1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "mark_sweep.h" 18 19 #include <functional> 20 #include <numeric> 21 #include <climits> 22 #include <vector> 23 24 #include "base/bounded_fifo.h" 25 #include "base/logging.h" 26 #include "base/macros.h" 27 #include "base/mutex-inl.h" 28 #include "base/timing_logger.h" 29 #include "gc/accounting/card_table-inl.h" 30 #include "gc/accounting/heap_bitmap-inl.h" 31 #include "gc/accounting/mod_union_table.h" 32 #include "gc/accounting/space_bitmap-inl.h" 33 #include "gc/heap.h" 34 #include "gc/reference_processor.h" 35 #include "gc/space/image_space.h" 36 #include "gc/space/large_object_space.h" 37 #include "gc/space/space-inl.h" 38 #include "mark_sweep-inl.h" 39 #include "mirror/art_field-inl.h" 40 #include "mirror/object-inl.h" 41 #include "runtime.h" 42 #include "scoped_thread_state_change.h" 43 #include "thread-inl.h" 44 #include "thread_list.h" 45 46 using ::art::mirror::Object; 47 48 namespace art { 49 namespace gc { 50 namespace collector { 51 52 // Performance options. 53 static constexpr bool kUseRecursiveMark = false; 54 static constexpr bool kUseMarkStackPrefetch = true; 55 static constexpr size_t kSweepArrayChunkFreeSize = 1024; 56 static constexpr bool kPreCleanCards = true; 57 58 // Parallelism options. 59 static constexpr bool kParallelCardScan = true; 60 static constexpr bool kParallelRecursiveMark = true; 61 // Don't attempt to parallelize mark stack processing unless the mark stack is at least n 62 // elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not 63 // having this can add overhead in ProcessReferences since we may end up doing many calls of 64 // ProcessMarkStack with very small mark stacks. 65 static constexpr size_t kMinimumParallelMarkStackSize = 128; 66 static constexpr bool kParallelProcessMarkStack = true; 67 68 // Profiling and information flags. 69 static constexpr bool kProfileLargeObjects = false; 70 static constexpr bool kMeasureOverhead = false; 71 static constexpr bool kCountTasks = false; 72 static constexpr bool kCountJavaLangRefs = false; 73 static constexpr bool kCountMarkedObjects = false; 74 75 // Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%. 76 static constexpr bool kCheckLocks = kDebugLocking; 77 static constexpr bool kVerifyRootsMarked = kIsDebugBuild; 78 79 // If true, revoke the rosalloc thread-local buffers at the 80 // checkpoint, as opposed to during the pause. 81 static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true; 82 83 void MarkSweep::BindBitmaps() { 84 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 85 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 86 // Mark all of the spaces we never collect as immune. 87 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 88 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) { 89 CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space; 90 } 91 } 92 } 93 94 MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix) 95 : GarbageCollector(heap, 96 name_prefix + 97 (is_concurrent ? "concurrent mark sweep": "mark sweep")), 98 current_space_bitmap_(nullptr), mark_bitmap_(nullptr), mark_stack_(nullptr), 99 gc_barrier_(new Barrier(0)), 100 mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock), 101 is_concurrent_(is_concurrent), live_stack_freeze_size_(0) { 102 std::string error_msg; 103 MemMap* mem_map = MemMap::MapAnonymous( 104 "mark sweep sweep array free buffer", nullptr, 105 RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize), 106 PROT_READ | PROT_WRITE, false, &error_msg); 107 CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg; 108 sweep_array_free_buffer_mem_map_.reset(mem_map); 109 } 110 111 void MarkSweep::InitializePhase() { 112 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 113 mark_stack_ = heap_->GetMarkStack(); 114 DCHECK(mark_stack_ != nullptr); 115 immune_region_.Reset(); 116 class_count_.StoreRelaxed(0); 117 array_count_.StoreRelaxed(0); 118 other_count_.StoreRelaxed(0); 119 large_object_test_.StoreRelaxed(0); 120 large_object_mark_.StoreRelaxed(0); 121 overhead_time_ .StoreRelaxed(0); 122 work_chunks_created_.StoreRelaxed(0); 123 work_chunks_deleted_.StoreRelaxed(0); 124 reference_count_.StoreRelaxed(0); 125 mark_null_count_.StoreRelaxed(0); 126 mark_immune_count_.StoreRelaxed(0); 127 mark_fastpath_count_.StoreRelaxed(0); 128 mark_slowpath_count_.StoreRelaxed(0); 129 { 130 // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap. 131 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 132 mark_bitmap_ = heap_->GetMarkBitmap(); 133 } 134 if (!GetCurrentIteration()->GetClearSoftReferences()) { 135 // Always clear soft references if a non-sticky collection. 