Home | History | Annotate | Download | only in IR
      1 //===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines various classes for working with Instructions and
     11 // ConstantExprs.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_IR_OPERATOR_H
     16 #define LLVM_IR_OPERATOR_H
     17 
     18 #include "llvm/IR/Constants.h"
     19 #include "llvm/IR/DataLayout.h"
     20 #include "llvm/IR/DerivedTypes.h"
     21 #include "llvm/IR/GetElementPtrTypeIterator.h"
     22 #include "llvm/IR/Instruction.h"
     23 #include "llvm/IR/Type.h"
     24 
     25 namespace llvm {
     26 
     27 class GetElementPtrInst;
     28 class BinaryOperator;
     29 class ConstantExpr;
     30 
     31 /// Operator - This is a utility class that provides an abstraction for the
     32 /// common functionality between Instructions and ConstantExprs.
     33 ///
     34 class Operator : public User {
     35 private:
     36   // The Operator class is intended to be used as a utility, and is never itself
     37   // instantiated.
     38   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
     39   void *operator new(size_t s) LLVM_DELETED_FUNCTION;
     40   Operator() LLVM_DELETED_FUNCTION;
     41 
     42 protected:
     43   // NOTE: Cannot use LLVM_DELETED_FUNCTION because it's not legal to delete
     44   // an overridden method that's not deleted in the base class. Cannot leave
     45   // this unimplemented because that leads to an ODR-violation.
     46   ~Operator();
     47 
     48 public:
     49   /// getOpcode - Return the opcode for this Instruction or ConstantExpr.
     50   ///
     51   unsigned getOpcode() const {
     52     if (const Instruction *I = dyn_cast<Instruction>(this))
     53       return I->getOpcode();
     54     return cast<ConstantExpr>(this)->getOpcode();
     55   }
     56 
     57   /// getOpcode - If V is an Instruction or ConstantExpr, return its
     58   /// opcode. Otherwise return UserOp1.
     59   ///
     60   static unsigned getOpcode(const Value *V) {
     61     if (const Instruction *I = dyn_cast<Instruction>(V))
     62       return I->getOpcode();
     63     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
     64       return CE->getOpcode();
     65     return Instruction::UserOp1;
     66   }
     67 
     68   static inline bool classof(const Instruction *) { return true; }
     69   static inline bool classof(const ConstantExpr *) { return true; }
     70   static inline bool classof(const Value *V) {
     71     return isa<Instruction>(V) || isa<ConstantExpr>(V);
     72   }
     73 };
     74 
     75 /// OverflowingBinaryOperator - Utility class for integer arithmetic operators
     76 /// which may exhibit overflow - Add, Sub, and Mul. It does not include SDiv,
     77 /// despite that operator having the potential for overflow.
     78 ///
     79 class OverflowingBinaryOperator : public Operator {
     80 public:
     81   enum {
     82     NoUnsignedWrap = (1 << 0),
     83     NoSignedWrap   = (1 << 1)
     84   };
     85 
     86 private:
     87   friend class BinaryOperator;
     88   friend class ConstantExpr;
     89   void setHasNoUnsignedWrap(bool B) {
     90     SubclassOptionalData =
     91       (SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap);
     92   }
     93   void setHasNoSignedWrap(bool B) {
     94     SubclassOptionalData =
     95       (SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap);
     96   }
     97 
     98 public:
     99   /// hasNoUnsignedWrap - Test whether this operation is known to never
    100   /// undergo unsigned overflow, aka the nuw property.
    101   bool hasNoUnsignedWrap() const {
    102     return SubclassOptionalData & NoUnsignedWrap;
    103   }
    104 
    105   /// hasNoSignedWrap - Test whether this operation is known to never
    106   /// undergo signed overflow, aka the nsw property.
    107   bool hasNoSignedWrap() const {
    108     return (SubclassOptionalData & NoSignedWrap) != 0;
    109   }
    110 
    111   static inline bool classof(const Instruction *I) {
    112     return I->getOpcode() == Instruction::Add ||
    113            I->getOpcode() == Instruction::Sub ||
    114            I->getOpcode() == Instruction::Mul ||
    115            I->getOpcode() == Instruction::Shl;
    116   }
    117   static inline bool classof(const ConstantExpr *CE) {
    118     return CE->getOpcode() == Instruction::Add ||
    119            CE->getOpcode() == Instruction::Sub ||
    120            CE->getOpcode() == Instruction::Mul ||
    121            CE->getOpcode() == Instruction::Shl;
    122   }
    123   static inline bool classof(const Value *V) {
    124     return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
    125            (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
    126   }
    127 };
    128 
    129 /// PossiblyExactOperator - A udiv or sdiv instruction, which can be marked as
    130 /// "exact", indicating that no bits are destroyed.
