1 // Copyright 2011 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "cc/scheduler/delay_based_time_source.h" 6 7 #include <algorithm> 8 #include <cmath> 9 #include <string> 10 11 #include "base/bind.h" 12 #include "base/debug/trace_event.h" 13 #include "base/location.h" 14 #include "base/logging.h" 15 #include "base/single_thread_task_runner.h" 16 17 namespace cc { 18 19 namespace { 20 21 // kDoubleTickDivisor prevents ticks from running within the specified 22 // fraction of an interval. This helps account for jitter in the timebase as 23 // well as quick timer reactivation. 24 static const int kDoubleTickDivisor = 2; 25 26 // kIntervalChangeThreshold is the fraction of the interval that will trigger an 27 // immediate interval change. kPhaseChangeThreshold is the fraction of the 28 // interval that will trigger an immediate phase change. If the changes are 29 // within the thresholds, the change will take place on the next tick. If 30 // either change is outside the thresholds, the next tick will be canceled and 31 // reissued immediately. 32 static const double kIntervalChangeThreshold = 0.25; 33 static const double kPhaseChangeThreshold = 0.25; 34 35 } // namespace 36 37 // The following methods correspond to the DelayBasedTimeSource that uses 38 // the base::TimeTicks::HighResNow as the timebase. 39 scoped_refptr<DelayBasedTimeSourceHighRes> DelayBasedTimeSourceHighRes::Create( 40 base::TimeDelta interval, 41 base::SingleThreadTaskRunner* task_runner) { 42 return make_scoped_refptr( 43 new DelayBasedTimeSourceHighRes(interval, task_runner)); 44 } 45 46 DelayBasedTimeSourceHighRes::DelayBasedTimeSourceHighRes( 47 base::TimeDelta interval, 48 base::SingleThreadTaskRunner* task_runner) 49 : DelayBasedTimeSource(interval, task_runner) { 50 } 51 52 DelayBasedTimeSourceHighRes::~DelayBasedTimeSourceHighRes() {} 53 54 base::TimeTicks DelayBasedTimeSourceHighRes::Now() const { 55 return base::TimeTicks::HighResNow(); 56 } 57 58 // The following methods correspond to the DelayBasedTimeSource that uses 59 // the base::TimeTicks::Now as the timebase. 60 scoped_refptr<DelayBasedTimeSource> DelayBasedTimeSource::Create( 61 base::TimeDelta interval, 62 base::SingleThreadTaskRunner* task_runner) { 63 return make_scoped_refptr(new DelayBasedTimeSource(interval, task_runner)); 64 } 65 66 DelayBasedTimeSource::DelayBasedTimeSource( 67 base::TimeDelta interval, 68 base::SingleThreadTaskRunner* task_runner) 69 : client_(NULL), 70 last_tick_time_(base::TimeTicks() - interval), 71 current_parameters_(interval, base::TimeTicks()), 72 next_parameters_(interval, base::TimeTicks()), 73 active_(false), 74 task_runner_(task_runner), 75 weak_factory_(this) { 76 DCHECK_GT(interval.ToInternalValue(), 0); 77 } 78 79 DelayBasedTimeSource::~DelayBasedTimeSource() {} 80 81 base::TimeTicks DelayBasedTimeSource::SetActive(bool active) { 82 TRACE_EVENT1("cc", "DelayBasedTimeSource::SetActive", "active", active); 83 if (active == active_) 84 return base::TimeTicks(); 85 active_ = active; 86 87 if (!active_) { 88 weak_factory_.InvalidateWeakPtrs(); 89 return base::TimeTicks(); 90 } 91 92 PostNextTickTask(Now()); 93 94 // Determine if there was a tick that was missed while not active. 95 base::TimeTicks last_tick_time_if_always_active = 96 current_parameters_.tick_target - current_parameters_.interval; 97 base::TimeTicks new_tick_time_threshold = 98 last_tick_time_ + current_parameters_.interval / kDoubleTickDivisor; 99 if (last_tick_time_if_always_active > new_tick_time_threshold) { 100 last_tick_time_ = last_tick_time_if_always_active; 101 return last_tick_time_; 102 } 103 104 return base::TimeTicks(); 105 } 106 107 bool DelayBasedTimeSource::Active() const { return active_; } 108 109 base::TimeTicks DelayBasedTimeSource::LastTickTime() const { 110 return last_tick_time_; 111 } 112 113 base::TimeTicks DelayBasedTimeSource::NextTickTime() const { 114 return Active() ? current_parameters_.tick_target : base::TimeTicks(); 115 } 116 117 void DelayBasedTimeSource::OnTimerFired() { 118 DCHECK(active_); 119 120 last_tick_time_ = current_parameters_.tick_target; 121 122 PostNextTickTask(Now()); 123 124 // Fire the tick. 125 if (client_) 126 client_->OnTimerTick(); 127 } 128 129 void DelayBasedTimeSource::SetClient(TimeSourceClient* client) { 130 client_ = client; 131 } 132 133 void DelayBasedTimeSource::SetTimebaseAndInterval(base::TimeTicks timebase, 134 base::TimeDelta interval) { 135 DCHECK_GT(interval.ToInternalValue(), 0); 136 next_parameters_.interval = interval; 137 next_parameters_.tick_target = timebase; 138 139 if (!active_) { 140 // If we aren't active, there's no need to reset the timer. 