136 GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky); 137 } 138 } 139 140 void MarkSweep::RunPhases() { 141 Thread* self = Thread::Current(); 142 InitializePhase(); 143 Locks::mutator_lock_->AssertNotHeld(self); 144 if (IsConcurrent()) { 145 GetHeap()->PreGcVerification(this); 146 { 147 ReaderMutexLock mu(self, *Locks::mutator_lock_); 148 MarkingPhase(); 149 } 150 ScopedPause pause(this); 151 GetHeap()->PrePauseRosAllocVerification(this); 152 PausePhase(); 153 RevokeAllThreadLocalBuffers(); 154 } else { 155 ScopedPause pause(this); 156 GetHeap()->PreGcVerificationPaused(this); 157 MarkingPhase(); 158 GetHeap()->PrePauseRosAllocVerification(this); 159 PausePhase(); 160 RevokeAllThreadLocalBuffers(); 161 } 162 { 163 // Sweeping always done concurrently, even for non concurrent mark sweep. 164 ReaderMutexLock mu(self, *Locks::mutator_lock_); 165 ReclaimPhase(); 166 } 167 GetHeap()->PostGcVerification(this); 168 FinishPhase(); 169 } 170 171 void MarkSweep::ProcessReferences(Thread* self) { 172 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 173 GetHeap()->GetReferenceProcessor()->ProcessReferences( 174 true, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), 175 &HeapReferenceMarkedCallback, &MarkObjectCallback, &ProcessMarkStackCallback, this); 176 } 177 178 void MarkSweep::PausePhase() { 179 TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings()); 180 Thread* self = Thread::Current(); 181 Locks::mutator_lock_->AssertExclusiveHeld(self); 182 if (IsConcurrent()) { 183 // Handle the dirty objects if we are a concurrent GC. 184 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 185 // Re-mark root set. 186 ReMarkRoots(); 187 // Scan dirty objects, this is only required if we are not doing concurrent GC. 188 RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty); 189 } 190 { 191 TimingLogger::ScopedTiming t2("SwapStacks", GetTimings()); 192 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 193 heap_->SwapStacks(self); 194 live_stack_freeze_size_ = heap_->GetLiveStack()->Size(); 195 // Need to revoke all the thread local allocation stacks since we just swapped the allocation 196 // stacks and don't want anybody to allocate into the live stack. 197 RevokeAllThreadLocalAllocationStacks(self); 198 } 199 heap_->PreSweepingGcVerification(this); 200 // Disallow new system weaks to prevent a race which occurs when someone adds a new system 201 // weak before we sweep them. Since this new system weak may not be marked, the GC may 202 // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong 203 // reference to a string that is about to be swept. 204 Runtime::Current()->DisallowNewSystemWeaks(); 205 // Enable the reference processing slow path, needs to be done with mutators paused since there 206 // is no lock in the GetReferent fast path. 207 GetHeap()->GetReferenceProcessor()->EnableSlowPath(); 208 } 209 210 void MarkSweep::PreCleanCards() { 211 // Don't do this for non concurrent GCs since they don't have any dirty cards. 212 if (kPreCleanCards && IsConcurrent()) { 213 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 214 Thread* self = Thread::Current(); 215 CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self)); 216 // Process dirty cards and add dirty cards to mod union tables, also ages cards. 217 heap_->ProcessCards(GetTimings(), false); 218 // The checkpoint root marking is required to avoid a race condition which occurs if the 219 // following happens during a reference write: 220 // 1. mutator dirties the card (write barrier) 221 // 2. GC ages the card (the above ProcessCards call) 222 // 3. GC scans the object (the RecursiveMarkDirtyObjects call below) 223 // 4. mutator writes the value (corresponding to the write barrier in 1.) 