    131 class PossiblyExactOperator : public Operator {
    132 public:
    133   enum {
    134     IsExact = (1 << 0)
    135   };
    136 
    137 private:
    138   friend class BinaryOperator;
    139   friend class ConstantExpr;
    140   void setIsExact(bool B) {
    141     SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact);
    142   }
    143 
    144 public:
    145   /// isExact - Test whether this division is known to be exact, with
    146   /// zero remainder.
    147   bool isExact() const {
    148     return SubclassOptionalData & IsExact;
    149   }
    150 
    151   static bool isPossiblyExactOpcode(unsigned OpC) {
    152     return OpC == Instruction::SDiv ||
    153            OpC == Instruction::UDiv ||
    154            OpC == Instruction::AShr ||
    155            OpC == Instruction::LShr;
    156   }
    157   static inline bool classof(const ConstantExpr *CE) {
    158     return isPossiblyExactOpcode(CE->getOpcode());
    159   }
    160   static inline bool classof(const Instruction *I) {
    161     return isPossiblyExactOpcode(I->getOpcode());
    162   }
    163   static inline bool classof(const Value *V) {
    164     return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
    165            (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
    166   }
    167 };
    168 
    169 /// Convenience struct for specifying and reasoning about fast-math flags.
    170 class FastMathFlags {
    171 private:
    172   friend class FPMathOperator;
    173   unsigned Flags;
    174   FastMathFlags(unsigned F) : Flags(F) { }
    175 
    176 public:
    177   enum {
    178     UnsafeAlgebra   = (1 << 0),
    179     NoNaNs          = (1 << 1),
    180     NoInfs          = (1 << 2),
    181     NoSignedZeros   = (1 << 3),
    182     AllowReciprocal = (1 << 4)
    183   };
    184 
    185   FastMathFlags() : Flags(0)
    186   { }
    187 
    188   /// Whether any flag is set
    189   bool any() { return Flags != 0; }
    190 
    191   /// Set all the flags to false
    192   void clear() { Flags = 0; }
    193 
    194   /// Flag queries
    195   bool noNaNs()          { return 0 != (Flags & NoNaNs); }
    196   bool noInfs()          { return 0 != (Flags & NoInfs); }
    197   bool noSignedZeros()   { return 0 != (Flags & NoSignedZeros); }
    198   bool allowReciprocal() { return 0 != (Flags & AllowReciprocal); }
    199   bool unsafeAlgebra()   { return 0 != (Flags & UnsafeAlgebra); }
    200 
    201   /// Flag setters
    202   void setNoNaNs()          { Flags |= NoNaNs; }
    203   void setNoInfs()          { Flags |= NoInfs; }
    204   void setNoSignedZeros()   { Flags |= NoSignedZeros; }
    205   void setAllowReciprocal() { Flags |= AllowReciprocal; }
    206   void setUnsafeAlgebra() {
    207     Flags |= UnsafeAlgebra;
    208     setNoNaNs();
    209     setNoInfs();
    210     setNoSignedZeros();
    211     setAllowReciprocal();
    212   }
    213 
    214   void operator&=(const FastMathFlags &OtherFlags) {
    215     Flags &= OtherFlags.Flags;
    216   }
    217 };
    218 
    219 
    220 /// FPMathOperator - Utility class for floating point operations which can have
    221 /// information about relaxed accuracy requirements attached to them.
    222 class FPMathOperator : public Operator {
    223 private:
    224   friend class Instruction;
    225 
    226   void setHasUnsafeAlgebra(bool B) {
    227     SubclassOptionalData =
    228       (SubclassOptionalData & ~FastMathFlags::UnsafeAlgebra) |
    229       (B * FastMathFlags::UnsafeAlgebra);
    230 
    231     // Unsafe algebra implies all the others
    232     if (B) {
    233       setHasNoNaNs(true);
    234       setHasNoInfs(true);
    235       setHasNoSignedZeros(true);
    236       setHasAllowReciprocal(true);
    237     }
    238   }
    239   void setHasNoNaNs(bool B) {
    240     SubclassOptionalData =
    241       (SubclassOptionalData & ~FastMathFlags::NoNaNs) |
    242       (B * FastMathFlags::NoNaNs);
    243   }
    244   void setHasNoInfs(bool B) {
    245     SubclassOptionalData =
    246       (SubclassOptionalData & ~FastMathFlags::NoInfs) |
    247       (B * FastMathFlags::NoInfs);
    248   }
    249   void setHasNoSignedZeros(bool B) {
    250     SubclassOptionalData =
    251       (SubclassOptionalData & ~FastMathFlags::NoSignedZeros) |
    252       (B * FastMathFlags::NoSignedZeros);
    253   }
    254   void setHasAllowReciprocal(bool B) {
    255     SubclassOptionalData =
    256       (SubclassOptionalData & ~FastMathFlags::AllowReciprocal) |
    257       (B * FastMathFlags::AllowReciprocal);
    258   }
    259 
    260   /// Convenience function for setting all the fast-math flags
    261   void setFastMathFlags(FastMathFlags FMF) {
    262     SubclassOptionalData |= FMF.Flags;
    263   }
    264 
    265 public:
    266   /// Test whether this operation is permitted to be
    267   /// algebraically transformed, aka the 'A' fast-math property.
