Home | History | Annotate | Download | only in ObjCARC
      1 //===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This file defines ObjC ARC optimizations. ARC stands for Automatic
     11 /// Reference Counting and is a system for managing reference counts for objects
     12 /// in Objective C.
     13 ///
     14 /// The optimizations performed include elimination of redundant, partially
     15 /// redundant, and inconsequential reference count operations, elimination of
     16 /// redundant weak pointer operations, and numerous minor simplifications.
     17 ///
     18 /// WARNING: This file knows about certain library functions. It recognizes them
     19 /// by name, and hardwires knowledge of their semantics.
     20 ///
     21 /// WARNING: This file knows about how certain Objective-C library functions are
     22 /// used. Naive LLVM IR transformations which would otherwise be
     23 /// behavior-preserving may break these assumptions.
     24 ///
     25 //===----------------------------------------------------------------------===//
     26 
     27 #include "ObjCARC.h"
     28 #include "ARCRuntimeEntryPoints.h"
     29 #include "DependencyAnalysis.h"
     30 #include "ObjCARCAliasAnalysis.h"
     31 #include "ProvenanceAnalysis.h"
     32 #include "llvm/ADT/DenseMap.h"
     33 #include "llvm/ADT/DenseSet.h"
     34 #include "llvm/ADT/STLExtras.h"
     35 #include "llvm/ADT/SmallPtrSet.h"
     36 #include "llvm/ADT/Statistic.h"
     37 #include "llvm/IR/CFG.h"
     38 #include "llvm/IR/IRBuilder.h"
     39 #include "llvm/IR/LLVMContext.h"
     40 #include "llvm/Support/Debug.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 
     43 using namespace llvm;
     44 using namespace llvm::objcarc;
     45 
     46 #define DEBUG_TYPE "objc-arc-opts"
     47 
     48 /// \defgroup MiscUtils Miscellaneous utilities that are not ARC specific.
     49 /// @{
     50 
     51 namespace {
     52   /// \brief An associative container with fast insertion-order (deterministic)
     53   /// iteration over its elements. Plus the special blot operation.
     54   template<class KeyT, class ValueT>
     55   class MapVector {
     56     /// Map keys to indices in Vector.
     57     typedef DenseMap<KeyT, size_t> MapTy;
     58     MapTy Map;
     59 
     60     typedef std::vector<std::pair<KeyT, ValueT> > VectorTy;
     61     /// Keys and values.
     62     VectorTy Vector;
     63 
     64   public:
     65     typedef typename VectorTy::iterator iterator;
     66     typedef typename VectorTy::const_iterator const_iterator;
     67     iterator begin() { return Vector.begin(); }
     68     iterator end() { return Vector.end(); }
     69     const_iterator begin() const { return Vector.begin(); }
     70     const_iterator end() const { return Vector.end(); }
     71 
     72 #ifdef XDEBUG
     73     ~MapVector() {
     74       assert(Vector.size() >= Map.size()); // May differ due to blotting.
     75       for (typename MapTy::const_iterator I = Map.begin(), E = Map.end();
     76            I != E; ++I) {
     77         assert(I->second < Vector.size());
     78         assert(Vector[I->second].first == I->first);
     79       }
     80       for (typename VectorTy::const_iterator I = Vector.begin(),
     81            E = Vector.end(); I != E; ++I)
     82         assert(!I->first ||
     83                (Map.count(I->first) &&
     84                 Map[I->first] == size_t(I - Vector.begin())));
     85     }
     86 #endif
     87 
     88     ValueT &operator[](const KeyT &Arg) {
     89       std::pair<typename MapTy::iterator, bool> Pair =
     90         Map.insert(std::make_pair(Arg, size_t(0)));
     91       if (Pair.second) {
     92         size_t Num = Vector.size();
     93         Pair.first->second = Num;
     94         Vector.push_back(std::make_pair(Arg, ValueT()));
     95         return Vector[Num].second;
     96       }
     97       return Vector[Pair.first->second].second;
     98     }
     99 
    100     std::pair<iterator, bool>
    101     insert(const std::pair<KeyT, ValueT> &InsertPair) {
    102       std::pair<typename MapTy::iterator, bool> Pair =
    103         Map.insert(std::make_pair(InsertPair.first, size_t(0)));
    104       if (Pair.second) {
    105         size_t Num = Vector.size();
    106         Pair.first->second = Num;
    107         Vector.push_back(InsertPair);
    108         return std::make_pair(Vector.begin() + Num, true);
    109       }
    110       return std::make_pair(Vector.begin() + Pair.first->second, false);
    111     }
    112 
    113     iterator find(const KeyT &Key) {
    114       typename MapTy::iterator It = Map.find(Key);
    115       if (It == Map.end()) return Vector.end();
    116       return Vector.begin() + It->second;
    117     }
    118 
    119     const_iterator find(const KeyT &Key) const {
    120       typename MapTy::const_iterator It = Map.find(Key);
    121       if (It == Map.end()) return Vector.end();
    122       return Vector.begin() + It->second;
    123     }
    124 
    125     /// This is similar to erase, but instead of removing the element from the
    126     /// vector, it just zeros out the key in the vector. This leaves iterators
    127     /// intact, but clients must be prepared for zeroed-out keys when iterating.
    128     void blot(const KeyT &Key) {
    129       typename MapTy::iterator It = Map.find(Key);
    130       if (It == Map.end()) return;
    131       Vector[It->second].first = KeyT();
    132       Map.erase(It);
    133     }
    134 
    135     void clear() {
    136       Map.clear();
    137       Vector.clear();
    138     }
    139   };
    140 }
    141 
    142 /// @}
    143 ///
    144 /// \defgroup ARCUtilities Utility declarations/definitions specific to ARC.
    145 /// @{
    146 
    147 /// \brief This is similar to StripPointerCastsAndObjCCalls but it stops as soon
    148 /// as it finds a value with multiple uses.
    149 static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
    150   if (Arg->hasOneUse()) {
    151     if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
    152       return FindSingleUseIdentifiedObject(BC->getOperand(0));
    153     if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
    154       if (GEP->hasAllZeroIndices())
    155         return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
    156     if (IsForwarding(GetBasicInstructionClass(Arg)))
    157       return FindSingleUseIdentifiedObject(
    158                cast<CallInst>(Arg)->getArgOperand(0));
    159     if (!IsObjCIdentifiedObject(Arg))
    160       return nullptr;
    161     return Arg;
    162   }
    163 
    164   // If we found an identifiable object but it has multiple uses, but they are
    165   // trivial uses, we can still consider this to be a single-use value.
    166   if (IsObjCIdentifiedObject(Arg)) {
    167     for (const User *U : Arg->users())
    168       if (!U->use_empty() || StripPointerCastsAndObjCCalls(U) != Arg)
    169          return nullptr;
    170 
    171     return Arg;
    172   }
    173 
    174   return nullptr;
    175 }
    176 
    177 /// This is a wrapper around getUnderlyingObjCPtr along the lines of
    178 /// GetUnderlyingObjects except that it returns early when it sees the first
    179 /// alloca.
    180 static inline bool AreAnyUnderlyingObjectsAnAlloca(const Value *V) {
    181   SmallPtrSet<const Value *, 4> Visited;
    182   SmallVector<const Value *, 4> Worklist;
    183   Worklist.push_back(V);
    184   do {
    185     const Value *P = Worklist.pop_back_val();
    186     P = GetUnderlyingObjCPtr(P);
    187 
    188     if (isa<AllocaInst>(P))
    189       return true;
    190 
    191     if (!Visited.insert(P))
    192       continue;
    193 
    194     if (const SelectInst *SI = dyn_cast<const SelectInst>(P)) {
    195       Worklist.push_back(SI->getTrueValue());
    196       Worklist.push_back(SI->getFalseValue());
    197       continue;
    198     }
    199 
    200     if (const PHINode *PN = dyn_cast<const PHINode>(P)) {
    201       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    202         Worklist.push_back(PN->getIncomingValue(i));
    203       continue;
    204     }
    205   } while (!Worklist.empty());
    206 
    207   return false;
    208 }
    209 
    210 
    211 /// @}
    212 ///
    213 /// \defgroup ARCOpt ARC Optimization.
    214 /// @{
    215 
    216 // TODO: On code like this:
    217 //
    218 // objc_retain(%x)
    219 // stuff_that_cannot_release()
    220 // objc_autorelease(%x)
    221 // stuff_that_cannot_release()
    222 // objc_retain(%x)
    223 // stuff_that_cannot_release()
    224 // objc_autorelease(%x)
    225 //
    226 // The second retain and autorelease can be deleted.
    227 
    228 // TODO: It should be possible to delete
    229 // objc_autoreleasePoolPush and objc_autoreleasePoolPop
    230 // pairs if nothing is actually autoreleased between them. Also, autorelease
    231 // calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
    232 // after inlining) can be turned into plain release calls.
    233 
    234 // TODO: Critical-edge splitting. If the optimial insertion point is
    235 // a critical edge, the current algorithm has to fail, because it doesn't
    236 // know how to split edges. It should be possible to make the optimizer
    237 // think in terms of edges, rather than blocks, and then split critical
    238 // edges on demand.
    239 
    240 // TODO: OptimizeSequences could generalized to be Interprocedural.
    241 
    242 // TODO: Recognize that a bunch of other objc runtime calls have
    243 // non-escaping arguments and non-releasing arguments, and may be
    244 // non-autoreleasing.
    245 
    246 // TODO: Sink autorelease calls as far as possible. Unfortunately we
    247 // usually can't sink them past other calls, which would be the main
    248 // case where it would be useful.
    249 
    250 // TODO: The pointer returned from objc_loadWeakRetained is retained.
    251 
    252 // TODO: Delete release+retain pairs (rare).
    253 
    254 STATISTIC(NumNoops,       "Number of no-op objc calls eliminated");
    255 STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
    256 STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
    257 STATISTIC(NumRets,        "Number of return value forwarding "
    258                           "retain+autoreleases eliminated");
    259 STATISTIC(NumRRs,         "Number of retain+release paths eliminated");
    260 STATISTIC(NumPeeps,       "Number of calls peephole-optimized");
    261 #ifndef NDEBUG
    262 STATISTIC(NumRetainsBeforeOpt,
    263           "Number of retains before optimization");
    264 STATISTIC(NumReleasesBeforeOpt,
    265           "Number of releases before optimization");
    266 STATISTIC(NumRetainsAfterOpt,
    267           "Number of retains after optimization");
    268 STATISTIC(NumReleasesAfterOpt,
    269           "Number of releases after optimization");
    270 #endif
    271 
    272 namespace {
    273   /// \enum Sequence
    274   ///
    275   /// \brief A sequence of states that a pointer may go through in which an
    276   /// objc_retain and objc_release are actually needed.
    277   enum Sequence {
    278     S_None,
    279     S_Retain,         ///< objc_retain(x).
    280     S_CanRelease,     ///< foo(x) -- x could possibly see a ref count decrement.
    281     S_Use,            ///< any use of x.
    282     S_Stop,           ///< like S_Release, but code motion is stopped.
    283     S_Release,        ///< objc_release(x).
    284     S_MovableRelease  ///< objc_release(x), !clang.imprecise_release.
    285   };
    286 
    287   raw_ostream &operator<<(raw_ostream &OS, const Sequence S)
    288     LLVM_ATTRIBUTE_UNUSED;
    289   raw_ostream &operator<<(raw_ostream &OS, const Sequence S) {
    290     switch (S) {
    291     case S_None:
    292       return OS << "S_None";
    293     case S_Retain:
    294       return OS << "S_Retain";
    295     case S_CanRelease:
    296       return OS << "S_CanRelease";
    297     case S_Use:
    298       return OS << "S_Use";
    299     case S_Release:
    300       return OS << "S_Release";
    301     case S_MovableRelease:
    302       return OS << "S_MovableRelease";
    303     case S_Stop:
    304       return OS << "S_Stop";
    305     }
    306     llvm_unreachable("Unknown sequence type.");
    307   }
    308 }
    309 
    310 static Sequence MergeSeqs(Sequence A, Sequence B, bool TopDown) {
    311   // The easy cases.
    312   if (A == B)
    313     return A;
    314   if (A == S_None || B == S_None)
    315     return S_None;
    316 
    317   if (A > B) std::swap(A, B);
    318   if (TopDown) {
    319     // Choose the side which is further along in the sequence.
    320     if ((A == S_Retain || A == S_CanRelease) &&
    321         (B == S_CanRelease || B == S_Use))
    322       return B;
    323   } else {
    324     // Choose the side which is further along in the sequence.
    325     if ((A == S_Use || A == S_CanRelease) &&
    326         (B == S_Use || B == S_Release || B == S_Stop || B == S_MovableRelease))
    327       return A;
    328     // If both sides are releases, choose the more conservative one.
    329     if (A == S_Stop && (B == S_Release || B == S_MovableRelease))
    330       return A;
    331     if (A == S_Release && B == S_MovableRelease)
    332       return A;
    333   }
    334 
    335   return S_None;
    336 }
    337 
    338 namespace {
    339   /// \brief Unidirectional information about either a
    340   /// retain-decrement-use-release sequence or release-use-decrement-retain
    341   /// reverse sequence.
    342   struct RRInfo {
    343     /// After an objc_retain, the reference count of the referenced
    344     /// object is known to be positive. Similarly, before an objc_release, the
    345     /// reference count of the referenced object is known to be positive. If
    346     /// there are retain-release pairs in code regions where the retain count
    347     /// is known to be positive, they can be eliminated, regardless of any side
    348     /// effects between them.
    349     ///
    350     /// Also, a retain+release pair nested within another retain+release
    351     /// pair all on the known same pointer value can be eliminated, regardless
    352     /// of any intervening side effects.
    353     ///
    354     /// KnownSafe is true when either of these conditions is satisfied.
    355     bool KnownSafe;
    356 
    357     /// True of the objc_release calls are all marked with the "tail" keyword.
    358     bool IsTailCallRelease;
    359 
    360     /// If the Calls are objc_release calls and they all have a
    361     /// clang.imprecise_release tag, this is the metadata tag.
    362     MDNode *ReleaseMetadata;
    363 
    364     /// For a top-down sequence, the set of objc_retains or
    365     /// objc_retainBlocks. For bottom-up, the set of objc_releases.
    366     SmallPtrSet<Instruction *, 2> Calls;
    367 
    368     /// The set of optimal insert positions for moving calls in the opposite
    369     /// sequence.
    370     SmallPtrSet<Instruction *, 2> ReverseInsertPts;
    371 
    372     /// If this is true, we cannot perform code motion but can still remove
    373     /// retain/release pairs.
    374     bool CFGHazardAfflicted;
    375 
    376     RRInfo() :
    377       KnownSafe(false), IsTailCallRelease(false), ReleaseMetadata(nullptr),
    378       CFGHazardAfflicted(false) {}
    379 
    380     void clear();
    381 
    382     /// Conservatively merge the two RRInfo. Returns true if a partial merge has
    383     /// occurred, false otherwise.
    384     bool Merge(const RRInfo &Other);
    385 
    386   };
    387 }
    388 
    389 void RRInfo::clear() {
    390   KnownSafe = false;
    391   IsTailCallRelease = false;
    392   ReleaseMetadata = nullptr;
    393   Calls.clear();
    394   ReverseInsertPts.clear();
    395   CFGHazardAfflicted = false;
    396 }
    397 
    398 bool RRInfo::Merge(const RRInfo &Other) {
    399     // Conservatively merge the ReleaseMetadata information.
    400     if (ReleaseMetadata != Other.ReleaseMetadata)
    401       ReleaseMetadata = nullptr;
    402 
    403     // Conservatively merge the boolean state.
    404     KnownSafe &= Other.KnownSafe;
    405     IsTailCallRelease &= Other.IsTailCallRelease;
    406     CFGHazardAfflicted |= Other.CFGHazardAfflicted;
    407 
    408     // Merge the call sets.
    409     Calls.insert(Other.Calls.begin(), Other.Calls.end());
    410 
    411     // Merge the insert point sets. If there are any differences,
    412     // that makes this a partial merge.
    413     bool Partial = ReverseInsertPts.size() != Other.ReverseInsertPts.size();
    414     for (SmallPtrSet<Instruction *, 2>::const_iterator
    415          I = Other.ReverseInsertPts.begin(),
    416          E = Other.ReverseInsertPts.end(); I != E; ++I)
    417       Partial |= ReverseInsertPts.insert(*I);
    418     return Partial;
    419 }
    420 
    421 namespace {
    422   /// \brief This class summarizes several per-pointer runtime properties which
    423   /// are propogated through the flow graph.