224 // This causes the GC to age the card but not necessarily mark the reference which the mutator 225 // wrote into the object stored in the card. 226 // Having the checkpoint fixes this issue since it ensures that the card mark and the 227 // reference write are visible to the GC before the card is scanned (this is due to locks being 228 // acquired / released in the checkpoint code). 229 // The other roots are also marked to help reduce the pause. 230 MarkRootsCheckpoint(self, false); 231 MarkNonThreadRoots(); 232 MarkConcurrentRoots( 233 static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots)); 234 // Process the newly aged cards. 235 RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1); 236 // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live 237 // in the next GC. 238 } 239 } 240 241 void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) { 242 if (kUseThreadLocalAllocationStack) { 243 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 244 Locks::mutator_lock_->AssertExclusiveHeld(self); 245 heap_->RevokeAllThreadLocalAllocationStacks(self); 246 } 247 } 248 249 void MarkSweep::MarkingPhase() { 250 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 251 Thread* self = Thread::Current(); 252 BindBitmaps(); 253 FindDefaultSpaceBitmap(); 254 // Process dirty cards and add dirty cards to mod union tables. 255 heap_->ProcessCards(GetTimings(), false); 256 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 257 MarkRoots(self); 258 MarkReachableObjects(); 259 // Pre-clean dirtied cards to reduce pauses. 260 PreCleanCards(); 261 } 262 263 void MarkSweep::UpdateAndMarkModUnion() { 264 for (const auto& space : heap_->GetContinuousSpaces()) { 265 if (immune_region_.ContainsSpace(space)) { 266 const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" : 267 "UpdateAndMarkImageModUnionTable"; 268 TimingLogger::ScopedTiming t(name, GetTimings()); 269 accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space); 270 CHECK(mod_union_table != nullptr); 271 mod_union_table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this); 272 } 273 } 274 } 275 276 void MarkSweep::MarkReachableObjects() { 277 UpdateAndMarkModUnion(); 278 // Recursively mark all the non-image bits set in the mark bitmap. 279 RecursiveMark(); 280 } 281 282 void MarkSweep::ReclaimPhase() { 283 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 284 Thread* self = Thread::Current(); 285 // Process the references concurrently. 286 ProcessReferences(self); 287 SweepSystemWeaks(self); 288 Runtime::Current()->AllowNewSystemWeaks(); 289 { 290 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 291 // Reclaim unmarked objects. 292 Sweep(false); 293 // Swap the live and mark bitmaps for each space which we modified space. This is an 294 // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound 295 // bitmaps. 296 SwapBitmaps(); 297 // Unbind the live and mark bitmaps. 298 GetHeap()->UnBindBitmaps(); 299 } 300 } 301 302 void MarkSweep::FindDefaultSpaceBitmap() { 303 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 304 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 305 accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap(); 306 // We want to have the main space instead of non moving if possible. 307 if (bitmap != nullptr && 308 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) { 309 current_space_bitmap_ = bitmap; 310 // If we are not the non moving space exit the loop early since this will be good enough. 311 if (space != heap_->GetNonMovingSpace()) { 312 break; 313 } 314 } 315 } 316 CHECK(current_space_bitmap_ != nullptr) << "Could not find a default mark bitmap\n" 317 << heap_->DumpSpaces(); 318 } 319 320 void MarkSweep::ExpandMarkStack() { 321 ResizeMarkStack(mark_stack_->Capacity() * 2); 322 } 323 324 void MarkSweep::ResizeMarkStack(size_t new_size) { 325 // Rare case, no need to have Thread::Current be a parameter. 326 if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) { 327 // Someone else acquired the lock and expanded the mark stack before us. 328 return; 329 } 330 std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End()); 331 CHECK_LE(mark_stack_->Size(), new_size); 332 mark_stack_->Resize(new_size); 333 for (const auto& obj : temp) { 334 mark_stack_->PushBack(obj); 335 } 336 } 337 338 inline void MarkSweep::MarkObjectNonNullParallel(Object* obj) { 339 DCHECK(obj != nullptr); 340 if (MarkObjectParallel(obj)) { 341 MutexLock mu(Thread::Current(), mark_stack_lock_); 342 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { 343 ExpandMarkStack(); 344 } 345 // The object must be pushed on to the mark stack. 