    268   bool hasUnsafeAlgebra() const {
    269     return (SubclassOptionalData & FastMathFlags::UnsafeAlgebra) != 0;
    270   }
    271 
    272   /// Test whether this operation's arguments and results are to be
    273   /// treated as non-NaN, aka the 'N' fast-math property.
    274   bool hasNoNaNs() const {
    275     return (SubclassOptionalData & FastMathFlags::NoNaNs) != 0;
    276   }
    277 
    278   /// Test whether this operation's arguments and results are to be
    279   /// treated as NoN-Inf, aka the 'I' fast-math property.
    280   bool hasNoInfs() const {
    281     return (SubclassOptionalData & FastMathFlags::NoInfs) != 0;
    282   }
    283 
    284   /// Test whether this operation can treat the sign of zero
    285   /// as insignificant, aka the 'S' fast-math property.
    286   bool hasNoSignedZeros() const {
    287     return (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0;
    288   }
    289 
    290   /// Test whether this operation is permitted to use
    291   /// reciprocal instead of division, aka the 'R' fast-math property.
    292   bool hasAllowReciprocal() const {
    293     return (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0;
    294   }
    295 
    296   /// Convenience function for getting all the fast-math flags
    297   FastMathFlags getFastMathFlags() const {
    298     return FastMathFlags(SubclassOptionalData);
    299   }
    300 
    301   /// \brief Get the maximum error permitted by this operation in ULPs.  An
    302   /// accuracy of 0.0 means that the operation should be performed with the
    303   /// default precision.
    304   float getFPAccuracy() const;
    305 
    306   static inline bool classof(const Instruction *I) {
    307     return I->getType()->isFPOrFPVectorTy();
    308   }
    309   static inline bool classof(const Value *V) {
    310     return isa<Instruction>(V) && classof(cast<Instruction>(V));
    311   }
    312 };
    313 
    314 
    315 /// ConcreteOperator - A helper template for defining operators for individual
    316 /// opcodes.
    317 template<typename SuperClass, unsigned Opc>
    318 class ConcreteOperator : public SuperClass {
    319 public:
    320   static inline bool classof(const Instruction *I) {
    321     return I->getOpcode() == Opc;
    322   }
    323   static inline bool classof(const ConstantExpr *CE) {
    324     return CE->getOpcode() == Opc;
    325   }
    326   static inline bool classof(const Value *V) {
    327     return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
    328            (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
    329   }
    330 };
    331 
    332 class AddOperator
    333   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> {
    334 };
    335 class SubOperator
    336   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> {
    337 };
    338 class MulOperator
    339   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> {
    340 };
    341 class ShlOperator
    342   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> {
    343 };
    344 
    345 
    346 class SDivOperator
    347   : public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> {
    348 };
    349 class UDivOperator
    350   : public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> {
    351 };
    352 class AShrOperator
    353   : public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> {
    354 };
    355 class LShrOperator
    356   : public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> {
    357 };
    358 
    359 
    360 
    361 class GEPOperator
    362   : public ConcreteOperator<Operator, Instruction::GetElementPtr> {
    363   enum {
    364     IsInBounds = (1 << 0)
    365   };
    366 
    367   friend class GetElementPtrInst;
    368   friend class ConstantExpr;
    369   void setIsInBounds(bool B) {
    370     SubclassOptionalData =
    371       (SubclassOptionalData & ~IsInBounds) | (B * IsInBounds);
    372   }
    373 
    374 public:
    375   /// isInBounds - Test whether this is an inbounds GEP, as defined
    376   /// by LangRef.html.