    424   class PtrState {
    425     /// True if the reference count is known to be incremented.
    426     bool KnownPositiveRefCount;
    427 
    428     /// True if we've seen an opportunity for partial RR elimination, such as
    429     /// pushing calls into a CFG triangle or into one side of a CFG diamond.
    430     bool Partial;
    431 
    432     /// The current position in the sequence.
    433     unsigned char Seq : 8;
    434 
    435     /// Unidirectional information about the current sequence.
    436     RRInfo RRI;
    437 
    438   public:
    439     PtrState() : KnownPositiveRefCount(false), Partial(false),
    440                  Seq(S_None) {}
    441 
    442 
    443     bool IsKnownSafe() const {
    444       return RRI.KnownSafe;
    445     }
    446 
    447     void SetKnownSafe(const bool NewValue) {
    448       RRI.KnownSafe = NewValue;
    449     }
    450 
    451     bool IsTailCallRelease() const {
    452       return RRI.IsTailCallRelease;
    453     }
    454 
    455     void SetTailCallRelease(const bool NewValue) {
    456       RRI.IsTailCallRelease = NewValue;
    457     }
    458 
    459     bool IsTrackingImpreciseReleases() const {
    460       return RRI.ReleaseMetadata != nullptr;
    461     }
    462 
    463     const MDNode *GetReleaseMetadata() const {
    464       return RRI.ReleaseMetadata;
    465     }
    466 
    467     void SetReleaseMetadata(MDNode *NewValue) {
    468       RRI.ReleaseMetadata = NewValue;
    469     }
    470 
    471     bool IsCFGHazardAfflicted() const {
    472       return RRI.CFGHazardAfflicted;
    473     }
    474 
    475     void SetCFGHazardAfflicted(const bool NewValue) {
    476       RRI.CFGHazardAfflicted = NewValue;
    477     }
    478 
    479     void SetKnownPositiveRefCount() {
    480       DEBUG(dbgs() << "Setting Known Positive.\n");
    481       KnownPositiveRefCount = true;
    482     }
    483 
    484     void ClearKnownPositiveRefCount() {
    485       DEBUG(dbgs() << "Clearing Known Positive.\n");
    486       KnownPositiveRefCount = false;
    487     }
    488 
    489     bool HasKnownPositiveRefCount() const {
    490       return KnownPositiveRefCount;
    491     }
    492 
    493     void SetSeq(Sequence NewSeq) {
    494       DEBUG(dbgs() << "Old: " << Seq << "; New: " << NewSeq << "\n");
    495       Seq = NewSeq;
    496     }
    497 
    498     Sequence GetSeq() const {
    499       return static_cast<Sequence>(Seq);
    500     }
    501 
    502     void ClearSequenceProgress() {
    503       ResetSequenceProgress(S_None);
    504     }
    505 
    506     void ResetSequenceProgress(Sequence NewSeq) {
    507       DEBUG(dbgs() << "Resetting sequence progress.\n");
    508       SetSeq(NewSeq);
    509       Partial = false;
    510       RRI.clear();
    511     }
    512 
    513     void Merge(const PtrState &Other, bool TopDown);
    514 
    515     void InsertCall(Instruction *I) {
    516       RRI.Calls.insert(I);
    517     }
    518 
    519     void InsertReverseInsertPt(Instruction *I) {
    520       RRI.ReverseInsertPts.insert(I);
    521     }
    522 
    523     void ClearReverseInsertPts() {
    524       RRI.ReverseInsertPts.clear();
    525     }
    526 
    527     bool HasReverseInsertPts() const {
    528       return !RRI.ReverseInsertPts.empty();
    529     }
    530 
    531     const RRInfo &GetRRInfo() const {
    532       return RRI;
    533     }
    534   };
    535 }
    536 
    537 void
    538 PtrState::Merge(const PtrState &Other, bool TopDown) {
    539   Seq = MergeSeqs(GetSeq(), Other.GetSeq(), TopDown);
    540   KnownPositiveRefCount &= Other.KnownPositiveRefCount;
    541 
    542   // If we're not in a sequence (anymore), drop all associated state.
    543   if (Seq == S_None) {
    544     Partial = false;
    545     RRI.clear();
    546   } else if (Partial || Other.Partial) {
    547     // If we're doing a merge on a path that's previously seen a partial
    548     // merge, conservatively drop the sequence, to avoid doing partial
    549     // RR elimination. If the branch predicates for the two merge differ,
    550     // mixing them is unsafe.
    551     ClearSequenceProgress();
    552   } else {
    553     // Otherwise merge the other PtrState's RRInfo into our RRInfo. At this
    554     // point, we know that currently we are not partial. Stash whether or not
    555     // the merge operation caused us to undergo a partial merging of reverse
    556     // insertion points.
    557     Partial = RRI.Merge(Other.RRI);
    558   }
    559 }
    560 
    561 namespace {
    562   /// \brief Per-BasicBlock state.
    563   class BBState {
    564     /// The number of unique control paths from the entry which can reach this
    565     /// block.
    566     unsigned TopDownPathCount;
    567 
    568     /// The number of unique control paths to exits from this block.
    569     unsigned BottomUpPathCount;
    570 
    571     /// A type for PerPtrTopDown and PerPtrBottomUp.
    572     typedef MapVector<const Value *, PtrState> MapTy;
    573 
    574     /// The top-down traversal uses this to record information known about a
    575     /// pointer at the bottom of each block.
    576     MapTy PerPtrTopDown;
    577 
    578     /// The bottom-up traversal uses this to record information known about a
    579     /// pointer at the top of each block.
    580     MapTy PerPtrBottomUp;
    581 
    582     /// Effective predecessors of the current block ignoring ignorable edges and
    583     /// ignored backedges.
    584     SmallVector<BasicBlock *, 2> Preds;
    585     /// Effective successors of the current block ignoring ignorable edges and
    586     /// ignored backedges.
    587     SmallVector<BasicBlock *, 2> Succs;
    588 
    589   public:
    590     static const unsigned OverflowOccurredValue;
    591 
    592     BBState() : TopDownPathCount(0), BottomUpPathCount(0) { }
    593 
    594     typedef MapTy::iterator ptr_iterator;
    595     typedef MapTy::const_iterator ptr_const_iterator;
    596 
    597     ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
    598     ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
    599     ptr_const_iterator top_down_ptr_begin() const {
    600       return PerPtrTopDown.begin();
    601     }
    602     ptr_const_iterator top_down_ptr_end() const {
    603       return PerPtrTopDown.end();
    604     }
    605 
    606     ptr_iterator bottom_up_ptr_begin() { return PerPtrBottomUp.begin(); }
    607     ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
    608     ptr_const_iterator bottom_up_ptr_begin() const {
    609       return PerPtrBottomUp.begin();
    610     }
    611     ptr_const_iterator bottom_up_ptr_end() const {
    612       return PerPtrBottomUp.end();
    613     }
    614 
    615     /// Mark this block as being an entry block, which has one path from the
    616     /// entry by definition.
    617     void SetAsEntry() { TopDownPathCount = 1; }
    618 
    619     /// Mark this block as being an exit block, which has one path to an exit by
    620     /// definition.
    621     void SetAsExit()  { BottomUpPathCount = 1; }
    622 
    623     /// Attempt to find the PtrState object describing the top down state for
    624     /// pointer Arg. Return a new initialized PtrState describing the top down
    625     /// state for Arg if we do not find one.
    626     PtrState &getPtrTopDownState(const Value *Arg) {
    627       return PerPtrTopDown[Arg];
    628     }
    629 
    630     /// Attempt to find the PtrState object describing the bottom up state for
    631     /// pointer Arg. Return a new initialized PtrState describing the bottom up
    632     /// state for Arg if we do not find one.
    633     PtrState &getPtrBottomUpState(const Value *Arg) {
    634       return PerPtrBottomUp[Arg];
    635     }
    636 
    637     /// Attempt to find the PtrState object describing the bottom up state for
    638     /// pointer Arg.
    639     ptr_iterator findPtrBottomUpState(const Value *Arg) {
    640       return PerPtrBottomUp.find(Arg);
    641     }
    642 
    643     void clearBottomUpPointers() {
    644       PerPtrBottomUp.clear();
    645     }
    646 
    647     void clearTopDownPointers() {
    648       PerPtrTopDown.clear();
    649     }
    650 
    651     void InitFromPred(const BBState &Other);
    652     void InitFromSucc(const BBState &Other);
    653     void MergePred(const BBState &Other);
    654     void MergeSucc(const BBState &Other);
    655 
    656     /// Compute the number of possible unique paths from an entry to an exit
    657     /// which pass through this block. This is only valid after both the
    658     /// top-down and bottom-up traversals are complete.
    659     ///
    660     /// Returns true if overflow occurred. Returns false if overflow did not
    661     /// occur.
    662     bool GetAllPathCountWithOverflow(unsigned &PathCount) const {
    663       if (TopDownPathCount == OverflowOccurredValue ||
    664           BottomUpPathCount == OverflowOccurredValue)
    665         return true;
    666       unsigned long long Product =
    667         (unsigned long long)TopDownPathCount*BottomUpPathCount;
    668       // Overflow occurred if any of the upper bits of Product are set or if all
    669       // the lower bits of Product are all set.
    670       return (Product >> 32) ||
    671              ((PathCount = Product) == OverflowOccurredValue);
    672     }
    673 
    674     // Specialized CFG utilities.
    675     typedef SmallVectorImpl<BasicBlock *>::const_iterator edge_iterator;
    676     edge_iterator pred_begin() const { return Preds.begin(); }
    677     edge_iterator pred_end() const { return Preds.end(); }
    678     edge_iterator succ_begin() const { return Succs.begin(); }
    679     edge_iterator succ_end() const { return Succs.end(); }
    680 
    681     void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); }
    682     void addPred(BasicBlock *Pred) { Preds.push_back(Pred); }
    683 
    684     bool isExit() const { return Succs.empty(); }
    685   };
    686 
    687   const unsigned BBState::OverflowOccurredValue = 0xffffffff;
    688 }
    689 
    690 void BBState::InitFromPred(const BBState &Other) {
    691   PerPtrTopDown = Other.PerPtrTopDown;
    692   TopDownPathCount = Other.TopDownPathCount;
    693 }
    694 
    695 void BBState::InitFromSucc(const BBState &Other) {
    696   PerPtrBottomUp = Other.PerPtrBottomUp;
    697   BottomUpPathCount = Other.BottomUpPathCount;
    698 }
    699 
    700 /// The top-down traversal uses this to merge information about predecessors to
    701 /// form the initial state for a new block.
    702 void BBState::MergePred(const BBState &Other) {
    703   if (TopDownPathCount == OverflowOccurredValue)
    704     return;
    705 
    706   // Other.TopDownPathCount can be 0, in which case it is either dead or a
    707   // loop backedge. Loop backedges are special.
    708   TopDownPathCount += Other.TopDownPathCount;
    709 
    710   // In order to be consistent, we clear the top down pointers when by adding
    711   // TopDownPathCount becomes OverflowOccurredValue even though "true" overflow
    712   // has not occurred.
    713   if (TopDownPathCount == OverflowOccurredValue) {
    714     clearTopDownPointers();
    715     return;
    716   }
    717 
    718   // Check for overflow. If we have overflow, fall back to conservative
    719   // behavior.
    720   if (TopDownPathCount < Other.TopDownPathCount) {
    721     TopDownPathCount = OverflowOccurredValue;
    722     clearTopDownPointers();
    723     return;
    724   }
    725 
    726   // For each entry in the other set, if our set has an entry with the same key,
    727   // merge the entries. Otherwise, copy the entry and merge it with an empty
    728   // entry.
    729   for (ptr_const_iterator MI = Other.top_down_ptr_begin(),
    730        ME = Other.top_down_ptr_end(); MI != ME; ++MI) {
    731     std::pair<ptr_iterator, bool> Pair = PerPtrTopDown.insert(*MI);
    732     Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
    733                              /*TopDown=*/true);
    734   }
    735 
    736   // For each entry in our set, if the other set doesn't have an entry with the
    737   // same key, force it to merge with an empty entry.
    738   for (ptr_iterator MI = top_down_ptr_begin(),
    739        ME = top_down_ptr_end(); MI != ME; ++MI)
    740     if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
    741       MI->second.Merge(PtrState(), /*TopDown=*/true);
    742 }
    743 
    744 /// The bottom-up traversal uses this to merge information about successors to
    745 /// form the initial state for a new block.
    746 void BBState::MergeSucc(const BBState &Other) {
    747   if (BottomUpPathCount == OverflowOccurredValue)
    748     return;
    749 
    750   // Other.BottomUpPathCount can be 0, in which case it is either dead or a
    751   // loop backedge. Loop backedges are special.
    752   BottomUpPathCount += Other.BottomUpPathCount;
    753 
    754   // In order to be consistent, we clear the top down pointers when by adding
    755   // BottomUpPathCount becomes OverflowOccurredValue even though "true" overflow
    756   // has not occurred.
    757   if (BottomUpPathCount == OverflowOccurredValue) {
    758     clearBottomUpPointers();
    759     return;
    760   }
    761 
    762   // Check for overflow. If we have overflow, fall back to conservative
    763   // behavior.
    764   if (BottomUpPathCount < Other.BottomUpPathCount) {
    765     BottomUpPathCount = OverflowOccurredValue;
    766     clearBottomUpPointers();
    767     return;
    768   }
    769 
    770   // For each entry in the other set, if our set has an entry with the
    771   // same key, merge the entries. Otherwise, copy the entry and merge
    772   // it with an empty entry.
    773   for (ptr_const_iterator MI = Other.bottom_up_ptr_begin(),
    774        ME = Other.bottom_up_ptr_end(); MI != ME; ++MI) {
    775     std::pair<ptr_iterator, bool> Pair = PerPtrBottomUp.insert(*MI);
    776     Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
    777                              /*TopDown=*/false);
    778   }
    779 
    780   // For each entry in our set, if the other set doesn't have an entry
    781   // with the same key, force it to merge with an empty entry.
    782   for (ptr_iterator MI = bottom_up_ptr_begin(),
    783        ME = bottom_up_ptr_end(); MI != ME; ++MI)
    784     if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
    785       MI->second.Merge(PtrState(), /*TopDown=*/false);
    786 }
    787 
    788 // Only enable ARC Annotations if we are building a debug version of
    789 // libObjCARCOpts.
    790 #ifndef NDEBUG
    791 #define ARC_ANNOTATIONS
    792 #endif
    793 
    794 // Define some macros along the lines of DEBUG and some helper functions to make
    795 // it cleaner to create annotations in the source code and to no-op when not
    796 // building in debug mode.
    797 #ifdef ARC_ANNOTATIONS
    798 
    799 #include "llvm/Support/CommandLine.h"
    800 
    801 /// Enable/disable ARC sequence annotations.
    802 static cl::opt<bool>
    803 EnableARCAnnotations("enable-objc-arc-annotations", cl::init(false),
    804                      cl::desc("Enable emission of arc data flow analysis "
    805                               "annotations"));
    806 static cl::opt<bool>
    807 DisableCheckForCFGHazards("disable-objc-arc-checkforcfghazards", cl::init(false),
    808                           cl::desc("Disable check for cfg hazards when "
    809                                    "annotating"));
    810 static cl::opt<std::string>
    811 ARCAnnotationTargetIdentifier("objc-arc-annotation-target-identifier",
    812                               cl::init(""),
    813                               cl::desc("filter out all data flow annotations "
    814                                        "but those that apply to the given "
    815                                        "target llvm identifier."));
    816 
    817 /// This function appends a unique ARCAnnotationProvenanceSourceMDKind id to an
    818 /// instruction so that we can track backwards when post processing via the llvm
    819 /// arc annotation processor tool. If the function is an
    820 static MDString *AppendMDNodeToSourcePtr(unsigned NodeId,
    821                                          Value *Ptr) {
    822   MDString *Hash = nullptr;
    823 
    824   // If pointer is a result of an instruction and it does not have a source
    825   // MDNode it, attach a new MDNode onto it. If pointer is a result of
    826   // an instruction and does have a source MDNode attached to it, return a
    827   // reference to said Node. Otherwise just return 0.
    828   if (Instruction *Inst = dyn_cast<Instruction>(Ptr)) {
    829     MDNode *Node;
    830     if (!(Node = Inst->getMetadata(NodeId))) {
    831       // We do not have any node. Generate and attatch the hash MDString to the
    832       // instruction.
