1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2013 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: sameeragarwal (at) google.com (Sameer Agarwal) 30 // mierle (at) gmail.com (Keir Mierle) 31 // 32 // Finite differencing routine used by NumericDiffCostFunction. 33 34 #ifndef CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_ 35 #define CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_ 36 37 #include <cstring> 38 39 #include "Eigen/Dense" 40 #include "ceres/cost_function.h" 41 #include "ceres/internal/scoped_ptr.h" 42 #include "ceres/internal/variadic_evaluate.h" 43 #include "ceres/types.h" 44 #include "glog/logging.h" 45 46 47 namespace ceres { 48 namespace internal { 49 50 // Helper templates that allow evaluation of a variadic functor or a 51 // CostFunction object. 52 template <typename CostFunctor, 53 int N0, int N1, int N2, int N3, int N4, 54 int N5, int N6, int N7, int N8, int N9 > 55 bool EvaluateImpl(const CostFunctor* functor, 56 double const* const* parameters, 57 double* residuals, 58 const void* /* NOT USED */) { 59 return VariadicEvaluate<CostFunctor, 60 double, 61 N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Call( 62 *functor, 63 parameters, 64 residuals); 65 } 66 67 template <typename CostFunctor, 68 int N0, int N1, int N2, int N3, int N4, 69 int N5, int N6, int N7, int N8, int N9 > 70 bool EvaluateImpl(const CostFunctor* functor, 71 double const* const* parameters, 72 double* residuals, 73 const CostFunction* /* NOT USED */) { 74 return functor->Evaluate(parameters, residuals, NULL); 75 } 76 77 // This is split from the main class because C++ doesn't allow partial template 78 // specializations for member functions. The alternative is to repeat the main 79 // class for differing numbers of parameters, which is also unfortunate. 80 template <typename CostFunctor, 81 NumericDiffMethod kMethod, 82 int kNumResiduals, 83 int N0, int N1, int N2, int N3, int N4, 84 int N5, int N6, int N7, int N8, int N9, 85 int kParameterBlock, 86 int kParameterBlockSize> 87 struct NumericDiff { 88 // Mutates parameters but must restore them before return. 89 static bool EvaluateJacobianForParameterBlock( 90 const CostFunctor* functor, 91 double const* residuals_at_eval_point, 92 const double relative_step_size, 93 int num_residuals, 94 double **parameters, 95 double *jacobian) { 96 using Eigen::Map; 97 using Eigen::Matrix; 98 using Eigen::RowMajor; 99 using Eigen::ColMajor; 100 101 const int NUM_RESIDUALS = 102 (kNumResiduals != ceres::DYNAMIC ? kNumResiduals : num_residuals); 103 104 typedef Matrix<double, kNumResiduals, 1> ResidualVector; 105 typedef Matrix<double, kParameterBlockSize, 1> ParameterVector; 106 typedef Matrix<double, 107 kNumResiduals, 108 kParameterBlockSize, 109 (kParameterBlockSize == 1 && 110 kNumResiduals > 1) ? ColMajor : RowMajor> 111 JacobianMatrix; 112 113 114 Map<JacobianMatrix> parameter_jacobian(jacobian, 115 NUM_RESIDUALS, 116 kParameterBlockSize); 117 118 // Mutate 1 element at a time and then restore. 119 Map<ParameterVector> x_plus_delta(parameters[kParameterBlock], 120 kParameterBlockSize); 121 ParameterVector x(x_plus_delta); 122 ParameterVector step_size = x.array().abs() * relative_step_size; 123 124 // To handle cases where a parameter is exactly zero, instead use 125 // the mean step_size for the other dimensions. If all the 126 // parameters are zero, there's no good answer. Take 127 // relative_step_size as a guess and hope for the best. 128 const double fallback_step_size = 129 (step_size.sum() == 0) 130 ? relative_step_size 131 : step_size.sum() / step_size.rows(); 132 133 // For each parameter in the parameter block, use finite differences to 134 // compute the derivative for that parameter. 135 136 ResidualVector residuals(NUM_RESIDUALS); 137 for (int j = 0; j < kParameterBlockSize; ++j) { 138 const double delta = 139 (step_size(j) == 0.0) ? fallback_step_size : step_size(j); 140 141 x_plus_delta(j) = x(j) + delta; 142 143 if (!EvaluateImpl<CostFunctor, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>( 144 functor, parameters, residuals.data(), functor)) { 145 return false; 146 } 147 148 // Compute this column of the jacobian in 3 steps: 149 // 1. Store residuals for the forward part. 150 // 2. Subtract residuals for the backward (or 0) part. 151 // 3. Divide out the run. 152 parameter_jacobian.col(j) = residuals; 153 154 double one_over_delta = 1.0 / delta; 155 if (kMethod == CENTRAL) { 156 // Compute the function on the other side of x(j). 157 x_plus_delta(j) = x(j) - delta; 158 159 if (!EvaluateImpl<CostFunctor, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>( 160 functor, parameters, residuals.data(), functor)) { 161 return false; 162 } 163 164 parameter_jacobian.col(j) -= residuals; 165 one_over_delta /= 2; 166 } else { 167 // Forward difference only; reuse existing residuals evaluation. 168 parameter_jacobian.col(j) -= 169 Map<const ResidualVector>(residuals_at_eval_point, NUM_RESIDUALS); 170 } 171 x_plus_delta(j) = x(j); // Restore x_plus_delta. 172 173 // Divide out the run to get slope. 174 parameter_jacobian.col(j) *= one_over_delta; 175 } 176 return true; 177 } 178 }; 179 180 template <typename CostFunctor, 181 NumericDiffMethod kMethod, 182 int kNumResiduals, 183 int N0, int N1, int N2, int N3, int N4, 184 int N5, int N6, int N7, int N8, int N9, 185 int kParameterBlock> 186 struct NumericDiff<CostFunctor, kMethod, kNumResiduals, 187 N0, N1, N2, N3, N4, N5, N6, N7, N8, N9, 188 kParameterBlock, 0> { 189 // Mutates parameters but must restore them before return. 190 static bool EvaluateJacobianForParameterBlock( 191 const CostFunctor* functor, 192 double const* residuals_at_eval_point, 193 const double relative_step_size, 194 const int num_residuals, 195 double **parameters, 196 double *jacobian) { 197 LOG(FATAL) << "Control should never reach here."; 198 return true; 199 } 200 }; 201 202 } // namespace internal 203 } // namespace ceres 204 205 #endif // CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_ 206