141 return; 142 } 143 144 // If the change in interval is larger than the change threshold, 145 // request an immediate reset. 146 double interval_delta = 147 std::abs((interval - current_parameters_.interval).InSecondsF()); 148 double interval_change = interval_delta / interval.InSecondsF(); 149 if (interval_change > kIntervalChangeThreshold) { 150 TRACE_EVENT_INSTANT0("cc", "DelayBasedTimeSource::IntervalChanged", 151 TRACE_EVENT_SCOPE_THREAD); 152 SetActive(false); 153 SetActive(true); 154 return; 155 } 156 157 // If the change in phase is greater than the change threshold in either 158 // direction, request an immediate reset. This logic might result in a false 159 // negative if there is a simultaneous small change in the interval and the 160 // fmod just happens to return something near zero. Assuming the timebase 161 // is very recent though, which it should be, we'll still be ok because the 162 // old clock and new clock just happen to line up. 163 double target_delta = 164 std::abs((timebase - current_parameters_.tick_target).InSecondsF()); 165 double phase_change = 166 fmod(target_delta, interval.InSecondsF()) / interval.InSecondsF(); 167 if (phase_change > kPhaseChangeThreshold && 168 phase_change < (1.0 - kPhaseChangeThreshold)) { 169 TRACE_EVENT_INSTANT0("cc", "DelayBasedTimeSource::PhaseChanged", 170 TRACE_EVENT_SCOPE_THREAD); 171 SetActive(false); 172 SetActive(true); 173 return; 174 } 175 } 176 177 base::TimeTicks DelayBasedTimeSource::Now() const { 178 return base::TimeTicks::Now(); 179 } 180 181 // This code tries to achieve an average tick rate as close to interval_ as 182 // possible. To do this, it has to deal with a few basic issues: 183 // 1. PostDelayedTask can delay only at a millisecond granularity. So, 16.666 184 // has to posted as 16 or 17. 185 // 2. A delayed task may come back a bit late (a few ms), or really late 186 // (frames later) 187 // 188 // The basic idea with this scheduler here is to keep track of where we *want* 189 // to run in tick_target_. We update this with the exact interval. 190 // 191 // Then, when we post our task, we take the floor of (tick_target_ and Now()). 192 // If we started at now=0, and 60FPs (all times in milliseconds): 193 // now=0 target=16.667 PostDelayedTask(16) 194 // 195 // When our callback runs, we figure out how far off we were from that goal. 196 // Because of the flooring operation, and assuming our timer runs exactly when 197 // it should, this yields: 198 // now=16 target=16.667 199 // 200 // Since we can't post a 0.667 ms task to get to now=16, we just treat this as a 201 // tick. Then, we update target to be 33.333. We now post another task based on 202 // the difference between our target and now: 203 // now=16 tick_target=16.667 new_target=33.333 --> 204 // PostDelayedTask(floor(33.333 - 16)) --> PostDelayedTask(17) 205 // 206 // Over time, with no late tasks, this leads to us posting tasks like this: 207 // now=0 tick_target=0 new_target=16.667 --> 208 // tick(), PostDelayedTask(16) 209 // now=16 tick_target=16.667 new_target=33.333 --> 210 // tick(), PostDelayedTask(17) 211 // now=33 tick_target=33.333 new_target=50.000 --> 212 // tick(), PostDelayedTask(17) 213 // now=50 tick_target=50.000 new_target=66.667 --> 214 // tick(), PostDelayedTask(16) 215 // 216 // We treat delays in tasks differently depending on the amount of delay we 217 // encounter. Suppose we posted a task with a target=16.667: 218 // Case 1: late but not unrecoverably-so 219 // now=18 tick_target=16.667 220 // 221 // Case 2: so late we obviously missed the tick 222 // now=25.0 tick_target=16.667 223 // 224 // We treat the first case as a tick anyway, and assume the delay was unusual. 