    833 
    834       // We just use an MDString to ensure that this metadata gets written out
    835       // of line at the module level and to provide a very simple format
    836       // encoding the information herein. Both of these makes it simpler to
    837       // parse the annotations by a simple external program.
    838       std::string Str;
    839       raw_string_ostream os(Str);
    840       os << "(" << Inst->getParent()->getParent()->getName() << ",%"
    841          << Inst->getName() << ")";
    842 
    843       Hash = MDString::get(Inst->getContext(), os.str());
    844       Inst->setMetadata(NodeId, MDNode::get(Inst->getContext(),Hash));
    845     } else {
    846       // We have a node. Grab its hash and return it.
    847       assert(Node->getNumOperands() == 1 &&
    848         "An ARCAnnotationProvenanceSourceMDKind can only have 1 operand.");
    849       Hash = cast<MDString>(Node->getOperand(0));
    850     }
    851   } else if (Argument *Arg = dyn_cast<Argument>(Ptr)) {
    852     std::string str;
    853     raw_string_ostream os(str);
    854     os << "(" << Arg->getParent()->getName() << ",%" << Arg->getName()
    855        << ")";
    856     Hash = MDString::get(Arg->getContext(), os.str());
    857   }
    858 
    859   return Hash;
    860 }
    861 
    862 static std::string SequenceToString(Sequence A) {
    863   std::string str;
    864   raw_string_ostream os(str);
    865   os << A;
    866   return os.str();
    867 }
    868 
    869 /// Helper function to change a Sequence into a String object using our overload
    870 /// for raw_ostream so we only have printing code in one location.
    871 static MDString *SequenceToMDString(LLVMContext &Context,
    872                                     Sequence A) {
    873   return MDString::get(Context, SequenceToString(A));
    874 }
    875 
    876 /// A simple function to generate a MDNode which describes the change in state
    877 /// for Value *Ptr caused by Instruction *Inst.
    878 static void AppendMDNodeToInstForPtr(unsigned NodeId,
    879                                      Instruction *Inst,
    880                                      Value *Ptr,
    881                                      MDString *PtrSourceMDNodeID,
    882                                      Sequence OldSeq,
    883                                      Sequence NewSeq) {
    884   MDNode *Node = nullptr;
    885   Value *tmp[3] = {PtrSourceMDNodeID,
    886                    SequenceToMDString(Inst->getContext(),
    887                                       OldSeq),
    888                    SequenceToMDString(Inst->getContext(),
    889                                       NewSeq)};
    890   Node = MDNode::get(Inst->getContext(),
    891                      ArrayRef<Value*>(tmp, 3));
    892 
    893   Inst->setMetadata(NodeId, Node);
    894 }
    895 
    896 /// Add to the beginning of the basic block llvm.ptr.annotations which show the
    897 /// state of a pointer at the entrance to a basic block.
    898 static void GenerateARCBBEntranceAnnotation(const char *Name, BasicBlock *BB,
    899                                             Value *Ptr, Sequence Seq) {
    900   // If we have a target identifier, make sure that we match it before
    901   // continuing.
    902   if(!ARCAnnotationTargetIdentifier.empty() &&
    903      !Ptr->getName().equals(ARCAnnotationTargetIdentifier))
    904     return;
    905 
    906   Module *M = BB->getParent()->getParent();
    907   LLVMContext &C = M->getContext();
    908   Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
    909   Type *I8XX = PointerType::getUnqual(I8X);
    910   Type *Params[] = {I8XX, I8XX};
    911   FunctionType *FTy = FunctionType::get(Type::getVoidTy(C),
    912                                         ArrayRef<Type*>(Params, 2),
    913                                         /*isVarArg=*/false);
    914   Constant *Callee = M->getOrInsertFunction(Name, FTy);
    915 
    916   IRBuilder<> Builder(BB, BB->getFirstInsertionPt());
    917 
    918   Value *PtrName;
    919   StringRef Tmp = Ptr->getName();
    920   if (nullptr == (PtrName = M->getGlobalVariable(Tmp, true))) {
    921     Value *ActualPtrName = Builder.CreateGlobalStringPtr(Tmp,
    922                                                          Tmp + "_STR");
    923     PtrName = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage,
    924                                  cast<Constant>(ActualPtrName), Tmp);
    925   }
    926 
    927   Value *S;
    928   std::string SeqStr = SequenceToString(Seq);
    929   if (nullptr == (S = M->getGlobalVariable(SeqStr, true))) {
    930     Value *ActualPtrName = Builder.CreateGlobalStringPtr(SeqStr,
    931                                                          SeqStr + "_STR");
    932     S = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage,
    933                            cast<Constant>(ActualPtrName), SeqStr);
    934   }
    935 
    936   Builder.CreateCall2(Callee, PtrName, S);
    937 }
    938 
    939 /// Add to the end of the basic block llvm.ptr.annotations which show the state
    940 /// of the pointer at the bottom of the basic block.
    941 static void GenerateARCBBTerminatorAnnotation(const char *Name, BasicBlock *BB,
    942                                               Value *Ptr, Sequence Seq) {
    943   // If we have a target identifier, make sure that we match it before emitting
    944   // an annotation.
    945   if(!ARCAnnotationTargetIdentifier.empty() &&
    946      !Ptr->getName().equals(ARCAnnotationTargetIdentifier))
    947     return;
    948 
    949   Module *M = BB->getParent()->getParent();
    950   LLVMContext &C = M->getContext();
    951   Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
    952   Type *I8XX = PointerType::getUnqual(I8X);
    953   Type *Params[] = {I8XX, I8XX};
    954   FunctionType *FTy = FunctionType::get(Type::getVoidTy(C),
    955                                         ArrayRef<Type*>(Params, 2),
    956                                         /*isVarArg=*/false);
    957   Constant *Callee = M->getOrInsertFunction(Name, FTy);
    958 
    959   IRBuilder<> Builder(BB, std::prev(BB->end()));
    960 
    961   Value *PtrName;
    962   StringRef Tmp = Ptr->getName();
    963   if (nullptr == (PtrName = M->getGlobalVariable(Tmp, true))) {
    964     Value *ActualPtrName = Builder.CreateGlobalStringPtr(Tmp,
    965                                                          Tmp + "_STR");
    966     PtrName = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage,
    967                                  cast<Constant>(ActualPtrName), Tmp);
    968   }
    969 
    970   Value *S;
    971   std::string SeqStr = SequenceToString(Seq);
    972   if (nullptr == (S = M->getGlobalVariable(SeqStr, true))) {
    973     Value *ActualPtrName = Builder.CreateGlobalStringPtr(SeqStr,
    974                                                          SeqStr + "_STR");
    975     S = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage,
    976                            cast<Constant>(ActualPtrName), SeqStr);
    977   }
    978   Builder.CreateCall2(Callee, PtrName, S);
    979 }
    980 
    981 /// Adds a source annotation to pointer and a state change annotation to Inst
    982 /// referencing the source annotation and the old/new state of pointer.
    983 static void GenerateARCAnnotation(unsigned InstMDId,
    984                                   unsigned PtrMDId,
    985                                   Instruction *Inst,
    986                                   Value *Ptr,
    987                                   Sequence OldSeq,
    988                                   Sequence NewSeq) {
    989   if (EnableARCAnnotations) {
    990     // If we have a target identifier, make sure that we match it before
    991     // emitting an annotation.
    992     if(!ARCAnnotationTargetIdentifier.empty() &&
    993        !Ptr->getName().equals(ARCAnnotationTargetIdentifier))
    994       return;
    995 
    996     // First generate the source annotation on our pointer. This will return an
    997     // MDString* if Ptr actually comes from an instruction implying we can put
    998     // in a source annotation. If AppendMDNodeToSourcePtr returns 0 (i.e. NULL),
    999     // then we know that our pointer is from an Argument so we put a reference
   1000     // to the argument number.
   1001     //
   1002     // The point of this is to make it easy for the
   1003     // llvm-arc-annotation-processor tool to cross reference where the source
   1004     // pointer is in the LLVM IR since the LLVM IR parser does not submit such
   1005     // information via debug info for backends to use (since why would anyone
   1006     // need such a thing from LLVM IR besides in non-standard cases
   1007     // [i.e. this]).
   1008     MDString *SourcePtrMDNode =
   1009       AppendMDNodeToSourcePtr(PtrMDId, Ptr);
   1010     AppendMDNodeToInstForPtr(InstMDId, Inst, Ptr, SourcePtrMDNode, OldSeq,
   1011                              NewSeq);
   1012   }
   1013 }
   1014 
   1015 // The actual interface for accessing the above functionality is defined via
   1016 // some simple macros which are defined below. We do this so that the user does
   1017 // not need to pass in what metadata id is needed resulting in cleaner code and
   1018 // additionally since it provides an easy way to conditionally no-op all
   1019 // annotation support in a non-debug build.
   1020 
   1021 /// Use this macro to annotate a sequence state change when processing
   1022 /// instructions bottom up,
   1023 #define ANNOTATE_BOTTOMUP(inst, ptr, old, new)                          \
   1024   GenerateARCAnnotation(ARCAnnotationBottomUpMDKind,                    \
   1025                         ARCAnnotationProvenanceSourceMDKind, (inst),    \
   1026                         const_cast<Value*>(ptr), (old), (new))
   1027 /// Use this macro to annotate a sequence state change when processing
   1028 /// instructions top down.
   1029 #define ANNOTATE_TOPDOWN(inst, ptr, old, new)                           \
   1030   GenerateARCAnnotation(ARCAnnotationTopDownMDKind,                     \
   1031                         ARCAnnotationProvenanceSourceMDKind, (inst),    \
   1032                         const_cast<Value*>(ptr), (old), (new))
   1033 
   1034 #define ANNOTATE_BB(_states, _bb, _name, _type, _direction)                   \
   1035   do {                                                                        \
   1036     if (EnableARCAnnotations) {                                               \
   1037       for(BBState::ptr_const_iterator I = (_states)._direction##_ptr_begin(), \
   1038           E = (_states)._direction##_ptr_end(); I != E; ++I) {                \
   1039         Value *Ptr = const_cast<Value*>(I->first);                            \
   1040         Sequence Seq = I->second.GetSeq();                                    \
   1041         GenerateARCBB ## _type ## Annotation(_name, (_bb), Ptr, Seq);         \
   1042       }                                                                       \
   1043     }                                                                         \
   1044   } while (0)
   1045 
   1046 #define ANNOTATE_BOTTOMUP_BBSTART(_states, _basicblock)                       \
   1047     ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.bottomup.bbstart", \
   1048                 Entrance, bottom_up)
   1049 #define ANNOTATE_BOTTOMUP_BBEND(_states, _basicblock)                         \
   1050     ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.bottomup.bbend",   \
   1051                 Terminator, bottom_up)
   1052 #define ANNOTATE_TOPDOWN_BBSTART(_states, _basicblock)                        \
   1053     ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.topdown.bbstart",  \
   1054                 Entrance, top_down)
   1055 #define ANNOTATE_TOPDOWN_BBEND(_states, _basicblock)                          \
   1056     ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.topdown.bbend",    \
   1057                 Terminator, top_down)
   1058 
   1059 #else // !ARC_ANNOTATION
   1060 // If annotations are off, noop.
   1061 #define ANNOTATE_BOTTOMUP(inst, ptr, old, new)
   1062 #define ANNOTATE_TOPDOWN(inst, ptr, old, new)
   1063 #define ANNOTATE_BOTTOMUP_BBSTART(states, basicblock)
   1064 #define ANNOTATE_BOTTOMUP_BBEND(states, basicblock)
   1065 #define ANNOTATE_TOPDOWN_BBSTART(states, basicblock)
   1066 #define ANNOTATE_TOPDOWN_BBEND(states, basicblock)
   1067 #endif // !ARC_ANNOTATION
   1068 
   1069 namespace {
   1070   /// \brief The main ARC optimization pass.
   1071   class ObjCARCOpt : public FunctionPass {
   1072     bool Changed;
   1073     ProvenanceAnalysis PA;
   1074     ARCRuntimeEntryPoints EP;
   1075 
   1076     // This is used to track if a pointer is stored into an alloca.
   1077     DenseSet<const Value *> MultiOwnersSet;
   1078 
   1079     /// A flag indicating whether this optimization pass should run.
   1080     bool Run;
   1081 
   1082     /// Flags which determine whether each of the interesting runtine functions
   1083     /// is in fact used in the current function.
   1084     unsigned UsedInThisFunction;
   1085 
   1086     /// The Metadata Kind for clang.imprecise_release metadata.
   1087     unsigned ImpreciseReleaseMDKind;
   1088 
   1089     /// The Metadata Kind for clang.arc.copy_on_escape metadata.
   1090     unsigned CopyOnEscapeMDKind;
   1091 
   1092     /// The Metadata Kind for clang.arc.no_objc_arc_exceptions metadata.
   1093     unsigned NoObjCARCExceptionsMDKind;
   1094 
   1095 #ifdef ARC_ANNOTATIONS
   1096     /// The Metadata Kind for llvm.arc.annotation.bottomup metadata.
   1097     unsigned ARCAnnotationBottomUpMDKind;
   1098     /// The Metadata Kind for llvm.arc.annotation.topdown metadata.
   1099     unsigned ARCAnnotationTopDownMDKind;
   1100     /// The Metadata Kind for llvm.arc.annotation.provenancesource metadata.
   1101     unsigned ARCAnnotationProvenanceSourceMDKind;
   1102 #endif // ARC_ANNOATIONS
   1103 
   1104     bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
   1105     void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
   1106                                    InstructionClass &Class);
   1107     void OptimizeIndividualCalls(Function &F);
   1108 
   1109     void CheckForCFGHazards(const BasicBlock *BB,
   1110                             DenseMap<const BasicBlock *, BBState> &BBStates,
   1111                             BBState &MyStates) const;
   1112     bool VisitInstructionBottomUp(Instruction *Inst,
   1113                                   BasicBlock *BB,
   1114                                   MapVector<Value *, RRInfo> &Retains,
   1115                                   BBState &MyStates);
   1116     bool VisitBottomUp(BasicBlock *BB,
   1117                        DenseMap<const BasicBlock *, BBState> &BBStates,
   1118                        MapVector<Value *, RRInfo> &Retains);
   1119     bool VisitInstructionTopDown(Instruction *Inst,
   1120                                  DenseMap<Value *, RRInfo> &Releases,
   1121                                  BBState &MyStates);
   1122     bool VisitTopDown(BasicBlock *BB,
   1123                       DenseMap<const BasicBlock *, BBState> &BBStates,
   1124                       DenseMap<Value *, RRInfo> &Releases);
   1125     bool Visit(Function &F,
   1126                DenseMap<const BasicBlock *, BBState> &BBStates,
   1127                MapVector<Value *, RRInfo> &Retains,
   1128                DenseMap<Value *, RRInfo> &Releases);
   1129 
   1130     void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
   1131                    MapVector<Value *, RRInfo> &Retains,
   1132                    DenseMap<Value *, RRInfo> &Releases,
   1133                    SmallVectorImpl<Instruction *> &DeadInsts,
   1134                    Module *M);
   1135 
   1136     bool ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState> &BBStates,
   1137                                MapVector<Value *, RRInfo> &Retains,
   1138                                DenseMap<Value *, RRInfo> &Releases,
   1139                                Module *M,
   1140                                SmallVectorImpl<Instruction *> &NewRetains,
   1141                                SmallVectorImpl<Instruction *> &NewReleases,
   1142                                SmallVectorImpl<Instruction *> &DeadInsts,
   1143                                RRInfo &RetainsToMove,
   1144                                RRInfo &ReleasesToMove,
   1145                                Value *Arg,
   1146                                bool KnownSafe,
   1147                                bool &AnyPairsCompletelyEliminated);
   1148 
   1149     bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
   1150                               MapVector<Value *, RRInfo> &Retains,
   1151                               DenseMap<Value *, RRInfo> &Releases,
   1152                               Module *M);
   1153 
   1154     void OptimizeWeakCalls(Function &F);
   1155 
   1156     bool OptimizeSequences(Function &F);
   1157 
   1158     void OptimizeReturns(Function &F);
   1159 
   1160 #ifndef NDEBUG
   1161     void GatherStatistics(Function &F, bool AfterOptimization = false);
   1162 #endif
   1163 
   1164     void getAnalysisUsage(AnalysisUsage &AU) const override;
   1165     bool doInitialization(Module &M) override;
   1166     bool runOnFunction(Function &F) override;
   1167     void releaseMemory() override;
   1168 
   1169   public:
   1170     static char ID;
   1171     ObjCARCOpt() : FunctionPass(ID) {
   1172       initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
   1173     }
   1174   };
   1175 }
   1176 
   1177 char ObjCARCOpt::ID = 0;
   1178 INITIALIZE_PASS_BEGIN(ObjCARCOpt,
   1179                       "objc-arc", "ObjC ARC optimization", false, false)
   1180 INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis)
   1181 INITIALIZE_PASS_END(ObjCARCOpt,
   1182                     "objc-arc", "ObjC ARC optimization", false, false)
   1183 
   1184 Pass *llvm::createObjCARCOptPass() {
   1185   return new ObjCARCOpt();
   1186 }
   1187 
   1188 void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
   1189   AU.addRequired<ObjCARCAliasAnalysis>();
   1190   AU.addRequired<AliasAnalysis>();
   1191   // ARC optimization doesn't currently split critical edges.
