& affected_registers, 1469 OutSet* registers_to_pop, 1470 OutSet* registers_to_clear, 1471 Zone* zone); 1472 void RestoreAffectedRegisters(RegExpMacroAssembler* macro, 1473 int max_register, 1474 const OutSet& registers_to_pop, 1475 const OutSet& registers_to_clear); 1476 int cp_offset_; 1477 DeferredAction* actions_; 1478 Label* backtrack_; 1479 RegExpNode* stop_node_; 1480 Label* loop_label_; 1481 int characters_preloaded_; 1482 int bound_checked_up_to_; 1483 QuickCheckDetails quick_check_performed_; 1484 int flush_budget_; 1485 TriBool at_start_; 1486 }; 1487 1488 1489 class NodeVisitor { 1490 public: 1491 virtual ~NodeVisitor() { } 1492 #define DECLARE_VISIT(Type) \ 1493 virtual void Visit##Type(Type##Node* that) = 0; 1494 FOR_EACH_NODE_TYPE(DECLARE_VISIT) 1495 #undef DECLARE_VISIT 1496 virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); } 1497 }; 1498 1499 1500 // Node visitor used to add the start set of the alternatives to the 1501 // dispatch table of a choice node. 1502 class DispatchTableConstructor: public NodeVisitor { 1503 public: 1504 DispatchTableConstructor(DispatchTable* table, bool ignore_case, 1505 Zone* zone) 1506 : table_(table), 1507 choice_index_(-1), 1508 ignore_case_(ignore_case), 1509 zone_(zone) { } 1510 1511 void BuildTable(ChoiceNode* node); 1512 1513 void AddRange(CharacterRange range) { 1514 table()->AddRange(range, choice_index_, zone_); 1515 } 1516 1517 void AddInverse(ZoneList<CharacterRange>* ranges); 1518 1519 #define DECLARE_VISIT(Type) \ 1520 virtual void Visit##Type(Type##Node* that); 1521 FOR_EACH_NODE_TYPE(DECLARE_VISIT) 1522 #undef DECLARE_VISIT 1523 1524 DispatchTable* table() { return table_; } 1525 void set_choice_index(int value) { choice_index_ = value; } 1526 1527 protected: 1528 DispatchTable* table_; 1529 int choice_index_; 1530 bool ignore_case_; 1531 Zone* zone_; 1532 }; 1533 1534 1535 // Assertion propagation moves information about assertions such as 1536 // \b to the affected nodes. For instance, in /.\b./ information must 1537 // be propagated to the first '.' that whatever follows needs to know 1538 // if it matched a word or a non-word, and to the second '.' that it 1539 // has to check if it succeeds a word or non-word. In this case the 1540 // result will be something like: 1541 // 1542 // +-------+ +------------+ 1543 // | . | | . | 1544 // +-------+ ---> +------------+ 1545 // | word? | | check word | 1546 // +-------+ +------------+ 1547 class Analysis: public NodeVisitor { 1548 public: 1549 Analysis(bool ignore_case, bool is_ascii) 1550 : ignore_case_(ignore_case), 1551 is_ascii_(is_ascii), 1552 error_message_(NULL) { } 1553 void EnsureAnalyzed(RegExpNode* node); 1554 1555 #define DECLARE_VISIT(Type) \ 1556 virtual void Visit##Type(Type##Node* that); 1557 FOR_EACH_NODE_TYPE(DECLARE_VISIT) 1558 #undef DECLARE_VISIT 1559 virtual void VisitLoopChoice(LoopChoiceNode* that); 1560 1561 bool has_failed() { return error_message_ != NULL; } 1562 const char* error_message() { 1563 ASSERT(error_message_ != NULL); 1564 return error_message_; 1565 } 1566 void fail(const char* error_message) { 1567 error_message_ = error_message; 1568 } 1569 1570 private: 1571 bool ignore_case_; 1572 bool is_ascii_; 1573 const char* error_message_; 1574 1575 DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis); 1576 }; 1577 1578 1579 struct RegExpCompileData { 1580 RegExpCompileData() 1581 : tree(NULL), 1582 node(NULL), 1583 simple(true), 1584 contains_anchor(false), 1585 capture_count(0) { } 1586 RegExpTree* tree; 1587 RegExpNode* node; 1588 bool simple; 1589 bool contains_anchor; 1590 Handle<String> error; 1591 int capture_count; 1592 }; 1593 1594 1595 class RegExpEngine: public AllStatic { 1596 public: 1597 struct CompilationResult { 1598 CompilationResult(Isolate* isolate, const char* error_message) 1599 : error_message(error_message), 1600 code(isolate->heap()->the_hole_value()), 1601 num_registers(0) {} 1602 CompilationResult(Object* code, int registers) 1603 : error_message(NULL), 1604 code(code), 1605 num_registers(registers) {} 1606 const char* error_message; 1607 Object* code; 1608 int num_registers; 1609 }; 1610 1611 static CompilationResult Compile(RegExpCompileData* input, 1612 bool ignore_case, 1613 bool global, 1614 bool multiline, 1615 Handle<String> pattern, 1616 Handle<String> sample_subject, 1617 bool is_ascii, Zone* zone); 1618 1619 static void DotPrint(const char* label, RegExpNode* node, bool ignore_case); 1620 }; 1621 1622 1623 } } // namespace v8::internal 1624 1625 #endif // V8_JSREGEXP_H_ 1626