    377   bool isInBounds() const {
    378     return SubclassOptionalData & IsInBounds;
    379   }
    380 
    381   inline op_iterator       idx_begin()       { return op_begin()+1; }
    382   inline const_op_iterator idx_begin() const { return op_begin()+1; }
    383   inline op_iterator       idx_end()         { return op_end(); }
    384   inline const_op_iterator idx_end()   const { return op_end(); }
    385 
    386   Value *getPointerOperand() {
    387     return getOperand(0);
    388   }
    389   const Value *getPointerOperand() const {
    390     return getOperand(0);
    391   }
    392   static unsigned getPointerOperandIndex() {
    393     return 0U;                      // get index for modifying correct operand
    394   }
    395 
    396   /// getPointerOperandType - Method to return the pointer operand as a
    397   /// PointerType.
    398   Type *getPointerOperandType() const {
    399     return getPointerOperand()->getType();
    400   }
    401 
    402   /// getPointerAddressSpace - Method to return the address space of the
    403   /// pointer operand.
    404   unsigned getPointerAddressSpace() const {
    405     return cast<PointerType>(getPointerOperandType())->getAddressSpace();
    406   }
    407 
    408   unsigned getNumIndices() const {  // Note: always non-negative
    409     return getNumOperands() - 1;
    410   }
    411 
    412   bool hasIndices() const {
    413     return getNumOperands() > 1;
    414   }
    415 
    416   /// hasAllZeroIndices - Return true if all of the indices of this GEP are
    417   /// zeros.  If so, the result pointer and the first operand have the same
    418   /// value, just potentially different types.
    419   bool hasAllZeroIndices() const {
    420     for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
    421       if (ConstantInt *C = dyn_cast<ConstantInt>(I))
    422         if (C->isZero())
    423           continue;
    424       return false;
    425     }
    426     return true;
    427   }
    428 
    429   /// hasAllConstantIndices - Return true if all of the indices of this GEP are
    430   /// constant integers.  If so, the result pointer and the first operand have
    431   /// a constant offset between them.
    432   bool hasAllConstantIndices() const {
    433     for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
    434       if (!isa<ConstantInt>(I))
    435         return false;
    436     }
    437     return true;
    438   }
    439 
    440   /// \brief Accumulate the constant address offset of this GEP if possible.
    441   ///
    442   /// This routine accepts an APInt into which it will accumulate the constant
    443   /// offset of this GEP if the GEP is in fact constant. If the GEP is not
    444   /// all-constant, it returns false and the value of the offset APInt is
    445   /// undefined (it is *not* preserved!). The APInt passed into this routine
    446   /// must be at exactly as wide as the IntPtr type for the address space of the
    447   /// base GEP pointer.
    448   bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const {
    449     assert(Offset.getBitWidth() ==
    450            DL.getPointerSizeInBits(getPointerAddressSpace()) &&
    451            "The offset must have exactly as many bits as our pointer.");
    452 
    453     for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this);
    454          GTI != GTE; ++GTI) {
    455       ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
    456       if (!OpC)
    457         return false;
    458       if (OpC->isZero())
    459         continue;
    460 
    461       // Handle a struct index, which adds its field offset to the pointer.
    462       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    463         unsigned ElementIdx = OpC->getZExtValue();
    464         const StructLayout *SL = DL.getStructLayout(STy);
    465         Offset += APInt(Offset.getBitWidth(),
    466                         SL->getElementOffset(ElementIdx));
    467         continue;
    468       }
    469 
    470       // For array or vector indices, scale the index by the size of the type.
    471       APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
    472       Offset += Index * APInt(Offset.getBitWidth(),
    473                               DL.getTypeAllocSize(GTI.getIndexedType()));
    474     }
    475     return true;
    476   }
    477 
    478 };
    479 
    480 class PtrToIntOperator
    481     : public ConcreteOperator<Operator, Instruction::PtrToInt> {
    482   friend class PtrToInt;
    483   friend class ConstantExpr;
    484 
    485 public:
    486   Value *getPointerOperand() {
    487     return getOperand(0);
    488   }
    489   const Value *getPointerOperand() const {
    490     return getOperand(0);
    491   }
    492   static unsigned getPointerOperandIndex() {
    493     return 0U;                      // get index for modifying correct operand
    494   }
    495 
    496   /// getPointerOperandType - Method to return the pointer operand as a
    497   /// PointerType.
    498   Type *getPointerOperandType() const {
    499     return getPointerOperand()->getType();
    500   }
    501 
    502   /// getPointerAddressSpace - Method to return the address space of the
    503   /// pointer operand.
    504   unsigned getPointerAddressSpace() const {
    505     return cast<PointerType>(getPointerOperandType())->getAddressSpace();
    506   }
    507 };
    508 
    509 
    510 } // End llvm namespace
    511 
    512 #endif
    513