   1192   AU.setPreservesCFG();
   1193 }
   1194 
   1195 /// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is
   1196 /// not a return value.  Or, if it can be paired with an
   1197 /// objc_autoreleaseReturnValue, delete the pair and return true.
   1198 bool
   1199 ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
   1200   // Check for the argument being from an immediately preceding call or invoke.
   1201   const Value *Arg = GetObjCArg(RetainRV);
   1202   ImmutableCallSite CS(Arg);
   1203   if (const Instruction *Call = CS.getInstruction()) {
   1204     if (Call->getParent() == RetainRV->getParent()) {
   1205       BasicBlock::const_iterator I = Call;
   1206       ++I;
   1207       while (IsNoopInstruction(I)) ++I;
   1208       if (&*I == RetainRV)
   1209         return false;
   1210     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
   1211       BasicBlock *RetainRVParent = RetainRV->getParent();
   1212       if (II->getNormalDest() == RetainRVParent) {
   1213         BasicBlock::const_iterator I = RetainRVParent->begin();
   1214         while (IsNoopInstruction(I)) ++I;
   1215         if (&*I == RetainRV)
   1216           return false;
   1217       }
   1218     }
   1219   }
   1220 
   1221   // Check for being preceded by an objc_autoreleaseReturnValue on the same
   1222   // pointer. In this case, we can delete the pair.
   1223   BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin();
   1224   if (I != Begin) {
   1225     do --I; while (I != Begin && IsNoopInstruction(I));
   1226     if (GetBasicInstructionClass(I) == IC_AutoreleaseRV &&
   1227         GetObjCArg(I) == Arg) {
   1228       Changed = true;
   1229       ++NumPeeps;
   1230 
   1231       DEBUG(dbgs() << "Erasing autoreleaseRV,retainRV pair: " << *I << "\n"
   1232                    << "Erasing " << *RetainRV << "\n");
   1233 
   1234       EraseInstruction(I);
   1235       EraseInstruction(RetainRV);
   1236       return true;
   1237     }
   1238   }
   1239 
   1240   // Turn it to a plain objc_retain.
   1241   Changed = true;
   1242   ++NumPeeps;
   1243 
   1244   DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => "
   1245                   "objc_retain since the operand is not a return value.\n"
   1246                   "Old = " << *RetainRV << "\n");
   1247 
   1248   Constant *NewDecl = EP.get(ARCRuntimeEntryPoints::EPT_Retain);
   1249   cast<CallInst>(RetainRV)->setCalledFunction(NewDecl);
   1250 
   1251   DEBUG(dbgs() << "New = " << *RetainRV << "\n");
   1252 
   1253   return false;
   1254 }
   1255 
   1256 /// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not
   1257 /// used as a return value.
   1258 void
   1259 ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
   1260                                       InstructionClass &Class) {
   1261   // Check for a return of the pointer value.
   1262   const Value *Ptr = GetObjCArg(AutoreleaseRV);
   1263   SmallVector<const Value *, 2> Users;
   1264   Users.push_back(Ptr);
   1265   do {
   1266     Ptr = Users.pop_back_val();
   1267     for (const User *U : Ptr->users()) {
   1268       if (isa<ReturnInst>(U) || GetBasicInstructionClass(U) == IC_RetainRV)
   1269         return;
   1270       if (isa<BitCastInst>(U))
   1271         Users.push_back(U);
   1272     }
   1273   } while (!Users.empty());
   1274 
   1275   Changed = true;
   1276   ++NumPeeps;
   1277 
   1278   DEBUG(dbgs() << "Transforming objc_autoreleaseReturnValue => "
   1279                   "objc_autorelease since its operand is not used as a return "
   1280                   "value.\n"
   1281                   "Old = " << *AutoreleaseRV << "\n");
   1282 
   1283   CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV);
   1284   Constant *NewDecl = EP.get(ARCRuntimeEntryPoints::EPT_Autorelease);
   1285   AutoreleaseRVCI->setCalledFunction(NewDecl);
   1286   AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease.
   1287   Class = IC_Autorelease;
   1288 
   1289   DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n");
   1290 
   1291 }
   1292 
   1293 /// Visit each call, one at a time, and make simplifications without doing any
   1294 /// additional analysis.
   1295 void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
   1296   DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n");
   1297   // Reset all the flags in preparation for recomputing them.
   1298   UsedInThisFunction = 0;
   1299 
   1300   // Visit all objc_* calls in F.
   1301   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
   1302     Instruction *Inst = &*I++;
   1303 
   1304     InstructionClass Class = GetBasicInstructionClass(Inst);
   1305 
   1306     DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n");
   1307 
   1308     switch (Class) {
   1309     default: break;
   1310 
   1311     // Delete no-op casts. These function calls have special semantics, but
   1312     // the semantics are entirely implemented via lowering in the front-end,
   1313     // so by the time they reach the optimizer, they are just no-op calls
   1314     // which return their argument.
   1315     //
   1316     // There are gray areas here, as the ability to cast reference-counted
   1317     // pointers to raw void* and back allows code to break ARC assumptions,
   1318     // however these are currently considered to be unimportant.
   1319     case IC_NoopCast:
   1320       Changed = true;
   1321       ++NumNoops;
   1322       DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n");
   1323       EraseInstruction(Inst);
   1324       continue;
   1325 
   1326     // If the pointer-to-weak-pointer is null, it's undefined behavior.
   1327     case IC_StoreWeak:
   1328     case IC_LoadWeak:
   1329     case IC_LoadWeakRetained:
   1330     case IC_InitWeak:
   1331     case IC_DestroyWeak: {
   1332       CallInst *CI = cast<CallInst>(Inst);
   1333       if (IsNullOrUndef(CI->getArgOperand(0))) {
   1334         Changed = true;
   1335         Type *Ty = CI->getArgOperand(0)->getType();
   1336         new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
   1337                       Constant::getNullValue(Ty),
   1338                       CI);
   1339         llvm::Value *NewValue = UndefValue::get(CI->getType());
   1340         DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
   1341                        "\nOld = " << *CI << "\nNew = " << *NewValue << "\n");
   1342         CI->replaceAllUsesWith(NewValue);
   1343         CI->eraseFromParent();
   1344         continue;
   1345       }
   1346       break;
   1347     }
   1348     case IC_CopyWeak:
   1349     case IC_MoveWeak: {
   1350       CallInst *CI = cast<CallInst>(Inst);
   1351       if (IsNullOrUndef(CI->getArgOperand(0)) ||
   1352           IsNullOrUndef(CI->getArgOperand(1))) {
   1353         Changed = true;
   1354         Type *Ty = CI->getArgOperand(0)->getType();
   1355         new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
   1356                       Constant::getNullValue(Ty),
   1357                       CI);
   1358 
   1359         llvm::Value *NewValue = UndefValue::get(CI->getType());
   1360         DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
   1361                         "\nOld = " << *CI << "\nNew = " << *NewValue << "\n");
   1362 
   1363         CI->replaceAllUsesWith(NewValue);
   1364         CI->eraseFromParent();
   1365         continue;
   1366       }
   1367       break;
   1368     }
   1369     case IC_RetainRV:
   1370       if (OptimizeRetainRVCall(F, Inst))
   1371         continue;
   1372       break;
   1373     case IC_AutoreleaseRV:
   1374       OptimizeAutoreleaseRVCall(F, Inst, Class);
   1375       break;
   1376     }
   1377 
   1378     // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
   1379     if (IsAutorelease(Class) && Inst->use_empty()) {
   1380       CallInst *Call = cast<CallInst>(Inst);
   1381       const Value *Arg = Call->getArgOperand(0);
   1382       Arg = FindSingleUseIdentifiedObject(Arg);
   1383       if (Arg) {
   1384         Changed = true;
   1385         ++NumAutoreleases;
   1386 
   1387         // Create the declaration lazily.
   1388         LLVMContext &C = Inst->getContext();
   1389 
   1390         Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Release);
   1391         CallInst *NewCall = CallInst::Create(Decl, Call->getArgOperand(0), "",
   1392                                              Call);
   1393         NewCall->setMetadata(ImpreciseReleaseMDKind, MDNode::get(C, None));
   1394 
   1395         DEBUG(dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) "
   1396               "since x is otherwise unused.\nOld: " << *Call << "\nNew: "
   1397               << *NewCall << "\n");
   1398 
   1399         EraseInstruction(Call);
   1400         Inst = NewCall;
   1401         Class = IC_Release;
   1402       }
   1403     }
   1404 
   1405     // For functions which can never be passed stack arguments, add
   1406     // a tail keyword.
   1407     if (IsAlwaysTail(Class)) {
   1408       Changed = true;
   1409       DEBUG(dbgs() << "Adding tail keyword to function since it can never be "
   1410                       "passed stack args: " << *Inst << "\n");
   1411       cast<CallInst>(Inst)->setTailCall();
   1412     }
   1413 
   1414     // Ensure that functions that can never have a "tail" keyword due to the
   1415     // semantics of ARC truly do not do so.
   1416     if (IsNeverTail(Class)) {
   1417       Changed = true;
   1418       DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst <<
   1419             "\n");
   1420       cast<CallInst>(Inst)->setTailCall(false);
   1421     }
   1422 
   1423     // Set nounwind as needed.
   1424     if (IsNoThrow(Class)) {
   1425       Changed = true;
   1426       DEBUG(dbgs() << "Found no throw class. Setting nounwind on: " << *Inst
   1427                    << "\n");
   1428       cast<CallInst>(Inst)->setDoesNotThrow();
   1429     }
   1430 
   1431     if (!IsNoopOnNull(Class)) {
   1432       UsedInThisFunction |= 1 << Class;
   1433       continue;
   1434     }
   1435 
   1436     const Value *Arg = GetObjCArg(Inst);
   1437 
   1438     // ARC calls with null are no-ops. Delete them.
   1439     if (IsNullOrUndef(Arg)) {
   1440       Changed = true;
   1441       ++NumNoops;
   1442       DEBUG(dbgs() << "ARC calls with  null are no-ops. Erasing: " << *Inst
   1443             << "\n");
   1444       EraseInstruction(Inst);
   1445       continue;
   1446     }
   1447 
   1448     // Keep track of which of retain, release, autorelease, and retain_block
   1449     // are actually present in this function.
   1450     UsedInThisFunction |= 1 << Class;
   1451 
   1452     // If Arg is a PHI, and one or more incoming values to the
   1453     // PHI are null, and the call is control-equivalent to the PHI, and there
   1454     // are no relevant side effects between the PHI and the call, the call
   1455     // could be pushed up to just those paths with non-null incoming values.
   1456     // For now, don't bother splitting critical edges for this.
   1457     SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
   1458     Worklist.push_back(std::make_pair(Inst, Arg));
   1459     do {
   1460       std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
   1461       Inst = Pair.first;
   1462       Arg = Pair.second;
   1463 
   1464       const PHINode *PN = dyn_cast<PHINode>(Arg);
   1465       if (!PN) continue;
   1466 
   1467       // Determine if the PHI has any null operands, or any incoming
   1468       // critical edges.
   1469       bool HasNull = false;
   1470       bool HasCriticalEdges = false;
   1471       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1472         Value *Incoming =
   1473           StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
   1474         if (IsNullOrUndef(Incoming))
   1475           HasNull = true;
   1476         else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back())
   1477                    .getNumSuccessors() != 1) {
   1478           HasCriticalEdges = true;
   1479           break;
   1480         }
   1481       }
   1482       // If we have null operands and no critical edges, optimize.
   1483       if (!HasCriticalEdges && HasNull) {
   1484         SmallPtrSet<Instruction *, 4> DependingInstructions;
   1485         SmallPtrSet<const BasicBlock *, 4> Visited;
   1486 
   1487         // Check that there is nothing that cares about the reference
   1488         // count between the call and the phi.
   1489         switch (Class) {
   1490         case IC_Retain:
   1491         case IC_RetainBlock:
   1492           // These can always be moved up.
   1493           break;
   1494         case IC_Release:
   1495           // These can't be moved across things that care about the retain
   1496           // count.
   1497           FindDependencies(NeedsPositiveRetainCount, Arg,
   1498                            Inst->getParent(), Inst,
   1499                            DependingInstructions, Visited, PA);
   1500           break;
   1501         case IC_Autorelease:
   1502           // These can't be moved across autorelease pool scope boundaries.
   1503           FindDependencies(AutoreleasePoolBoundary, Arg,
   1504                            Inst->getParent(), Inst,
   1505                            DependingInstructions, Visited, PA);
   1506           break;
   1507         case IC_RetainRV:
   1508         case IC_AutoreleaseRV:
   1509           // Don't move these; the RV optimization depends on the autoreleaseRV
   1510           // being tail called, and the retainRV being immediately after a call
   1511           // (which might still happen if we get lucky with codegen layout, but
   1512           // it's not worth taking the chance).
   1513           continue;
   1514         default:
   1515           llvm_unreachable("Invalid dependence flavor");
   1516         }
   1517 
   1518         if (DependingInstructions.size() == 1 &&
   1519             *DependingInstructions.begin() == PN) {
   1520           Changed = true;
   1521           ++NumPartialNoops;
   1522           // Clone the call into each predecessor that has a non-null value.
   1523           CallInst *CInst = cast<CallInst>(Inst);
   1524           Type *ParamTy = CInst->getArgOperand(0)->getType();
   1525           for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1526             Value *Incoming =
   1527               StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
   1528             if (!IsNullOrUndef(Incoming)) {
   1529               CallInst *Clone = cast<CallInst>(CInst->clone());
   1530               Value *Op = PN->getIncomingValue(i);
   1531               Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
   1532               if (Op->getType() != ParamTy)
   1533                 Op = new BitCastInst(Op, ParamTy, "", InsertPos);
   1534               Clone->setArgOperand(0, Op);
   1535               Clone->insertBefore(InsertPos);
   1536 
   1537               DEBUG(dbgs() << "Cloning "
   1538                            << *CInst << "\n"
   1539                            "And inserting clone at " << *InsertPos << "\n");
   1540               Worklist.push_back(std::make_pair(Clone, Incoming));
   1541             }
   1542           }
   1543           // Erase the original call.
   1544           DEBUG(dbgs() << "Erasing: " << *CInst << "\n");
   1545           EraseInstruction(CInst);
   1546           continue;
   1547         }
   1548       }
   1549     } while (!Worklist.empty());
   1550   }
   1551 }
   1552 
   1553 /// If we have a top down pointer in the S_Use state, make sure that there are
   1554 /// no CFG hazards by checking the states of various bottom up pointers.
   1555 static void CheckForUseCFGHazard(const Sequence SuccSSeq,
   1556                                  const bool SuccSRRIKnownSafe,
   1557                                  PtrState &S,
   1558                                  bool &SomeSuccHasSame,
   1559                                  bool &AllSuccsHaveSame,
   1560                                  bool &NotAllSeqEqualButKnownSafe,
   1561                                  bool &ShouldContinue) {
   1562   switch (SuccSSeq) {
   1563   case S_CanRelease: {
   1564     if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) {
   1565       S.ClearSequenceProgress();
   1566       break;
   1567     }
   1568     S.SetCFGHazardAfflicted(true);
   1569     ShouldContinue = true;
   1570     break;
   1571   }
   1572   case S_Use:
   1573     SomeSuccHasSame = true;
   1574     break;
   1575   case S_Stop:
   1576   case S_Release:
   1577   case S_MovableRelease:
   1578     if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
   1579       AllSuccsHaveSame = false;
   1580     else
   1581       NotAllSeqEqualButKnownSafe = true;
   1582     break;
   1583   case S_Retain:
   1584     llvm_unreachable("bottom-up pointer in retain state!");
   1585   case S_None:
   1586     llvm_unreachable("This should have been handled earlier.");
   1587   }
   1588 }
   1589 
   1590 /// If we have a Top Down pointer in the S_CanRelease state, make sure that
   1591 /// there are no CFG hazards by checking the states of various bottom up
   1592 /// pointers.
