1 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PHITransAddr class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/PHITransAddr.h" 15 #include "llvm/Analysis/InstructionSimplify.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/Dominators.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/raw_ostream.h" 23 using namespace llvm; 24 25 static bool CanPHITrans(Instruction *Inst) { 26 if (isa<PHINode>(Inst) || 27 isa<GetElementPtrInst>(Inst)) 28 return true; 29 30 if (isa<CastInst>(Inst) && 31 isSafeToSpeculativelyExecute(Inst)) 32 return true; 33 34 if (Inst->getOpcode() == Instruction::Add && 35 isa<ConstantInt>(Inst->getOperand(1))) 36 return true; 37 38 // cerr << "MEMDEP: Could not PHI translate: " << *Pointer; 39 // if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst)) 40 // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0); 41 return false; 42 } 43 44 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 45 void PHITransAddr::dump() const { 46 if (!Addr) { 47 dbgs() << "PHITransAddr: null\n"; 48 return; 49 } 50 dbgs() << "PHITransAddr: " << *Addr << "\n"; 51 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) 52 dbgs() << " Input #" << i << " is " << *InstInputs[i] << "\n"; 53 } 54 #endif 55 56 57 static bool VerifySubExpr(Value *Expr, 58 SmallVectorImpl<Instruction*> &InstInputs) { 59 // If this is a non-instruction value, there is nothing to do. 60 Instruction *I = dyn_cast<Instruction>(Expr); 61 if (!I) return true; 62 63 // If it's an instruction, it is either in Tmp or its operands recursively 64 // are. 65 SmallVectorImpl<Instruction*>::iterator Entry = 66 std::find(InstInputs.begin(), InstInputs.end(), I); 67 if (Entry != InstInputs.end()) { 68 InstInputs.erase(Entry); 69 return true; 70 } 71 72 // If it isn't in the InstInputs list it is a subexpr incorporated into the 73 // address. Sanity check that it is phi translatable. 74 if (!CanPHITrans(I)) { 75 errs() << "Instruction in PHITransAddr is not phi-translatable:\n"; 76 errs() << *I << '\n'; 77 llvm_unreachable("Either something is missing from InstInputs or " 78 "CanPHITrans is wrong."); 79 } 80 81 // Validate the operands of the instruction. 82 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 83 if (!VerifySubExpr(I->getOperand(i), InstInputs)) 84 return false; 85 86 return true; 87 } 88 89 /// Verify - Check internal consistency of this data structure. If the 90 /// structure is valid, it returns true. If invalid, it prints errors and 91 /// returns false. 92 bool PHITransAddr::Verify() const { 93 if (!Addr) return true; 94 95 SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end()); 96 97 if (!VerifySubExpr(Addr, Tmp)) 98 return false; 99 100 if (!Tmp.empty()) { 101 errs() << "PHITransAddr contains extra instructions:\n"; 102 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) 103 errs() << " InstInput #" << i << " is " << *InstInputs[i] << "\n"; 104 llvm_unreachable("This is unexpected."); 105 } 106 107 // a-ok. 108 return true; 109 } 110 111 112 /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true 113 /// if we have some hope of doing it. This should be used as a filter to 114 /// avoid calling PHITranslateValue in hopeless situations. 115 bool PHITransAddr::IsPotentiallyPHITranslatable() const { 116 // If the input value is not an instruction, or if it is not defined in CurBB, 117 // then we don't need to phi translate it. 118 Instruction *Inst = dyn_cast<Instruction>(Addr); 119 return !Inst || CanPHITrans(Inst); 120 } 121 122 123 static void RemoveInstInputs(Value *V, 124 SmallVectorImpl<Instruction*> &InstInputs) { 125 Instruction *I = dyn_cast<Instruction>(V); 126 if (!I) return; 127 128 // If the instruction is in the InstInputs list, remove it. 129 SmallVectorImpl<Instruction*>::iterator Entry = 130 std::find(InstInputs.begin(), InstInputs.end(), I); 131 if (Entry != InstInputs.end()) { 132 InstInputs.erase(Entry); 133 return; 134 } 135 136 assert(!isa<PHINode>(I) && "Error, removing something that isn't an input"); 137 138 // Otherwise, it must have instruction inputs itself. Zap them recursively. 139 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 140 if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i))) 141 RemoveInstInputs(Op, InstInputs); 142 } 143 } 144 145 Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB, 146 BasicBlock *PredBB, 147 const DominatorTree *DT) { 148 // If this is a non-instruction value, it can't require PHI translation. 149 Instruction *Inst = dyn_cast<Instruction>(V); 150 if (!Inst) return V; 151 152 // Determine whether 'Inst' is an input to our PHI translatable expression. 153 bool isInput = std::count(InstInputs.begin(), InstInputs.end(), Inst); 154 155 // Handle inputs instructions if needed. 156 if (isInput) { 157 if (Inst->getParent() != CurBB) { 158 // If it is an input defined in a different block, then it remains an 159 // input. 160 return Inst; 161 } 162 163 // If 'Inst' is defined in this block and is an input that needs to be phi 164 // translated, we need to incorporate the value into the expression or fail. 165 166 // In either case, the instruction itself isn't an input any longer. 