346 mark_stack_->PushBack(obj); 347 } 348 } 349 350 mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) { 351 MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg); 352 mark_sweep->MarkObject(obj); 353 return obj; 354 } 355 356 void MarkSweep::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) { 357 reinterpret_cast<MarkSweep*>(arg)->MarkObject(ref->AsMirrorPtr()); 358 } 359 360 bool MarkSweep::HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) { 361 return reinterpret_cast<MarkSweep*>(arg)->IsMarked(ref->AsMirrorPtr()); 362 } 363 364 class MarkSweepMarkObjectSlowPath { 365 public: 366 explicit MarkSweepMarkObjectSlowPath(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) { 367 } 368 369 void operator()(const Object* obj) const ALWAYS_INLINE { 370 if (kProfileLargeObjects) { 371 // TODO: Differentiate between marking and testing somehow. 372 ++mark_sweep_->large_object_test_; 373 ++mark_sweep_->large_object_mark_; 374 } 375 space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace(); 376 if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) || 377 (kIsDebugBuild && !large_object_space->Contains(obj)))) { 378 LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces"; 379 LOG(ERROR) << "Attempting see if it's a bad root"; 380 mark_sweep_->VerifyRoots(); 381 LOG(FATAL) << "Can't mark invalid object"; 382 } 383 } 384 385 private: 386 MarkSweep* const mark_sweep_; 387 }; 388 389 inline void MarkSweep::MarkObjectNonNull(Object* obj) { 390 DCHECK(obj != nullptr); 391 if (kUseBakerOrBrooksReadBarrier) { 392 // Verify all the objects have the correct pointer installed. 393 obj->AssertReadBarrierPointer(); 394 } 395 if (immune_region_.ContainsObject(obj)) { 396 if (kCountMarkedObjects) { 397 ++mark_immune_count_; 398 } 399 DCHECK(mark_bitmap_->Test(obj)); 400 } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) { 401 if (kCountMarkedObjects) { 402 ++mark_fastpath_count_; 403 } 404 if (UNLIKELY(!current_space_bitmap_->Set(obj))) { 405 PushOnMarkStack(obj); // This object was not previously marked. 406 } 407 } else { 408 if (kCountMarkedObjects) { 409 ++mark_slowpath_count_; 410 } 411 MarkSweepMarkObjectSlowPath visitor(this); 412 // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set 413 // will check again. 414 if (!mark_bitmap_->Set(obj, visitor)) { 415 PushOnMarkStack(obj); // Was not already marked, push. 416 } 417 } 418 } 419 420 inline void MarkSweep::PushOnMarkStack(Object* obj) { 421 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { 422 // Lock is not needed but is here anyways to please annotalysis. 423 MutexLock mu(Thread::Current(), mark_stack_lock_); 424 ExpandMarkStack(); 425 } 426 // The object must be pushed on to the mark stack. 427 mark_stack_->PushBack(obj); 428 } 429 430 inline bool MarkSweep::MarkObjectParallel(const Object* obj) { 431 DCHECK(obj != nullptr); 432 if (kUseBakerOrBrooksReadBarrier) { 433 // Verify all the objects have the correct pointer installed. 434 obj->AssertReadBarrierPointer(); 435 } 436 if (immune_region_.ContainsObject(obj)) { 437 DCHECK(IsMarked(obj)); 438 return false; 439 } 440 // Try to take advantage of locality of references within a space, failing this find the space 441 // the hard way. 442 accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_; 443 if (LIKELY(object_bitmap->HasAddress(obj))) { 444 return !object_bitmap->AtomicTestAndSet(obj); 445 } 446 MarkSweepMarkObjectSlowPath visitor(this); 447 return !mark_bitmap_->AtomicTestAndSet(obj, visitor); 448 } 449 450 // Used to mark objects when processing the mark stack. If an object is null, it is not marked. 