   1593 static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq,
   1594                                         const bool SuccSRRIKnownSafe,
   1595                                         PtrState &S,
   1596                                         bool &SomeSuccHasSame,
   1597                                         bool &AllSuccsHaveSame,
   1598                                         bool &NotAllSeqEqualButKnownSafe) {
   1599   switch (SuccSSeq) {
   1600   case S_CanRelease:
   1601     SomeSuccHasSame = true;
   1602     break;
   1603   case S_Stop:
   1604   case S_Release:
   1605   case S_MovableRelease:
   1606   case S_Use:
   1607     if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
   1608       AllSuccsHaveSame = false;
   1609     else
   1610       NotAllSeqEqualButKnownSafe = true;
   1611     break;
   1612   case S_Retain:
   1613     llvm_unreachable("bottom-up pointer in retain state!");
   1614   case S_None:
   1615     llvm_unreachable("This should have been handled earlier.");
   1616   }
   1617 }
   1618 
   1619 /// Check for critical edges, loop boundaries, irreducible control flow, or
   1620 /// other CFG structures where moving code across the edge would result in it
   1621 /// being executed more.
   1622 void
   1623 ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
   1624                                DenseMap<const BasicBlock *, BBState> &BBStates,
   1625                                BBState &MyStates) const {
   1626   // If any top-down local-use or possible-dec has a succ which is earlier in
   1627   // the sequence, forget it.
   1628   for (BBState::ptr_iterator I = MyStates.top_down_ptr_begin(),
   1629          E = MyStates.top_down_ptr_end(); I != E; ++I) {
   1630     PtrState &S = I->second;
   1631     const Sequence Seq = I->second.GetSeq();
   1632 
   1633     // We only care about S_Retain, S_CanRelease, and S_Use.
   1634     if (Seq == S_None)
   1635       continue;
   1636 
   1637     // Make sure that if extra top down states are added in the future that this
   1638     // code is updated to handle it.
   1639     assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) &&
   1640            "Unknown top down sequence state.");
   1641 
   1642     const Value *Arg = I->first;
   1643     const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
   1644     bool SomeSuccHasSame = false;
   1645     bool AllSuccsHaveSame = true;
   1646     bool NotAllSeqEqualButKnownSafe = false;
   1647 
   1648     succ_const_iterator SI(TI), SE(TI, false);
   1649 
   1650     for (; SI != SE; ++SI) {
   1651       // If VisitBottomUp has pointer information for this successor, take
   1652       // what we know about it.
   1653       const DenseMap<const BasicBlock *, BBState>::iterator BBI =
   1654         BBStates.find(*SI);
   1655       assert(BBI != BBStates.end());
   1656       const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
   1657       const Sequence SuccSSeq = SuccS.GetSeq();
   1658 
   1659       // If bottom up, the pointer is in an S_None state, clear the sequence
   1660       // progress since the sequence in the bottom up state finished
   1661       // suggesting a mismatch in between retains/releases. This is true for
   1662       // all three cases that we are handling here: S_Retain, S_Use, and
   1663       // S_CanRelease.
   1664       if (SuccSSeq == S_None) {
   1665         S.ClearSequenceProgress();
   1666         continue;
   1667       }
   1668 
   1669       // If we have S_Use or S_CanRelease, perform our check for cfg hazard
   1670       // checks.
   1671       const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe();
   1672 
   1673       // *NOTE* We do not use Seq from above here since we are allowing for
   1674       // S.GetSeq() to change while we are visiting basic blocks.
   1675       switch(S.GetSeq()) {
   1676       case S_Use: {
   1677         bool ShouldContinue = false;
   1678         CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame,
   1679                              AllSuccsHaveSame, NotAllSeqEqualButKnownSafe,
   1680                              ShouldContinue);
   1681         if (ShouldContinue)
   1682           continue;
   1683         break;
   1684       }
   1685       case S_CanRelease: {
   1686         CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S,
   1687                                     SomeSuccHasSame, AllSuccsHaveSame,
   1688                                     NotAllSeqEqualButKnownSafe);
   1689         break;
   1690       }
   1691       case S_Retain:
   1692       case S_None:
   1693       case S_Stop:
   1694       case S_Release:
   1695       case S_MovableRelease:
   1696         break;
   1697       }
   1698     }
   1699 
   1700     // If the state at the other end of any of the successor edges
   1701     // matches the current state, require all edges to match. This
   1702     // guards against loops in the middle of a sequence.
   1703     if (SomeSuccHasSame && !AllSuccsHaveSame) {
   1704       S.ClearSequenceProgress();
   1705     } else if (NotAllSeqEqualButKnownSafe) {
   1706       // If we would have cleared the state foregoing the fact that we are known
   1707       // safe, stop code motion. This is because whether or not it is safe to
   1708       // remove RR pairs via KnownSafe is an orthogonal concept to whether we
   1709       // are allowed to perform code motion.
   1710       S.SetCFGHazardAfflicted(true);
   1711     }
   1712   }
   1713 }
   1714 
   1715 bool
   1716 ObjCARCOpt::VisitInstructionBottomUp(Instruction *Inst,
   1717                                      BasicBlock *BB,
   1718                                      MapVector<Value *, RRInfo> &Retains,
   1719                                      BBState &MyStates) {
   1720   bool NestingDetected = false;
   1721   InstructionClass Class = GetInstructionClass(Inst);
   1722   const Value *Arg = nullptr;
   1723 
   1724   DEBUG(dbgs() << "Class: " << Class << "\n");
   1725 
   1726   switch (Class) {
   1727   case IC_Release: {
   1728     Arg = GetObjCArg(Inst);
   1729 
   1730     PtrState &S = MyStates.getPtrBottomUpState(Arg);
   1731 
   1732     // If we see two releases in a row on the same pointer. If so, make
   1733     // a note, and we'll cicle back to revisit it after we've
   1734     // hopefully eliminated the second release, which may allow us to
   1735     // eliminate the first release too.
   1736     // Theoretically we could implement removal of nested retain+release
   1737     // pairs by making PtrState hold a stack of states, but this is
   1738     // simple and avoids adding overhead for the non-nested case.
   1739     if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease) {
   1740       DEBUG(dbgs() << "Found nested releases (i.e. a release pair)\n");
   1741       NestingDetected = true;
   1742     }
   1743 
   1744     MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
   1745     Sequence NewSeq = ReleaseMetadata ? S_MovableRelease : S_Release;
   1746     ANNOTATE_BOTTOMUP(Inst, Arg, S.GetSeq(), NewSeq);
   1747     S.ResetSequenceProgress(NewSeq);
   1748     S.SetReleaseMetadata(ReleaseMetadata);
   1749     S.SetKnownSafe(S.HasKnownPositiveRefCount());
   1750     S.SetTailCallRelease(cast<CallInst>(Inst)->isTailCall());
   1751     S.InsertCall(Inst);
   1752     S.SetKnownPositiveRefCount();
   1753     break;
   1754   }
   1755   case IC_RetainBlock:
   1756     // In OptimizeIndividualCalls, we have strength reduced all optimizable
   1757     // objc_retainBlocks to objc_retains. Thus at this point any
   1758     // objc_retainBlocks that we see are not optimizable.
   1759     break;
   1760   case IC_Retain:
   1761   case IC_RetainRV: {
   1762     Arg = GetObjCArg(Inst);
   1763 
   1764     PtrState &S = MyStates.getPtrBottomUpState(Arg);
   1765     S.SetKnownPositiveRefCount();
   1766 
   1767     Sequence OldSeq = S.GetSeq();
   1768     switch (OldSeq) {
   1769     case S_Stop:
   1770     case S_Release:
   1771     case S_MovableRelease:
   1772     case S_Use:
   1773       // If OldSeq is not S_Use or OldSeq is S_Use and we are tracking an
   1774       // imprecise release, clear our reverse insertion points.
   1775       if (OldSeq != S_Use || S.IsTrackingImpreciseReleases())
   1776         S.ClearReverseInsertPts();
   1777       // FALL THROUGH
   1778     case S_CanRelease:
   1779       // Don't do retain+release tracking for IC_RetainRV, because it's
   1780       // better to let it remain as the first instruction after a call.
   1781       if (Class != IC_RetainRV)
   1782         Retains[Inst] = S.GetRRInfo();
   1783       S.ClearSequenceProgress();
   1784       break;
   1785     case S_None:
   1786       break;
   1787     case S_Retain:
   1788       llvm_unreachable("bottom-up pointer in retain state!");
   1789     }
   1790     ANNOTATE_BOTTOMUP(Inst, Arg, OldSeq, S.GetSeq());
   1791     // A retain moving bottom up can be a use.
   1792     break;
   1793   }
   1794   case IC_AutoreleasepoolPop:
   1795     // Conservatively, clear MyStates for all known pointers.
   1796     MyStates.clearBottomUpPointers();
   1797     return NestingDetected;
   1798   case IC_AutoreleasepoolPush:
   1799   case IC_None:
   1800     // These are irrelevant.
   1801     return NestingDetected;
   1802   case IC_User:
   1803     // If we have a store into an alloca of a pointer we are tracking, the
   1804     // pointer has multiple owners implying that we must be more conservative.
   1805     //
   1806     // This comes up in the context of a pointer being ``KnownSafe''. In the
   1807     // presence of a block being initialized, the frontend will emit the
   1808     // objc_retain on the original pointer and the release on the pointer loaded
   1809     // from the alloca. The optimizer will through the provenance analysis
   1810     // realize that the two are related, but since we only require KnownSafe in
   1811     // one direction, will match the inner retain on the original pointer with
   1812     // the guard release on the original pointer. This is fixed by ensuring that
   1813     // in the presence of allocas we only unconditionally remove pointers if
   1814     // both our retain and our release are KnownSafe.
   1815     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
   1816       if (AreAnyUnderlyingObjectsAnAlloca(SI->getPointerOperand())) {
   1817         BBState::ptr_iterator I = MyStates.findPtrBottomUpState(
   1818           StripPointerCastsAndObjCCalls(SI->getValueOperand()));
   1819         if (I != MyStates.bottom_up_ptr_end())
   1820           MultiOwnersSet.insert(I->first);
   1821       }
   1822     }
   1823     break;
   1824   default:
   1825     break;
   1826   }
   1827 
   1828   // Consider any other possible effects of this instruction on each
   1829   // pointer being tracked.
   1830   for (BBState::ptr_iterator MI = MyStates.bottom_up_ptr_begin(),
   1831        ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) {
   1832     const Value *Ptr = MI->first;
   1833     if (Ptr == Arg)
   1834       continue; // Handled above.
   1835     PtrState &S = MI->second;
   1836     Sequence Seq = S.GetSeq();
   1837 
   1838     // Check for possible releases.
   1839     if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
   1840       DEBUG(dbgs() << "CanAlterRefCount: Seq: " << Seq << "; " << *Ptr
   1841             << "\n");
   1842       S.ClearKnownPositiveRefCount();
   1843       switch (Seq) {
   1844       case S_Use:
   1845         S.SetSeq(S_CanRelease);
   1846         ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S.GetSeq());
   1847         continue;
   1848       case S_CanRelease:
   1849       case S_Release:
   1850       case S_MovableRelease:
   1851       case S_Stop:
   1852       case S_None:
   1853         break;
   1854       case S_Retain:
   1855         llvm_unreachable("bottom-up pointer in retain state!");
   1856       }
   1857     }
   1858 
   1859     // Check for possible direct uses.
   1860     switch (Seq) {
   1861     case S_Release:
   1862     case S_MovableRelease:
   1863       if (CanUse(Inst, Ptr, PA, Class)) {
   1864         DEBUG(dbgs() << "CanUse: Seq: " << Seq << "; " << *Ptr
   1865               << "\n");
   1866         assert(!S.HasReverseInsertPts());
   1867         // If this is an invoke instruction, we're scanning it as part of
   1868         // one of its successor blocks, since we can't insert code after it
   1869         // in its own block, and we don't want to split critical edges.
   1870         if (isa<InvokeInst>(Inst))
   1871           S.InsertReverseInsertPt(BB->getFirstInsertionPt());
   1872         else
   1873           S.InsertReverseInsertPt(std::next(BasicBlock::iterator(Inst)));
   1874         S.SetSeq(S_Use);
   1875         ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S_Use);
   1876       } else if (Seq == S_Release && IsUser(Class)) {
   1877         DEBUG(dbgs() << "PreciseReleaseUse: Seq: " << Seq << "; " << *Ptr
   1878               << "\n");
   1879         // Non-movable releases depend on any possible objc pointer use.
   1880         S.SetSeq(S_Stop);
   1881         ANNOTATE_BOTTOMUP(Inst, Ptr, S_Release, S_Stop);
   1882         assert(!S.HasReverseInsertPts());
   1883         // As above; handle invoke specially.
   1884         if (isa<InvokeInst>(Inst))
   1885           S.InsertReverseInsertPt(BB->getFirstInsertionPt());
   1886         else
   1887           S.InsertReverseInsertPt(std::next(BasicBlock::iterator(Inst)));
   1888       }
   1889       break;
   1890     case S_Stop:
   1891       if (CanUse(Inst, Ptr, PA, Class)) {
   1892         DEBUG(dbgs() << "PreciseStopUse: Seq: " << Seq << "; " << *Ptr
   1893               << "\n");
   1894         S.SetSeq(S_Use);
   1895         ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S_Use);
   1896       }
   1897       break;
   1898     case S_CanRelease:
   1899     case S_Use:
   1900     case S_None:
   1901       break;
   1902     case S_Retain:
   1903       llvm_unreachable("bottom-up pointer in retain state!");
   1904     }
   1905   }
   1906 
   1907   return NestingDetected;
   1908 }
   1909 
   1910 bool
   1911 ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
   1912                           DenseMap<const BasicBlock *, BBState> &BBStates,
   1913                           MapVector<Value *, RRInfo> &Retains) {
   1914 
   1915   DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n");
   1916 
   1917   bool NestingDetected = false;
   1918   BBState &MyStates = BBStates[BB];
   1919 
   1920   // Merge the states from each successor to compute the initial state
   1921   // for the current block.
   1922   BBState::edge_iterator SI(MyStates.succ_begin()),
   1923                          SE(MyStates.succ_end());
   1924   if (SI != SE) {
   1925     const BasicBlock *Succ = *SI;
   1926     DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
   1927     assert(I != BBStates.end());
   1928     MyStates.InitFromSucc(I->second);
   1929     ++SI;
   1930     for (; SI != SE; ++SI) {
   1931       Succ = *SI;
   1932       I = BBStates.find(Succ);
   1933       assert(I != BBStates.end());
   1934       MyStates.MergeSucc(I->second);
   1935     }
   1936   }
   1937 
   1938   // If ARC Annotations are enabled, output the current state of pointers at the
   1939   // bottom of the basic block.
   1940   ANNOTATE_BOTTOMUP_BBEND(MyStates, BB);
   1941 
   1942   // Visit all the instructions, bottom-up.
   1943   for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
   1944     Instruction *Inst = std::prev(I);
   1945 
   1946     // Invoke instructions are visited as part of their successors (below).
   1947     if (isa<InvokeInst>(Inst))
   1948       continue;
   1949 
   1950     DEBUG(dbgs() << "Visiting " << *Inst << "\n");
   1951 
   1952     NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates);
   1953   }
   1954 
   1955   // If there's a predecessor with an invoke, visit the invoke as if it were
   1956   // part of this block, since we can't insert code after an invoke in its own
   1957   // block, and we don't want to split critical edges.
   1958   for (BBState::edge_iterator PI(MyStates.pred_begin()),
   1959        PE(MyStates.pred_end()); PI != PE; ++PI) {
   1960     BasicBlock *Pred = *PI;
   1961     if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back()))
   1962       NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates);
   1963   }
   1964 
   1965   // If ARC Annotations are enabled, output the current state of pointers at the
   1966   // top of the basic block.