167 InstInputs.erase(std::find(InstInputs.begin(), InstInputs.end(), Inst)); 168 169 // If this is a PHI, go ahead and translate it. 170 if (PHINode *PN = dyn_cast<PHINode>(Inst)) 171 return AddAsInput(PN->getIncomingValueForBlock(PredBB)); 172 173 // If this is a non-phi value, and it is analyzable, we can incorporate it 174 // into the expression by making all instruction operands be inputs. 175 if (!CanPHITrans(Inst)) 176 return nullptr; 177 178 // All instruction operands are now inputs (and of course, they may also be 179 // defined in this block, so they may need to be phi translated themselves. 180 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 181 if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i))) 182 InstInputs.push_back(Op); 183 } 184 185 // Ok, it must be an intermediate result (either because it started that way 186 // or because we just incorporated it into the expression). See if its 187 // operands need to be phi translated, and if so, reconstruct it. 188 189 if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { 190 if (!isSafeToSpeculativelyExecute(Cast)) return nullptr; 191 Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT); 192 if (!PHIIn) return nullptr; 193 if (PHIIn == Cast->getOperand(0)) 194 return Cast; 195 196 // Find an available version of this cast. 197 198 // Constants are trivial to find. 199 if (Constant *C = dyn_cast<Constant>(PHIIn)) 200 return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(), 201 C, Cast->getType())); 202 203 // Otherwise we have to see if a casted version of the incoming pointer 204 // is available. If so, we can use it, otherwise we have to fail. 205 for (User *U : PHIIn->users()) { 206 if (CastInst *CastI = dyn_cast<CastInst>(U)) 207 if (CastI->getOpcode() == Cast->getOpcode() && 208 CastI->getType() == Cast->getType() && 209 (!DT || DT->dominates(CastI->getParent(), PredBB))) 210 return CastI; 211 } 212 return nullptr; 213 } 214 215 // Handle getelementptr with at least one PHI translatable operand. 216 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 217 SmallVector<Value*, 8> GEPOps; 218 bool AnyChanged = false; 219 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { 220 Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT); 221 if (!GEPOp) return nullptr; 222 223 AnyChanged |= GEPOp != GEP->getOperand(i); 224 GEPOps.push_back(GEPOp); 225 } 226 227 if (!AnyChanged) 228 return GEP; 229 230 // Simplify the GEP to handle 'gep x, 0' -> x etc. 231 if (Value *V = SimplifyGEPInst(GEPOps, DL, TLI, DT)) { 232 for (unsigned i = 0, e = GEPOps.size(); i != e; ++i) 233 RemoveInstInputs(GEPOps[i], InstInputs); 234 235 return AddAsInput(V); 236 } 237 238 // Scan to see if we have this GEP available. 239 Value *APHIOp = GEPOps[0]; 240 for (User *U : APHIOp->users()) { 241 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) 242 if (GEPI->getType() == GEP->getType() && 243 GEPI->getNumOperands() == GEPOps.size() && 244 GEPI->getParent()->getParent() == CurBB->getParent() && 245 (!DT || DT->dominates(GEPI->getParent(), PredBB))) { 246 bool Mismatch = false; 247 for (unsigned i = 0, e = GEPOps.size(); i != e; ++i) 248 if (GEPI->getOperand(i) != GEPOps[i]) { 249 Mismatch = true; 250 break; 251 } 252 if (!Mismatch) 253 return GEPI; 254 } 255 } 256 return nullptr; 257 } 258 259 // Handle add with a constant RHS. 260 if (Inst->getOpcode() == Instruction::Add && 261 isa<ConstantInt>(Inst->getOperand(1))) { 262 // PHI translate the LHS. 263 Constant *RHS = cast<ConstantInt>(Inst->getOperand(1)); 264 bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap(); 265 bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap(); 266 267 Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT); 268 if (!LHS) return nullptr; 269 270 // If the PHI translated LHS is an add of a constant, fold the immediates. 271 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS)) 272 if (BOp->getOpcode() == Instruction::Add) 273 if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 274 LHS = BOp->getOperand(0); 275 RHS = ConstantExpr::getAdd(RHS, CI); 276 isNSW = isNUW = false; 277 278 // If the old 'LHS' was an input, add the new 'LHS' as an input. 279 if (std::count(InstInputs.begin(), InstInputs.end(), BOp)) { 280 RemoveInstInputs(BOp, InstInputs); 281 AddAsInput(LHS); 282 } 283 } 284 285 // See if the add simplifies away. 286 if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, DL, TLI, DT)) { 287 // If we simplified the operands, the LHS is no longer an input, but Res 288 // is. 289 RemoveInstInputs(LHS, InstInputs); 290 return AddAsInput(Res); 291 } 292 293 // If we didn't modify the add, just return it. 294 if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1)) 295 return Inst; 296 297 // Otherwise, see if we have this add available somewhere. 