451 inline void MarkSweep::MarkObject(Object* obj) { 452 if (obj != nullptr) { 453 MarkObjectNonNull(obj); 454 } else if (kCountMarkedObjects) { 455 ++mark_null_count_; 456 } 457 } 458 459 void MarkSweep::MarkRootParallelCallback(Object** root, void* arg, uint32_t /*thread_id*/, 460 RootType /*root_type*/) { 461 reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(*root); 462 } 463 464 void MarkSweep::VerifyRootMarked(Object** root, void* arg, uint32_t /*thread_id*/, 465 RootType /*root_type*/) { 466 CHECK(reinterpret_cast<MarkSweep*>(arg)->IsMarked(*root)); 467 } 468 469 void MarkSweep::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/, 470 RootType /*root_type*/) { 471 reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(*root); 472 } 473 474 void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg, 475 const StackVisitor* visitor, RootType root_type) { 476 reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor, root_type); 477 } 478 479 void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor, 480 RootType root_type) { 481 // See if the root is on any space bitmap. 482 if (heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) { 483 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 484 if (!large_object_space->Contains(root)) { 485 LOG(ERROR) << "Found invalid root: " << root << " with type " << root_type; 486 if (visitor != NULL) { 487 LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg; 488 } 489 } 490 } 491 } 492 493 void MarkSweep::VerifyRoots() { 494 Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this); 495 } 496 497 void MarkSweep::MarkRoots(Thread* self) { 498 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 499 if (Locks::mutator_lock_->IsExclusiveHeld(self)) { 500 // If we exclusively hold the mutator lock, all threads must be suspended. 501 Runtime::Current()->VisitRoots(MarkRootCallback, this); 502 RevokeAllThreadLocalAllocationStacks(self); 503 } else { 504 MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint); 505 // At this point the live stack should no longer have any mutators which push into it. 506 MarkNonThreadRoots(); 507 MarkConcurrentRoots( 508 static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots)); 509 } 510 } 511 512 void MarkSweep::MarkNonThreadRoots() { 513 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 514 Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this); 515 } 516 517 void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) { 518 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 519 // Visit all runtime roots and clear dirty flags. 520 Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, flags); 521 } 522 523 class ScanObjectVisitor { 524 public: 525 explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE 526 : mark_sweep_(mark_sweep) {} 527 528 void operator()(Object* obj) const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 529 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 530 if (kCheckLocks) { 531 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 532 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 533 } 534 mark_sweep_->ScanObject(obj); 535 } 536 537 private: 538 MarkSweep* const mark_sweep_; 539 }; 540 541 class DelayReferenceReferentVisitor { 542 public: 543 explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) { 544 } 545 546 void operator()(mirror::Class* klass, mirror::Reference* ref) const 547 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 548 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 549 collector_->DelayReferenceReferent(klass, ref); 550 } 551 552 private: 553 MarkSweep* const collector_; 554 }; 555 556 template <bool kUseFinger = false> 557 class MarkStackTask : public Task { 558 public: 559 MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size, 560 Object** mark_stack) 561 : mark_sweep_(mark_sweep), 562 thread_pool_(thread_pool), 563 mark_stack_pos_(mark_stack_size) { 564 // We may have to copy part of an existing mark stack when another mark stack overflows. 565 if (mark_stack_size != 0) { 566 DCHECK(mark_stack != NULL); 567 // TODO: Check performance? 