   1967   ANNOTATE_BOTTOMUP_BBSTART(MyStates, BB);
   1968 
   1969   return NestingDetected;
   1970 }
   1971 
   1972 bool
   1973 ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst,
   1974                                     DenseMap<Value *, RRInfo> &Releases,
   1975                                     BBState &MyStates) {
   1976   bool NestingDetected = false;
   1977   InstructionClass Class = GetInstructionClass(Inst);
   1978   const Value *Arg = nullptr;
   1979 
   1980   switch (Class) {
   1981   case IC_RetainBlock:
   1982     // In OptimizeIndividualCalls, we have strength reduced all optimizable
   1983     // objc_retainBlocks to objc_retains. Thus at this point any
   1984     // objc_retainBlocks that we see are not optimizable.
   1985     break;
   1986   case IC_Retain:
   1987   case IC_RetainRV: {
   1988     Arg = GetObjCArg(Inst);
   1989 
   1990     PtrState &S = MyStates.getPtrTopDownState(Arg);
   1991 
   1992     // Don't do retain+release tracking for IC_RetainRV, because it's
   1993     // better to let it remain as the first instruction after a call.
   1994     if (Class != IC_RetainRV) {
   1995       // If we see two retains in a row on the same pointer. If so, make
   1996       // a note, and we'll cicle back to revisit it after we've
   1997       // hopefully eliminated the second retain, which may allow us to
   1998       // eliminate the first retain too.
   1999       // Theoretically we could implement removal of nested retain+release
   2000       // pairs by making PtrState hold a stack of states, but this is
   2001       // simple and avoids adding overhead for the non-nested case.
   2002       if (S.GetSeq() == S_Retain)
   2003         NestingDetected = true;
   2004 
   2005       ANNOTATE_TOPDOWN(Inst, Arg, S.GetSeq(), S_Retain);
   2006       S.ResetSequenceProgress(S_Retain);
   2007       S.SetKnownSafe(S.HasKnownPositiveRefCount());
   2008       S.InsertCall(Inst);
   2009     }
   2010 
   2011     S.SetKnownPositiveRefCount();
   2012 
   2013     // A retain can be a potential use; procede to the generic checking
   2014     // code below.
   2015     break;
   2016   }
   2017   case IC_Release: {
   2018     Arg = GetObjCArg(Inst);
   2019 
   2020     PtrState &S = MyStates.getPtrTopDownState(Arg);
   2021     S.ClearKnownPositiveRefCount();
   2022 
   2023     Sequence OldSeq = S.GetSeq();
   2024 
   2025     MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
   2026 
   2027     switch (OldSeq) {
   2028     case S_Retain:
   2029     case S_CanRelease:
   2030       if (OldSeq == S_Retain || ReleaseMetadata != nullptr)
   2031         S.ClearReverseInsertPts();
   2032       // FALL THROUGH
   2033     case S_Use:
   2034       S.SetReleaseMetadata(ReleaseMetadata);
   2035       S.SetTailCallRelease(cast<CallInst>(Inst)->isTailCall());
   2036       Releases[Inst] = S.GetRRInfo();
   2037       ANNOTATE_TOPDOWN(Inst, Arg, S.GetSeq(), S_None);
   2038       S.ClearSequenceProgress();
   2039       break;
   2040     case S_None:
   2041       break;
   2042     case S_Stop:
   2043     case S_Release:
   2044     case S_MovableRelease:
   2045       llvm_unreachable("top-down pointer in release state!");
   2046     }
   2047     break;
   2048   }
   2049   case IC_AutoreleasepoolPop:
   2050     // Conservatively, clear MyStates for all known pointers.
   2051     MyStates.clearTopDownPointers();
   2052     return NestingDetected;
   2053   case IC_AutoreleasepoolPush:
   2054   case IC_None:
   2055     // These are irrelevant.
   2056     return NestingDetected;
   2057   default:
   2058     break;
   2059   }
   2060 
   2061   // Consider any other possible effects of this instruction on each
   2062   // pointer being tracked.
   2063   for (BBState::ptr_iterator MI = MyStates.top_down_ptr_begin(),
   2064        ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) {
   2065     const Value *Ptr = MI->first;
   2066     if (Ptr == Arg)
   2067       continue; // Handled above.
   2068     PtrState &S = MI->second;
   2069     Sequence Seq = S.GetSeq();
   2070 
   2071     // Check for possible releases.
   2072     if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
   2073       DEBUG(dbgs() << "CanAlterRefCount: Seq: " << Seq << "; " << *Ptr
   2074             << "\n");
   2075       S.ClearKnownPositiveRefCount();
   2076       switch (Seq) {
   2077       case S_Retain:
   2078         S.SetSeq(S_CanRelease);
   2079         ANNOTATE_TOPDOWN(Inst, Ptr, Seq, S_CanRelease);
   2080         assert(!S.HasReverseInsertPts());
   2081         S.InsertReverseInsertPt(Inst);
   2082 
   2083         // One call can't cause a transition from S_Retain to S_CanRelease
   2084         // and S_CanRelease to S_Use. If we've made the first transition,
   2085         // we're done.
   2086         continue;
   2087       case S_Use:
   2088       case S_CanRelease:
   2089       case S_None:
   2090         break;
   2091       case S_Stop:
   2092       case S_Release:
   2093       case S_MovableRelease:
   2094         llvm_unreachable("top-down pointer in release state!");
   2095       }
   2096     }
   2097 
   2098     // Check for possible direct uses.
   2099     switch (Seq) {
   2100     case S_CanRelease:
   2101       if (CanUse(Inst, Ptr, PA, Class)) {
   2102         DEBUG(dbgs() << "CanUse: Seq: " << Seq << "; " << *Ptr
   2103               << "\n");
   2104         S.SetSeq(S_Use);
   2105         ANNOTATE_TOPDOWN(Inst, Ptr, Seq, S_Use);
   2106       }
   2107       break;
   2108     case S_Retain:
   2109     case S_Use:
   2110     case S_None:
   2111       break;
   2112     case S_Stop:
   2113     case S_Release:
   2114     case S_MovableRelease:
   2115       llvm_unreachable("top-down pointer in release state!");
   2116     }
   2117   }
   2118 
   2119   return NestingDetected;
   2120 }
   2121 
   2122 bool
   2123 ObjCARCOpt::VisitTopDown(BasicBlock *BB,
   2124                          DenseMap<const BasicBlock *, BBState> &BBStates,
   2125                          DenseMap<Value *, RRInfo> &Releases) {
   2126   DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n");
   2127   bool NestingDetected = false;
   2128   BBState &MyStates = BBStates[BB];
   2129 
   2130   // Merge the states from each predecessor to compute the initial state
   2131   // for the current block.
   2132   BBState::edge_iterator PI(MyStates.pred_begin()),
   2133                          PE(MyStates.pred_end());
   2134   if (PI != PE) {
   2135     const BasicBlock *Pred = *PI;
   2136     DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
   2137     assert(I != BBStates.end());
   2138     MyStates.InitFromPred(I->second);
   2139     ++PI;
   2140     for (; PI != PE; ++PI) {
   2141       Pred = *PI;
   2142       I = BBStates.find(Pred);
   2143       assert(I != BBStates.end());
   2144       MyStates.MergePred(I->second);
   2145     }
   2146   }
   2147 
   2148   // If ARC Annotations are enabled, output the current state of pointers at the
   2149   // top of the basic block.
   2150   ANNOTATE_TOPDOWN_BBSTART(MyStates, BB);
   2151 
   2152   // Visit all the instructions, top-down.
   2153   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
   2154     Instruction *Inst = I;
   2155 
   2156     DEBUG(dbgs() << "Visiting " << *Inst << "\n");
   2157 
   2158     NestingDetected |= VisitInstructionTopDown(Inst, Releases, MyStates);
   2159   }
   2160 
   2161   // If ARC Annotations are enabled, output the current state of pointers at the
   2162   // bottom of the basic block.
   2163   ANNOTATE_TOPDOWN_BBEND(MyStates, BB);
   2164 
   2165 #ifdef ARC_ANNOTATIONS
   2166   if (!(EnableARCAnnotations && DisableCheckForCFGHazards))
   2167 #endif
   2168   CheckForCFGHazards(BB, BBStates, MyStates);
   2169   return NestingDetected;
   2170 }
   2171 
   2172 static void
   2173 ComputePostOrders(Function &F,
   2174                   SmallVectorImpl<BasicBlock *> &PostOrder,
   2175                   SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder,
   2176                   unsigned NoObjCARCExceptionsMDKind,
   2177                   DenseMap<const BasicBlock *, BBState> &BBStates) {
   2178   /// The visited set, for doing DFS walks.
   2179   SmallPtrSet<BasicBlock *, 16> Visited;
   2180 
   2181   // Do DFS, computing the PostOrder.
   2182   SmallPtrSet<BasicBlock *, 16> OnStack;
   2183   SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;
   2184 
   2185   // Functions always have exactly one entry block, and we don't have
   2186   // any other block that we treat like an entry block.
   2187   BasicBlock *EntryBB = &F.getEntryBlock();
   2188   BBState &MyStates = BBStates[EntryBB];
   2189   MyStates.SetAsEntry();
   2190   TerminatorInst *EntryTI = cast<TerminatorInst>(&EntryBB->back());
   2191   SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI)));
   2192   Visited.insert(EntryBB);
   2193   OnStack.insert(EntryBB);
   2194   do {
   2195   dfs_next_succ:
   2196     BasicBlock *CurrBB = SuccStack.back().first;
   2197     TerminatorInst *TI = cast<TerminatorInst>(&CurrBB->back());
   2198     succ_iterator SE(TI, false);
   2199 
   2200     while (SuccStack.back().second != SE) {
   2201       BasicBlock *SuccBB = *SuccStack.back().second++;
   2202       if (Visited.insert(SuccBB)) {
   2203         TerminatorInst *TI = cast<TerminatorInst>(&SuccBB->back());
   2204         SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI)));
   2205         BBStates[CurrBB].addSucc(SuccBB);
   2206         BBState &SuccStates = BBStates[SuccBB];
   2207         SuccStates.addPred(CurrBB);
   2208         OnStack.insert(SuccBB);
   2209         goto dfs_next_succ;
   2210       }
   2211 
   2212       if (!OnStack.count(SuccBB)) {
   2213         BBStates[CurrBB].addSucc(SuccBB);
   2214         BBStates[SuccBB].addPred(CurrBB);
   2215       }
   2216     }
   2217     OnStack.erase(CurrBB);
   2218     PostOrder.push_back(CurrBB);
   2219     SuccStack.pop_back();
   2220   } while (!SuccStack.empty());
   2221 
   2222   Visited.clear();
   2223 
   2224   // Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
   2225   // Functions may have many exits, and there also blocks which we treat
   2226   // as exits due to ignored edges.
   2227   SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack;
   2228   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
   2229     BasicBlock *ExitBB = I;
   2230     BBState &MyStates = BBStates[ExitBB];
   2231     if (!MyStates.isExit())
   2232       continue;
   2233 
   2234     MyStates.SetAsExit();
   2235 
   2236     PredStack.push_back(std::make_pair(ExitBB, MyStates.pred_begin()));
   2237     Visited.insert(ExitBB);
   2238     while (!PredStack.empty()) {
   2239     reverse_dfs_next_succ:
   2240       BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end();
   2241       while (PredStack.back().second != PE) {
   2242         BasicBlock *BB = *PredStack.back().second++;
   2243         if (Visited.insert(BB)) {
   2244           PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin()));
   2245           goto reverse_dfs_next_succ;
   2246         }
   2247       }
   2248       ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
   2249     }
   2250   }
   2251 }
   2252 
   2253 // Visit the function both top-down and bottom-up.
   2254 bool
   2255 ObjCARCOpt::Visit(Function &F,
   2256                   DenseMap<const BasicBlock *, BBState> &BBStates,
   2257                   MapVector<Value *, RRInfo> &Retains,
   2258                   DenseMap<Value *, RRInfo> &Releases) {
   2259 
   2260   // Use reverse-postorder traversals, because we magically know that loops
   2261   // will be well behaved, i.e. they won't repeatedly call retain on a single
   2262   // pointer without doing a release. We can't use the ReversePostOrderTraversal
   2263   // class here because we want the reverse-CFG postorder to consider each
   2264   // function exit point, and we want to ignore selected cycle edges.
   2265   SmallVector<BasicBlock *, 16> PostOrder;
   2266   SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
   2267   ComputePostOrders(F, PostOrder, ReverseCFGPostOrder,
   2268                     NoObjCARCExceptionsMDKind,
   2269                     BBStates);
   2270 
   2271   // Use reverse-postorder on the reverse CFG for bottom-up.
   2272   bool BottomUpNestingDetected = false;
   2273   for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
   2274        ReverseCFGPostOrder.rbegin(), E = ReverseCFGPostOrder.rend();
   2275        I != E; ++I)
   2276     BottomUpNestingDetected |= VisitBottomUp(*I, BBStates, Retains);
   2277 
   2278   // Use reverse-postorder for top-down.
   2279   bool TopDownNestingDetected = false;
   2280   for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
   2281        PostOrder.rbegin(), E = PostOrder.rend();
   2282        I != E; ++I)
   2283     TopDownNestingDetected |= VisitTopDown(*I, BBStates, Releases);
   2284 
   2285   return TopDownNestingDetected && BottomUpNestingDetected;
   2286 }
   2287 
   2288 /// Move the calls in RetainsToMove and ReleasesToMove.
   2289 void ObjCARCOpt::MoveCalls(Value *Arg,
   2290                            RRInfo &RetainsToMove,
   2291                            RRInfo &ReleasesToMove,
   2292                            MapVector<Value *, RRInfo> &Retains,
   2293                            DenseMap<Value *, RRInfo> &Releases,
   2294                            SmallVectorImpl<Instruction *> &DeadInsts,
   2295                            Module *M) {
   2296   Type *ArgTy = Arg->getType();
   2297   Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
   2298 
   2299   DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n");
   2300 
   2301   // Insert the new retain and release calls.
   2302   for (SmallPtrSet<Instruction *, 2>::const_iterator
   2303        PI = ReleasesToMove.ReverseInsertPts.begin(),
   2304        PE = ReleasesToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
   2305     Instruction *InsertPt = *PI;
   2306     Value *MyArg = ArgTy == ParamTy ? Arg :
   2307                    new BitCastInst(Arg, ParamTy, "", InsertPt);
   2308     Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Retain);
   2309     CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
   2310     Call->setDoesNotThrow();
   2311     Call->setTailCall();
   2312 
   2313     DEBUG(dbgs() << "Inserting new Retain: " << *Call << "\n"
   2314                     "At insertion point: " << *InsertPt << "\n");
   2315   }
   2316   for (SmallPtrSet<Instruction *, 2>::const_iterator
   2317        PI = RetainsToMove.ReverseInsertPts.begin(),
   2318        PE = RetainsToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
   2319     Instruction *InsertPt = *PI;
   2320     Value *MyArg = ArgTy == ParamTy ? Arg :
   2321                    new BitCastInst(Arg, ParamTy, "", InsertPt);
   2322     Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Release);
   2323     CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
   2324     // Attach a clang.imprecise_release metadata tag, if appropriate.
   2325     if (MDNode *M = ReleasesToMove.ReleaseMetadata)
   2326       Call->setMetadata(ImpreciseReleaseMDKind, M);
   2327     Call->setDoesNotThrow();
   2328     if (ReleasesToMove.IsTailCallRelease)
   2329       Call->setTailCall();
   2330 
   2331     DEBUG(dbgs() << "Inserting new Release: " << *Call << "\n"
   2332                     "At insertion point: " << *InsertPt << "\n");
   2333   }
   2334 
   2335   // Delete the original retain and release calls.
   2336   for (SmallPtrSet<Instruction *, 2>::const_iterator
   2337        AI = RetainsToMove.Calls.begin(),
   2338        AE = RetainsToMove.Calls.end(); AI != AE; ++AI) {
   2339     Instruction *OrigRetain = *AI;
   2340     Retains.blot(OrigRetain);
   2341     DeadInsts.push_back(OrigRetain);
   2342     DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n");
   2343   }
   2344   for (SmallPtrSet<Instruction *, 2>::const_iterator
   2345        AI = ReleasesToMove.Calls.begin(),
   2346        AE = ReleasesToMove.Calls.end(); AI != AE; ++AI) {
   2347     Instruction *OrigRelease = *AI;
   2348     Releases.erase(OrigRelease);
   2349     DeadInsts.push_back(OrigRelease);
   2350     DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n");
   2351   }
   2352 
   2353 }
   2354 
   2355 bool
   2356 ObjCARCOpt::ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState>
   2357                                     &BBStates,
   2358                                   MapVector<Value *, RRInfo> &Retains,
   2359                                   DenseMap<Value *, RRInfo> &Releases,
   2360                                   Module *M,
   2361                                   SmallVectorImpl<Instruction *> &NewRetains,
   2362                                   SmallVectorImpl<Instruction *> &NewReleases,
   2363                                   SmallVectorImpl<Instruction *> &DeadInsts,
   2364                                   RRInfo &RetainsToMove,
   2365                                   RRInfo &ReleasesToMove,
   2366                                   Value *Arg,
   2367                                   bool KnownSafe,
   2368                                   bool &AnyPairsCompletelyEliminated) {
   2369   // If a pair happens in a region where it is known that the reference count
   2370   // is already incremented, we can similarly ignore possible decrements unless
   2371   // we are dealing with a retainable object with multiple provenance sources.