225 // Thus, we compute the new_target based on the old timebase: 226 // now=18 tick_target=16.667 new_target=33.333 --> 227 // tick(), PostDelayedTask(floor(33.333-18)) --> PostDelayedTask(15) 228 // This brings us back to 18+15 = 33, which was where we would have been if the 229 // task hadn't been late. 230 // 231 // For the really late delay, we we move to the next logical tick. The timebase 232 // is not reset. 233 // now=37 tick_target=16.667 new_target=50.000 --> 234 // tick(), PostDelayedTask(floor(50.000-37)) --> PostDelayedTask(13) 235 base::TimeTicks DelayBasedTimeSource::NextTickTarget(base::TimeTicks now) { 236 base::TimeDelta new_interval = next_parameters_.interval; 237 238 // |interval_offset| is the offset from |now| to the next multiple of 239 // |interval| after |tick_target|, possibly negative if in the past. 240 base::TimeDelta interval_offset = base::TimeDelta::FromInternalValue( 241 (next_parameters_.tick_target - now).ToInternalValue() % 242 new_interval.ToInternalValue()); 243 // If |now| is exactly on the interval (i.e. offset==0), don't adjust. 244 // Otherwise, if |tick_target| was in the past, adjust forward to the next 245 // tick after |now|. 246 if (interval_offset.ToInternalValue() != 0 && 247 next_parameters_.tick_target < now) { 248 interval_offset += new_interval; 249 } 250 251 base::TimeTicks new_tick_target = now + interval_offset; 252 DCHECK(now <= new_tick_target) 253 << "now = " << now.ToInternalValue() 254 << "; new_tick_target = " << new_tick_target.ToInternalValue() 255 << "; new_interval = " << new_interval.InMicroseconds() 256 << "; tick_target = " << next_parameters_.tick_target.ToInternalValue() 257 << "; interval_offset = " << interval_offset.ToInternalValue(); 258 259 // Avoid double ticks when: 260 // 1) Turning off the timer and turning it right back on. 261 // 2) Jittery data is passed to SetTimebaseAndInterval(). 262 if (new_tick_target - last_tick_time_ <= new_interval / kDoubleTickDivisor) 263 new_tick_target += new_interval; 264 265 return new_tick_target; 266 } 267 268 void DelayBasedTimeSource::PostNextTickTask(base::TimeTicks now) { 269 base::TimeTicks new_tick_target = NextTickTarget(now); 270 271 // Post another task *before* the tick and update state 272 base::TimeDelta delay; 273 if (now <= new_tick_target) 274 delay = new_tick_target - now; 275 task_runner_->PostDelayedTask(FROM_HERE, 276 base::Bind(&DelayBasedTimeSource::OnTimerFired, 277 weak_factory_.GetWeakPtr()), 278 delay); 279 280 next_parameters_.tick_target = new_tick_target; 281 current_parameters_ = next_parameters_; 282 } 283 284 std::string DelayBasedTimeSource::TypeString() const { 285 return "DelayBasedTimeSource"; 286 } 287 288 std::string DelayBasedTimeSourceHighRes::TypeString() const { 289 return "DelayBasedTimeSourceHighRes"; 290 } 291 292 scoped_ptr<base::Value> DelayBasedTimeSource::AsValue() const { 293 scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue); 294 state->SetString("type", TypeString()); 295 state->SetDouble("last_tick_time_us", LastTickTime().ToInternalValue()); 296 state->SetDouble("next_tick_time_us", NextTickTime().ToInternalValue()); 297 298 scoped_ptr<base::DictionaryValue> state_current_parameters( 299 new base::DictionaryValue); 300 state_current_parameters->SetDouble( 301 "interval_us", current_parameters_.interval.InMicroseconds()); 302 state_current_parameters->SetDouble( 303 "tick_target_us", current_parameters_.tick_target.ToInternalValue()); 304 state->Set("current_parameters", state_current_parameters.release()); 305 306 scoped_ptr<base::DictionaryValue> state_next_parameters( 307 new base::DictionaryValue); 308 state_next_parameters->SetDouble("interval_us", 309 next_parameters_.interval.InMicroseconds()); 310 state_next_parameters->SetDouble( 311 "tick_target_us", next_parameters_.tick_target.ToInternalValue()); 312 state->Set("next_parameters", state_next_parameters.release()); 313 314 state->SetBoolean("active", active_); 315 316 return state.PassAs<base::Value>(); 317 } 318 319 } // namespace cc 320