568 std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_); 569 } 570 if (kCountTasks) { 571 ++mark_sweep_->work_chunks_created_; 572 } 573 } 574 575 static const size_t kMaxSize = 1 * KB; 576 577 protected: 578 class MarkObjectParallelVisitor { 579 public: 580 explicit MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task, 581 MarkSweep* mark_sweep) ALWAYS_INLINE 582 : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {} 583 584 void operator()(Object* obj, MemberOffset offset, bool /* static */) const ALWAYS_INLINE 585 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 586 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset); 587 if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) { 588 if (kUseFinger) { 589 android_memory_barrier(); 590 if (reinterpret_cast<uintptr_t>(ref) >= 591 static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) { 592 return; 593 } 594 } 595 chunk_task_->MarkStackPush(ref); 596 } 597 } 598 599 private: 600 MarkStackTask<kUseFinger>* const chunk_task_; 601 MarkSweep* const mark_sweep_; 602 }; 603 604 class ScanObjectParallelVisitor { 605 public: 606 explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE 607 : chunk_task_(chunk_task) {} 608 609 // No thread safety analysis since multiple threads will use this visitor. 610 void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 611 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 612 MarkSweep* const mark_sweep = chunk_task_->mark_sweep_; 613 MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep); 614 DelayReferenceReferentVisitor ref_visitor(mark_sweep); 615 mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor); 616 } 617 618 private: 619 MarkStackTask<kUseFinger>* const chunk_task_; 620 }; 621 622 virtual ~MarkStackTask() { 623 // Make sure that we have cleared our mark stack. 624 DCHECK_EQ(mark_stack_pos_, 0U); 625 if (kCountTasks) { 626 ++mark_sweep_->work_chunks_deleted_; 627 } 628 } 629 630 MarkSweep* const mark_sweep_; 631 ThreadPool* const thread_pool_; 632 // Thread local mark stack for this task. 633 Object* mark_stack_[kMaxSize]; 634 // Mark stack position. 635 size_t mark_stack_pos_; 636 637 void MarkStackPush(Object* obj) ALWAYS_INLINE { 638 if (UNLIKELY(mark_stack_pos_ == kMaxSize)) { 639 // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task. 640 mark_stack_pos_ /= 2; 641 auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_, 642 mark_stack_ + mark_stack_pos_); 643 thread_pool_->AddTask(Thread::Current(), task); 644 } 645 DCHECK(obj != nullptr); 646 DCHECK_LT(mark_stack_pos_, kMaxSize); 647 mark_stack_[mark_stack_pos_++] = obj; 648 } 649 650 virtual void Finalize() { 651 delete this; 652 } 653 654 // Scans all of the objects 655 virtual void Run(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 656 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 657 ScanObjectParallelVisitor visitor(this); 658 // TODO: Tune this. 659 static const size_t kFifoSize = 4; 660 BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo; 661 for (;;) { 662 Object* obj = nullptr; 663 if (kUseMarkStackPrefetch) { 664 while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) { 665 Object* obj = mark_stack_[--mark_stack_pos_]; 666 DCHECK(obj != nullptr); 667 __builtin_prefetch(obj); 668 prefetch_fifo.push_back(obj); 669 } 670 if (UNLIKELY(prefetch_fifo.empty())) { 671 break; 672 } 673 obj = prefetch_fifo.front(); 674 prefetch_fifo.pop_front(); 675 } else { 676 if (UNLIKELY(mark_stack_pos_ == 0)) { 677 break; 678 } 679 obj = mark_stack_[--mark_stack_pos_]; 680 } 681 DCHECK(obj != nullptr); 682 visitor(obj); 683 } 684 } 685 }; 686 687 class CardScanTask : public MarkStackTask<false> { 688 public: 689 CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, 690 accounting::ContinuousSpaceBitmap* bitmap, 691 byte* begin, byte* end, byte minimum_age, size_t mark_stack_size, 692 Object** mark_stack_obj) 693 : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj), 694 bitmap_(bitmap), 695 begin_(begin), 696 end_(end), 697 minimum_age_(minimum_age) { 698 } 699 700 protected: 701 accounting::ContinuousSpaceBitmap* const bitmap_; 702 byte* const begin_; 703 byte* const end_; 704 const byte minimum_age_; 705 706 virtual void Finalize() { 707 delete this; 708 } 709 710 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS { 711 ScanObjectParallelVisitor visitor(this); 712 accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable(); 713 size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_); 714 VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - " 715 << reinterpret_cast<void*>(end_) << " = " << cards_scanned; 716 // Finish by emptying our local mark stack. 