   2372   bool KnownSafeTD = true, KnownSafeBU = true;
   2373   bool MultipleOwners = false;
   2374   bool CFGHazardAfflicted = false;
   2375 
   2376   // Connect the dots between the top-down-collected RetainsToMove and
   2377   // bottom-up-collected ReleasesToMove to form sets of related calls.
   2378   // This is an iterative process so that we connect multiple releases
   2379   // to multiple retains if needed.
   2380   unsigned OldDelta = 0;
   2381   unsigned NewDelta = 0;
   2382   unsigned OldCount = 0;
   2383   unsigned NewCount = 0;
   2384   bool FirstRelease = true;
   2385   for (;;) {
   2386     for (SmallVectorImpl<Instruction *>::const_iterator
   2387            NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) {
   2388       Instruction *NewRetain = *NI;
   2389       MapVector<Value *, RRInfo>::const_iterator It = Retains.find(NewRetain);
   2390       assert(It != Retains.end());
   2391       const RRInfo &NewRetainRRI = It->second;
   2392       KnownSafeTD &= NewRetainRRI.KnownSafe;
   2393       MultipleOwners =
   2394         MultipleOwners || MultiOwnersSet.count(GetObjCArg(NewRetain));
   2395       for (SmallPtrSet<Instruction *, 2>::const_iterator
   2396              LI = NewRetainRRI.Calls.begin(),
   2397              LE = NewRetainRRI.Calls.end(); LI != LE; ++LI) {
   2398         Instruction *NewRetainRelease = *LI;
   2399         DenseMap<Value *, RRInfo>::const_iterator Jt =
   2400           Releases.find(NewRetainRelease);
   2401         if (Jt == Releases.end())
   2402           return false;
   2403         const RRInfo &NewRetainReleaseRRI = Jt->second;
   2404 
   2405         // If the release does not have a reference to the retain as well,
   2406         // something happened which is unaccounted for. Do not do anything.
   2407         //
   2408         // This can happen if we catch an additive overflow during path count
   2409         // merging.
   2410         if (!NewRetainReleaseRRI.Calls.count(NewRetain))
   2411           return false;
   2412 
   2413         if (ReleasesToMove.Calls.insert(NewRetainRelease)) {
   2414 
   2415           // If we overflow when we compute the path count, don't remove/move
   2416           // anything.
   2417           const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()];
   2418           unsigned PathCount = BBState::OverflowOccurredValue;
   2419           if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
   2420             return false;
   2421           assert(PathCount != BBState::OverflowOccurredValue &&
   2422                  "PathCount at this point can not be "
   2423                  "OverflowOccurredValue.");
   2424           OldDelta -= PathCount;
   2425 
   2426           // Merge the ReleaseMetadata and IsTailCallRelease values.
   2427           if (FirstRelease) {
   2428             ReleasesToMove.ReleaseMetadata =
   2429               NewRetainReleaseRRI.ReleaseMetadata;
   2430             ReleasesToMove.IsTailCallRelease =
   2431               NewRetainReleaseRRI.IsTailCallRelease;
   2432             FirstRelease = false;
   2433           } else {
   2434             if (ReleasesToMove.ReleaseMetadata !=
   2435                 NewRetainReleaseRRI.ReleaseMetadata)
   2436               ReleasesToMove.ReleaseMetadata = nullptr;
   2437             if (ReleasesToMove.IsTailCallRelease !=
   2438                 NewRetainReleaseRRI.IsTailCallRelease)
   2439               ReleasesToMove.IsTailCallRelease = false;
   2440           }
   2441 
   2442           // Collect the optimal insertion points.
   2443           if (!KnownSafe)
   2444             for (SmallPtrSet<Instruction *, 2>::const_iterator
   2445                    RI = NewRetainReleaseRRI.ReverseInsertPts.begin(),
   2446                    RE = NewRetainReleaseRRI.ReverseInsertPts.end();
   2447                  RI != RE; ++RI) {
   2448               Instruction *RIP = *RI;
   2449               if (ReleasesToMove.ReverseInsertPts.insert(RIP)) {
   2450                 // If we overflow when we compute the path count, don't
   2451                 // remove/move anything.
   2452                 const BBState &RIPBBState = BBStates[RIP->getParent()];
   2453                 PathCount = BBState::OverflowOccurredValue;
   2454                 if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
   2455                   return false;
   2456                 assert(PathCount != BBState::OverflowOccurredValue &&
   2457                        "PathCount at this point can not be "
   2458                        "OverflowOccurredValue.");
   2459                 NewDelta -= PathCount;
   2460               }
   2461             }
   2462           NewReleases.push_back(NewRetainRelease);
   2463         }
   2464       }
   2465     }
   2466     NewRetains.clear();
   2467     if (NewReleases.empty()) break;
   2468 
   2469     // Back the other way.
   2470     for (SmallVectorImpl<Instruction *>::const_iterator
   2471            NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) {
   2472       Instruction *NewRelease = *NI;
   2473       DenseMap<Value *, RRInfo>::const_iterator It =
   2474         Releases.find(NewRelease);
   2475       assert(It != Releases.end());
   2476       const RRInfo &NewReleaseRRI = It->second;
   2477       KnownSafeBU &= NewReleaseRRI.KnownSafe;
   2478       CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted;
   2479       for (SmallPtrSet<Instruction *, 2>::const_iterator
   2480              LI = NewReleaseRRI.Calls.begin(),
   2481              LE = NewReleaseRRI.Calls.end(); LI != LE; ++LI) {
   2482         Instruction *NewReleaseRetain = *LI;
   2483         MapVector<Value *, RRInfo>::const_iterator Jt =
   2484           Retains.find(NewReleaseRetain);
   2485         if (Jt == Retains.end())
   2486           return false;
   2487         const RRInfo &NewReleaseRetainRRI = Jt->second;
   2488 
   2489         // If the retain does not have a reference to the release as well,
   2490         // something happened which is unaccounted for. Do not do anything.
   2491         //
   2492         // This can happen if we catch an additive overflow during path count
   2493         // merging.
   2494         if (!NewReleaseRetainRRI.Calls.count(NewRelease))
   2495           return false;
   2496 
   2497         if (RetainsToMove.Calls.insert(NewReleaseRetain)) {
   2498           // If we overflow when we compute the path count, don't remove/move
   2499           // anything.
   2500           const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()];
   2501           unsigned PathCount = BBState::OverflowOccurredValue;
   2502           if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
   2503             return false;
   2504           assert(PathCount != BBState::OverflowOccurredValue &&
   2505                  "PathCount at this point can not be "
   2506                  "OverflowOccurredValue.");
   2507           OldDelta += PathCount;
   2508           OldCount += PathCount;
   2509 
   2510           // Collect the optimal insertion points.
   2511           if (!KnownSafe)
   2512             for (SmallPtrSet<Instruction *, 2>::const_iterator
   2513                    RI = NewReleaseRetainRRI.ReverseInsertPts.begin(),
   2514                    RE = NewReleaseRetainRRI.ReverseInsertPts.end();
   2515                  RI != RE; ++RI) {
   2516               Instruction *RIP = *RI;
   2517               if (RetainsToMove.ReverseInsertPts.insert(RIP)) {
   2518                 // If we overflow when we compute the path count, don't
   2519                 // remove/move anything.
   2520                 const BBState &RIPBBState = BBStates[RIP->getParent()];
   2521 
   2522                 PathCount = BBState::OverflowOccurredValue;
   2523                 if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
   2524                   return false;
   2525                 assert(PathCount != BBState::OverflowOccurredValue &&
   2526                        "PathCount at this point can not be "
   2527                        "OverflowOccurredValue.");
   2528                 NewDelta += PathCount;
   2529                 NewCount += PathCount;
   2530               }
   2531             }
   2532           NewRetains.push_back(NewReleaseRetain);
   2533         }
   2534       }
   2535     }
   2536     NewReleases.clear();
   2537     if (NewRetains.empty()) break;
   2538   }
   2539 
   2540   // If the pointer is known incremented in 1 direction and we do not have
   2541   // MultipleOwners, we can safely remove the retain/releases. Otherwise we need
   2542   // to be known safe in both directions.
   2543   bool UnconditionallySafe = (KnownSafeTD && KnownSafeBU) ||
   2544     ((KnownSafeTD || KnownSafeBU) && !MultipleOwners);
   2545   if (UnconditionallySafe) {
   2546     RetainsToMove.ReverseInsertPts.clear();
   2547     ReleasesToMove.ReverseInsertPts.clear();
   2548     NewCount = 0;
   2549   } else {
   2550     // Determine whether the new insertion points we computed preserve the
   2551     // balance of retain and release calls through the program.
   2552     // TODO: If the fully aggressive solution isn't valid, try to find a
   2553     // less aggressive solution which is.
   2554     if (NewDelta != 0)
   2555       return false;
   2556 
   2557     // At this point, we are not going to remove any RR pairs, but we still are
   2558     // able to move RR pairs. If one of our pointers is afflicted with
   2559     // CFGHazards, we cannot perform such code motion so exit early.
   2560     const bool WillPerformCodeMotion = RetainsToMove.ReverseInsertPts.size() ||
   2561       ReleasesToMove.ReverseInsertPts.size();
   2562     if (CFGHazardAfflicted && WillPerformCodeMotion)
   2563       return false;
   2564   }
   2565 
   2566   // Determine whether the original call points are balanced in the retain and
   2567   // release calls through the program. If not, conservatively don't touch
   2568   // them.
   2569   // TODO: It's theoretically possible to do code motion in this case, as
   2570   // long as the existing imbalances are maintained.
   2571   if (OldDelta != 0)
   2572     return false;
   2573 
   2574 #ifdef ARC_ANNOTATIONS
   2575   // Do not move calls if ARC annotations are requested.
   2576   if (EnableARCAnnotations)
   2577     return false;
   2578 #endif // ARC_ANNOTATIONS
   2579 
   2580   Changed = true;
   2581   assert(OldCount != 0 && "Unreachable code?");
   2582   NumRRs += OldCount - NewCount;
   2583   // Set to true if we completely removed any RR pairs.
   2584   AnyPairsCompletelyEliminated = NewCount == 0;
   2585 
   2586   // We can move calls!
   2587   return true;
   2588 }
   2589 
   2590 /// Identify pairings between the retains and releases, and delete and/or move
   2591 /// them.
   2592 bool
   2593 ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState>
   2594                                    &BBStates,
   2595                                  MapVector<Value *, RRInfo> &Retains,
   2596                                  DenseMap<Value *, RRInfo> &Releases,
   2597                                  Module *M) {
   2598   DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n");
   2599 
   2600   bool AnyPairsCompletelyEliminated = false;
   2601   RRInfo RetainsToMove;
   2602   RRInfo ReleasesToMove;
   2603   SmallVector<Instruction *, 4> NewRetains;
   2604   SmallVector<Instruction *, 4> NewReleases;
   2605   SmallVector<Instruction *, 8> DeadInsts;
   2606 
   2607   // Visit each retain.
   2608   for (MapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
   2609        E = Retains.end(); I != E; ++I) {
   2610     Value *V = I->first;
   2611     if (!V) continue; // blotted
   2612 
   2613     Instruction *Retain = cast<Instruction>(V);
   2614 
   2615     DEBUG(dbgs() << "Visiting: " << *Retain << "\n");
   2616 
   2617     Value *Arg = GetObjCArg(Retain);
   2618 
   2619     // If the object being released is in static or stack storage, we know it's
   2620     // not being managed by ObjC reference counting, so we can delete pairs
   2621     // regardless of what possible decrements or uses lie between them.
   2622     bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
   2623 
   2624     // A constant pointer can't be pointing to an object on the heap. It may
   2625     // be reference-counted, but it won't be deleted.
   2626     if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
   2627       if (const GlobalVariable *GV =
   2628             dyn_cast<GlobalVariable>(
   2629               StripPointerCastsAndObjCCalls(LI->getPointerOperand())))
   2630         if (GV->isConstant())
   2631           KnownSafe = true;
   2632 
   2633     // Connect the dots between the top-down-collected RetainsToMove and
   2634     // bottom-up-collected ReleasesToMove to form sets of related calls.
   2635     NewRetains.push_back(Retain);
   2636     bool PerformMoveCalls =
   2637       ConnectTDBUTraversals(BBStates, Retains, Releases, M, NewRetains,
   2638                             NewReleases, DeadInsts, RetainsToMove,
   2639                             ReleasesToMove, Arg, KnownSafe,
   2640                             AnyPairsCompletelyEliminated);
   2641 
   2642     if (PerformMoveCalls) {
   2643       // Ok, everything checks out and we're all set. Let's move/delete some
   2644       // code!
   2645       MoveCalls(Arg, RetainsToMove, ReleasesToMove,
   2646                 Retains, Releases, DeadInsts, M);
   2647     }
   2648 
   2649     // Clean up state for next retain.
   2650     NewReleases.clear();
   2651     NewRetains.clear();
   2652     RetainsToMove.clear();
   2653     ReleasesToMove.clear();
   2654   }
   2655 
   2656   // Now that we're done moving everything, we can delete the newly dead
   2657   // instructions, as we no longer need them as insert points.
   2658   while (!DeadInsts.empty())
   2659     EraseInstruction(DeadInsts.pop_back_val());
   2660 
   2661   return AnyPairsCompletelyEliminated;
   2662 }
   2663 
   2664 /// Weak pointer optimizations.
   2665 void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
   2666   DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n");
   2667 
   2668   // First, do memdep-style RLE and S2L optimizations. We can't use memdep
   2669   // itself because it uses AliasAnalysis and we need to do provenance
   2670   // queries instead.
   2671   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
   2672     Instruction *Inst = &*I++;
   2673 
   2674     DEBUG(dbgs() << "Visiting: " << *Inst << "\n");
   2675 
   2676     InstructionClass Class = GetBasicInstructionClass(Inst);
   2677     if (Class != IC_LoadWeak && Class != IC_LoadWeakRetained)
   2678       continue;
   2679 
   2680     // Delete objc_loadWeak calls with no users.
   2681     if (Class == IC_LoadWeak && Inst->use_empty()) {
   2682       Inst->eraseFromParent();
   2683       continue;
   2684     }
   2685 
   2686     // TODO: For now, just look for an earlier available version of this value
   2687     // within the same block. Theoretically, we could do memdep-style non-local
   2688     // analysis too, but that would want caching. A better approach would be to
   2689     // use the technique that EarlyCSE uses.
   2690     inst_iterator Current = std::prev(I);
   2691     BasicBlock *CurrentBB = Current.getBasicBlockIterator();
   2692     for (BasicBlock::iterator B = CurrentBB->begin(),
   2693                               J = Current.getInstructionIterator();
   2694          J != B; --J) {
   2695       Instruction *EarlierInst = &*std::prev(J);
   2696       InstructionClass EarlierClass = GetInstructionClass(EarlierInst);
   2697       switch (EarlierClass) {
   2698       case IC_LoadWeak:
   2699       case IC_LoadWeakRetained: {
   2700         // If this is loading from the same pointer, replace this load's value
   2701         // with that one.
   2702         CallInst *Call = cast<CallInst>(Inst);
   2703         CallInst *EarlierCall = cast<CallInst>(EarlierInst);
   2704         Value *Arg = Call->getArgOperand(0);
   2705         Value *EarlierArg = EarlierCall->getArgOperand(0);
   2706         switch (PA.getAA()->alias(Arg, EarlierArg)) {
   2707         case AliasAnalysis::MustAlias:
   2708           Changed = true;
   2709           // If the load has a builtin retain, insert a plain retain for it.
   2710           if (Class == IC_LoadWeakRetained) {
   2711             Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Retain);
   2712             CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
   2713             CI->setTailCall();
   2714           }
   2715           // Zap the fully redundant load.