298 for (User *U : LHS->users()) { 299 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) 300 if (BO->getOpcode() == Instruction::Add && 301 BO->getOperand(0) == LHS && BO->getOperand(1) == RHS && 302 BO->getParent()->getParent() == CurBB->getParent() && 303 (!DT || DT->dominates(BO->getParent(), PredBB))) 304 return BO; 305 } 306 307 return nullptr; 308 } 309 310 // Otherwise, we failed. 311 return nullptr; 312 } 313 314 315 /// PHITranslateValue - PHI translate the current address up the CFG from 316 /// CurBB to Pred, updating our state to reflect any needed changes. If the 317 /// dominator tree DT is non-null, the translated value must dominate 318 /// PredBB. This returns true on failure and sets Addr to null. 319 bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB, 320 const DominatorTree *DT) { 321 assert(Verify() && "Invalid PHITransAddr!"); 322 Addr = PHITranslateSubExpr(Addr, CurBB, PredBB, DT); 323 assert(Verify() && "Invalid PHITransAddr!"); 324 325 if (DT) { 326 // Make sure the value is live in the predecessor. 327 if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr)) 328 if (!DT->dominates(Inst->getParent(), PredBB)) 329 Addr = nullptr; 330 } 331 332 return Addr == nullptr; 333 } 334 335 /// PHITranslateWithInsertion - PHI translate this value into the specified 336 /// predecessor block, inserting a computation of the value if it is 337 /// unavailable. 338 /// 339 /// All newly created instructions are added to the NewInsts list. This 340 /// returns null on failure. 341 /// 342 Value *PHITransAddr:: 343 PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB, 344 const DominatorTree &DT, 345 SmallVectorImpl<Instruction*> &NewInsts) { 346 unsigned NISize = NewInsts.size(); 347 348 // Attempt to PHI translate with insertion. 349 Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts); 350 351 // If successful, return the new value. 352 if (Addr) return Addr; 353 354 // If not, destroy any intermediate instructions inserted. 355 while (NewInsts.size() != NISize) 356 NewInsts.pop_back_val()->eraseFromParent(); 357 return nullptr; 358 } 359 360 361 /// InsertPHITranslatedPointer - Insert a computation of the PHI translated 362 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB 363 /// block. All newly created instructions are added to the NewInsts list. 364 /// This returns null on failure. 365 /// 366 Value *PHITransAddr:: 367 InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB, 368 BasicBlock *PredBB, const DominatorTree &DT, 369 SmallVectorImpl<Instruction*> &NewInsts) { 370 // See if we have a version of this value already available and dominating 371 // PredBB. If so, there is no need to insert a new instance of it. 372 PHITransAddr Tmp(InVal, DL); 373 if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT)) 374 return Tmp.getAddr(); 375 376 // If we don't have an available version of this value, it must be an 377 // instruction. 378 Instruction *Inst = cast<Instruction>(InVal); 379 380 // Handle cast of PHI translatable value. 381 if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { 382 if (!isSafeToSpeculativelyExecute(Cast)) return nullptr; 383 Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0), 384 CurBB, PredBB, DT, NewInsts); 385 if (!OpVal) return nullptr; 386 387 // Otherwise insert a cast at the end of PredBB. 388 CastInst *New = CastInst::Create(Cast->getOpcode(), 389 OpVal, InVal->getType(), 390 InVal->getName()+".phi.trans.insert", 391 PredBB->getTerminator()); 392 NewInsts.push_back(New); 393 return New; 394 } 395 396 // Handle getelementptr with at least one PHI operand. 397 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 398 SmallVector<Value*, 8> GEPOps; 399 BasicBlock *CurBB = GEP->getParent(); 400 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { 401 Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i), 402 CurBB, PredBB, DT, NewInsts); 403 if (!OpVal) return nullptr; 404 GEPOps.push_back(OpVal); 405 } 406 407 GetElementPtrInst *Result = 408 GetElementPtrInst::Create(GEPOps[0], makeArrayRef(GEPOps).slice(1), 409 InVal->getName()+".phi.trans.insert", 410 PredBB->getTerminator()); 411 Result->setIsInBounds(GEP->isInBounds()); 412 NewInsts.push_back(Result); 413 return Result; 414 } 415 416 #if 0 417 // FIXME: This code works, but it is unclear that we actually want to insert 418 // a big chain of computation in order to make a value available in a block. 419 // This needs to be evaluated carefully to consider its cost trade offs. 420 421 // Handle add with a constant RHS. 422 if (Inst->getOpcode() == Instruction::Add && 423 isa<ConstantInt>(Inst->getOperand(1))) { 424 // PHI translate the LHS. 425 Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0), 426 CurBB, PredBB, DT, NewInsts); 427 if (OpVal == 0) return 0; 428 429 BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1), 430 InVal->getName()+".phi.trans.insert", 431 PredBB->getTerminator()); 432 Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap()); 433 Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap()); 434 NewInsts.push_back(Res); 435 return Res; 436 } 437 #endif 438 439 return nullptr; 440 } 441