   2716           Call->replaceAllUsesWith(EarlierCall);
   2717           Call->eraseFromParent();
   2718           goto clobbered;
   2719         case AliasAnalysis::MayAlias:
   2720         case AliasAnalysis::PartialAlias:
   2721           goto clobbered;
   2722         case AliasAnalysis::NoAlias:
   2723           break;
   2724         }
   2725         break;
   2726       }
   2727       case IC_StoreWeak:
   2728       case IC_InitWeak: {
   2729         // If this is storing to the same pointer and has the same size etc.
   2730         // replace this load's value with the stored value.
   2731         CallInst *Call = cast<CallInst>(Inst);
   2732         CallInst *EarlierCall = cast<CallInst>(EarlierInst);
   2733         Value *Arg = Call->getArgOperand(0);
   2734         Value *EarlierArg = EarlierCall->getArgOperand(0);
   2735         switch (PA.getAA()->alias(Arg, EarlierArg)) {
   2736         case AliasAnalysis::MustAlias:
   2737           Changed = true;
   2738           // If the load has a builtin retain, insert a plain retain for it.
   2739           if (Class == IC_LoadWeakRetained) {
   2740             Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Retain);
   2741             CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
   2742             CI->setTailCall();
   2743           }
   2744           // Zap the fully redundant load.
   2745           Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
   2746           Call->eraseFromParent();
   2747           goto clobbered;
   2748         case AliasAnalysis::MayAlias:
   2749         case AliasAnalysis::PartialAlias:
   2750           goto clobbered;
   2751         case AliasAnalysis::NoAlias:
   2752           break;
   2753         }
   2754         break;
   2755       }
   2756       case IC_MoveWeak:
   2757       case IC_CopyWeak:
   2758         // TOOD: Grab the copied value.
   2759         goto clobbered;
   2760       case IC_AutoreleasepoolPush:
   2761       case IC_None:
   2762       case IC_IntrinsicUser:
   2763       case IC_User:
   2764         // Weak pointers are only modified through the weak entry points
   2765         // (and arbitrary calls, which could call the weak entry points).
   2766         break;
   2767       default:
   2768         // Anything else could modify the weak pointer.
   2769         goto clobbered;
   2770       }
   2771     }
   2772   clobbered:;
   2773   }
   2774 
   2775   // Then, for each destroyWeak with an alloca operand, check to see if
   2776   // the alloca and all its users can be zapped.
   2777   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
   2778     Instruction *Inst = &*I++;
   2779     InstructionClass Class = GetBasicInstructionClass(Inst);
   2780     if (Class != IC_DestroyWeak)
   2781       continue;
   2782 
   2783     CallInst *Call = cast<CallInst>(Inst);
   2784     Value *Arg = Call->getArgOperand(0);
   2785     if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
   2786       for (User *U : Alloca->users()) {
   2787         const Instruction *UserInst = cast<Instruction>(U);
   2788         switch (GetBasicInstructionClass(UserInst)) {
   2789         case IC_InitWeak:
   2790         case IC_StoreWeak:
   2791         case IC_DestroyWeak:
   2792           continue;
   2793         default:
   2794           goto done;
   2795         }
   2796       }
   2797       Changed = true;
   2798       for (auto UI = Alloca->user_begin(), UE = Alloca->user_end(); UI != UE;) {
   2799         CallInst *UserInst = cast<CallInst>(*UI++);
   2800         switch (GetBasicInstructionClass(UserInst)) {
   2801         case IC_InitWeak:
   2802         case IC_StoreWeak:
   2803           // These functions return their second argument.
   2804           UserInst->replaceAllUsesWith(UserInst->getArgOperand(1));
   2805           break;
   2806         case IC_DestroyWeak:
   2807           // No return value.
   2808           break;
   2809         default:
   2810           llvm_unreachable("alloca really is used!");
   2811         }
   2812         UserInst->eraseFromParent();
   2813       }
   2814       Alloca->eraseFromParent();
   2815     done:;
   2816     }
   2817   }
   2818 }
   2819 
   2820 /// Identify program paths which execute sequences of retains and releases which
   2821 /// can be eliminated.
   2822 bool ObjCARCOpt::OptimizeSequences(Function &F) {
   2823   // Releases, Retains - These are used to store the results of the main flow
   2824   // analysis. These use Value* as the key instead of Instruction* so that the
   2825   // map stays valid when we get around to rewriting code and calls get
   2826   // replaced by arguments.
   2827   DenseMap<Value *, RRInfo> Releases;
   2828   MapVector<Value *, RRInfo> Retains;
   2829 
   2830   // This is used during the traversal of the function to track the
   2831   // states for each identified object at each block.
   2832   DenseMap<const BasicBlock *, BBState> BBStates;
   2833 
   2834   // Analyze the CFG of the function, and all instructions.
   2835   bool NestingDetected = Visit(F, BBStates, Retains, Releases);
   2836 
   2837   // Transform.
   2838   bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains,
   2839                                                            Releases,
   2840                                                            F.getParent());
   2841 
   2842   // Cleanup.
   2843   MultiOwnersSet.clear();
   2844 
   2845   return AnyPairsCompletelyEliminated && NestingDetected;
   2846 }
   2847 
   2848 /// Check if there is a dependent call earlier that does not have anything in
   2849 /// between the Retain and the call that can affect the reference count of their
   2850 /// shared pointer argument. Note that Retain need not be in BB.
   2851 static bool
   2852 HasSafePathToPredecessorCall(const Value *Arg, Instruction *Retain,
   2853                              SmallPtrSet<Instruction *, 4> &DepInsts,
   2854                              SmallPtrSet<const BasicBlock *, 4> &Visited,
   2855                              ProvenanceAnalysis &PA) {
   2856   FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
   2857                    DepInsts, Visited, PA);
   2858   if (DepInsts.size() != 1)
   2859     return false;
   2860 
   2861   CallInst *Call =
   2862     dyn_cast_or_null<CallInst>(*DepInsts.begin());
   2863 
   2864   // Check that the pointer is the return value of the call.
   2865   if (!Call || Arg != Call)
   2866     return false;
   2867 
   2868   // Check that the call is a regular call.
   2869   InstructionClass Class = GetBasicInstructionClass(Call);
   2870   if (Class != IC_CallOrUser && Class != IC_Call)
   2871     return false;
   2872 
   2873   return true;
   2874 }
   2875 
   2876 /// Find a dependent retain that precedes the given autorelease for which there
   2877 /// is nothing in between the two instructions that can affect the ref count of
   2878 /// Arg.
   2879 static CallInst *
   2880 FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB,
   2881                                   Instruction *Autorelease,
   2882                                   SmallPtrSet<Instruction *, 4> &DepInsts,
   2883                                   SmallPtrSet<const BasicBlock *, 4> &Visited,
   2884                                   ProvenanceAnalysis &PA) {
   2885   FindDependencies(CanChangeRetainCount, Arg,
   2886                    BB, Autorelease, DepInsts, Visited, PA);
   2887   if (DepInsts.size() != 1)
   2888     return nullptr;
   2889 
   2890   CallInst *Retain =
   2891     dyn_cast_or_null<CallInst>(*DepInsts.begin());
   2892 
   2893   // Check that we found a retain with the same argument.
   2894   if (!Retain ||
   2895       !IsRetain(GetBasicInstructionClass(Retain)) ||
   2896       GetObjCArg(Retain) != Arg) {
   2897     return nullptr;
   2898   }
   2899 
   2900   return Retain;
   2901 }
   2902 
   2903 /// Look for an ``autorelease'' instruction dependent on Arg such that there are
   2904 /// no instructions dependent on Arg that need a positive ref count in between
   2905 /// the autorelease and the ret.
   2906 static CallInst *
   2907 FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB,
   2908                                        ReturnInst *Ret,
   2909                                        SmallPtrSet<Instruction *, 4> &DepInsts,
   2910                                        SmallPtrSet<const BasicBlock *, 4> &V,
   2911                                        ProvenanceAnalysis &PA) {
   2912   FindDependencies(NeedsPositiveRetainCount, Arg,
   2913                    BB, Ret, DepInsts, V, PA);
   2914   if (DepInsts.size() != 1)
   2915     return nullptr;
   2916 
   2917   CallInst *Autorelease =
   2918     dyn_cast_or_null<CallInst>(*DepInsts.begin());
   2919   if (!Autorelease)
   2920     return nullptr;
   2921   InstructionClass AutoreleaseClass = GetBasicInstructionClass(Autorelease);
   2922   if (!IsAutorelease(AutoreleaseClass))
   2923     return nullptr;
   2924   if (GetObjCArg(Autorelease) != Arg)
   2925     return nullptr;
   2926 
   2927   return Autorelease;
   2928 }
   2929 
   2930 /// Look for this pattern:
   2931 /// \code
   2932 ///    %call = call i8* @something(...)
   2933 ///    %2 = call i8* @objc_retain(i8* %call)
   2934 ///    %3 = call i8* @objc_autorelease(i8* %2)
   2935 ///    ret i8* %3
   2936 /// \endcode
   2937 /// And delete the retain and autorelease.
   2938 void ObjCARCOpt::OptimizeReturns(Function &F) {
   2939   if (!F.getReturnType()->isPointerTy())
   2940     return;
   2941 
   2942   DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n");
   2943 
   2944   SmallPtrSet<Instruction *, 4> DependingInstructions;
   2945   SmallPtrSet<const BasicBlock *, 4> Visited;
   2946   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
   2947     BasicBlock *BB = FI;
   2948     ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back());
   2949 
   2950     DEBUG(dbgs() << "Visiting: " << *Ret << "\n");
   2951 
   2952     if (!Ret)
   2953       continue;
   2954 
   2955     const Value *Arg = StripPointerCastsAndObjCCalls(Ret->getOperand(0));
   2956 
   2957     // Look for an ``autorelease'' instruction that is a predecessor of Ret and
   2958     // dependent on Arg such that there are no instructions dependent on Arg
   2959     // that need a positive ref count in between the autorelease and Ret.
   2960     CallInst *Autorelease =
   2961       FindPredecessorAutoreleaseWithSafePath(Arg, BB, Ret,
   2962                                              DependingInstructions, Visited,
   2963                                              PA);
   2964     DependingInstructions.clear();
   2965     Visited.clear();
   2966 
   2967     if (!Autorelease)
   2968       continue;
   2969 
   2970     CallInst *Retain =
   2971       FindPredecessorRetainWithSafePath(Arg, BB, Autorelease,
   2972                                         DependingInstructions, Visited, PA);
   2973     DependingInstructions.clear();
   2974     Visited.clear();
   2975 
   2976     if (!Retain)
   2977       continue;
   2978 
   2979     // Check that there is nothing that can affect the reference count
   2980     // between the retain and the call.  Note that Retain need not be in BB.
   2981     bool HasSafePathToCall = HasSafePathToPredecessorCall(Arg, Retain,
   2982                                                           DependingInstructions,
   2983                                                           Visited, PA);
   2984     DependingInstructions.clear();
   2985     Visited.clear();
   2986 
   2987     if (!HasSafePathToCall)
   2988       continue;
   2989 
   2990     // If so, we can zap the retain and autorelease.
   2991     Changed = true;
   2992     ++NumRets;
   2993     DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: "
   2994           << *Autorelease << "\n");
   2995     EraseInstruction(Retain);
   2996     EraseInstruction(Autorelease);
   2997   }
   2998 }
   2999 
   3000 #ifndef NDEBUG
   3001 void
   3002 ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) {
   3003   llvm::Statistic &NumRetains =
   3004     AfterOptimization? NumRetainsAfterOpt : NumRetainsBeforeOpt;
   3005   llvm::Statistic &NumReleases =
   3006     AfterOptimization? NumReleasesAfterOpt : NumReleasesBeforeOpt;
   3007 
   3008   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
   3009     Instruction *Inst = &*I++;
   3010     switch (GetBasicInstructionClass(Inst)) {
   3011     default:
   3012       break;
   3013     case IC_Retain:
   3014       ++NumRetains;
   3015       break;
   3016     case IC_Release:
   3017       ++NumReleases;
   3018       break;
   3019     }
   3020   }
   3021 }
   3022 #endif
   3023 
   3024 bool ObjCARCOpt::doInitialization(Module &M) {
   3025   if (!EnableARCOpts)
   3026     return false;
   3027 
   3028   // If nothing in the Module uses ARC, don't do anything.
   3029   Run = ModuleHasARC(M);
   3030   if (!Run)
   3031     return false;
   3032 
   3033   // Identify the imprecise release metadata kind.
   3034   ImpreciseReleaseMDKind =
   3035     M.getContext().getMDKindID("clang.imprecise_release");
   3036   CopyOnEscapeMDKind =
   3037     M.getContext().getMDKindID("clang.arc.copy_on_escape");
   3038   NoObjCARCExceptionsMDKind =
   3039     M.getContext().getMDKindID("clang.arc.no_objc_arc_exceptions");
   3040 #ifdef ARC_ANNOTATIONS
   3041   ARCAnnotationBottomUpMDKind =
   3042     M.getContext().getMDKindID("llvm.arc.annotation.bottomup");
   3043   ARCAnnotationTopDownMDKind =
   3044     M.getContext().getMDKindID("llvm.arc.annotation.topdown");
   3045   ARCAnnotationProvenanceSourceMDKind =
   3046     M.getContext().getMDKindID("llvm.arc.annotation.provenancesource");
   3047 #endif // ARC_ANNOTATIONS
   3048 
   3049   // Intuitively, objc_retain and others are nocapture, however in practice
   3050   // they are not, because they return their argument value. And objc_release
   3051   // calls finalizers which can have arbitrary side effects.
   3052 
   3053   // Initialize our runtime entry point cache.
   3054   EP.Initialize(&M);
   3055 
   3056   return false;
   3057 }
   3058 
   3059 bool ObjCARCOpt::runOnFunction(Function &F) {
   3060   if (!EnableARCOpts)
   3061     return false;
   3062 
   3063   // If nothing in the Module uses ARC, don't do anything.
   3064   if (!Run)
   3065     return false;
   3066 
   3067   Changed = false;
   3068 
   3069   DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName() << " >>>"
   3070         "\n");
   3071 
   3072   PA.setAA(&getAnalysis<AliasAnalysis>());
   3073 
   3074 #ifndef NDEBUG
   3075   if (AreStatisticsEnabled()) {
   3076     GatherStatistics(F, false);
   3077   }
   3078 #endif
   3079 
   3080   // This pass performs several distinct transformations. As a compile-time aid
   3081   // when compiling code that isn't ObjC, skip these if the relevant ObjC
   3082   // library functions aren't declared.
   3083 
   3084   // Preliminary optimizations. This also computes UsedInThisFunction.
   3085   OptimizeIndividualCalls(F);
   3086 
   3087   // Optimizations for weak pointers.
   3088   if (UsedInThisFunction & ((1 << IC_LoadWeak) |
   3089                             (1 << IC_LoadWeakRetained) |
   3090                             (1 << IC_StoreWeak) |
   3091                             (1 << IC_InitWeak) |
   3092                             (1 << IC_CopyWeak) |
   3093                             (1 << IC_MoveWeak) |
   3094                             (1 << IC_DestroyWeak)))
   3095     OptimizeWeakCalls(F);
   3096 
   3097   // Optimizations for retain+release pairs.
   3098   if (UsedInThisFunction & ((1 << IC_Retain) |
   3099                             (1 << IC_RetainRV) |
   3100                             (1 << IC_RetainBlock)))
   3101     if (UsedInThisFunction & (1 << IC_Release))
   3102       // Run OptimizeSequences until it either stops making changes or
   3103       // no retain+release pair nesting is detected.
   3104       while (OptimizeSequences(F)) {}
   3105 
   3106   // Optimizations if objc_autorelease is used.
   3107   if (UsedInThisFunction & ((1 << IC_Autorelease) |
   3108                             (1 << IC_AutoreleaseRV)))
   3109     OptimizeReturns(F);
   3110 
   3111   // Gather statistics after optimization.
   3112 #ifndef NDEBUG
   3113   if (AreStatisticsEnabled()) {
   3114     GatherStatistics(F, true);
   3115   }
   3116 #endif
   3117 
   3118   DEBUG(dbgs() << "\n");
   3119 
   3120   return Changed;
   3121 }
   3122 
   3123 void ObjCARCOpt::releaseMemory() {
   3124   PA.clear();
   3125 }
   3126 
   3127 /// @}
   3128 ///
   3129