717 MarkStackTask::Run(self); 718 } 719 }; 720 721 size_t MarkSweep::GetThreadCount(bool paused) const { 722 if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) { 723 return 1; 724 } 725 if (paused) { 726 return heap_->GetParallelGCThreadCount() + 1; 727 } else { 728 return heap_->GetConcGCThreadCount() + 1; 729 } 730 } 731 732 void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) { 733 accounting::CardTable* card_table = GetHeap()->GetCardTable(); 734 ThreadPool* thread_pool = GetHeap()->GetThreadPool(); 735 size_t thread_count = GetThreadCount(paused); 736 // The parallel version with only one thread is faster for card scanning, TODO: fix. 737 if (kParallelCardScan && thread_count > 1) { 738 Thread* self = Thread::Current(); 739 // Can't have a different split for each space since multiple spaces can have their cards being 740 // scanned at the same time. 741 TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__, 742 GetTimings()); 743 // Try to take some of the mark stack since we can pass this off to the worker tasks. 744 Object** mark_stack_begin = mark_stack_->Begin(); 745 Object** mark_stack_end = mark_stack_->End(); 746 const size_t mark_stack_size = mark_stack_end - mark_stack_begin; 747 // Estimated number of work tasks we will create. 748 const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count; 749 DCHECK_NE(mark_stack_tasks, 0U); 750 const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2, 751 mark_stack_size / mark_stack_tasks + 1); 752 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 753 if (space->GetMarkBitmap() == nullptr) { 754 continue; 755 } 756 byte* card_begin = space->Begin(); 757 byte* card_end = space->End(); 758 // Align up the end address. For example, the image space's end 759 // may not be card-size-aligned. 760 card_end = AlignUp(card_end, accounting::CardTable::kCardSize); 761 DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin)); 762 DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end)); 763 // Calculate how many bytes of heap we will scan, 764 const size_t address_range = card_end - card_begin; 765 // Calculate how much address range each task gets. 766 const size_t card_delta = RoundUp(address_range / thread_count + 1, 767 accounting::CardTable::kCardSize); 768 // Create the worker tasks for this space. 769 while (card_begin != card_end) { 770 // Add a range of cards. 771 size_t addr_remaining = card_end - card_begin; 772 size_t card_increment = std::min(card_delta, addr_remaining); 773 // Take from the back of the mark stack. 774 size_t mark_stack_remaining = mark_stack_end - mark_stack_begin; 775 size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining); 776 mark_stack_end -= mark_stack_increment; 777 mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment)); 778 DCHECK_EQ(mark_stack_end, mark_stack_->End()); 779 // Add the new task to the thread pool. 780 auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin, 781 card_begin + card_increment, minimum_age, 782 mark_stack_increment, mark_stack_end); 783 thread_pool->AddTask(self, task); 784 card_begin += card_increment; 785 } 786 } 787 788 // Note: the card scan below may dirty new cards (and scan them) 789 // as a side effect when a Reference object is encountered and 790 // queued during the marking. See b/11465268. 791 thread_pool->SetMaxActiveWorkers(thread_count - 1); 792 thread_pool->StartWorkers(self); 793 thread_pool->Wait(self, true, true); 794 thread_pool->StopWorkers(self); 795 } else { 796 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 797 if (space->GetMarkBitmap() != nullptr) { 798 // Image spaces are handled properly since live == marked for them. 799 const char* name = nullptr; 800 switch (space->GetGcRetentionPolicy()) { 801 case space::kGcRetentionPolicyNeverCollect: 802 name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects"; 803 break; 804 case space::kGcRetentionPolicyFullCollect: 805 name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects"; 806 break; 807 case space::kGcRetentionPolicyAlwaysCollect: 808 name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects"; 809 break; 810 default: 811 LOG(FATAL) << "Unreachable"; 812 } 813 TimingLogger::ScopedTiming t(name, GetTimings()); 814 ScanObjectVisitor visitor(this); 815 card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, 816 minimum_age); 817 } 818 } 819 } 820 } 821 822 class RecursiveMarkTask : public MarkStackTask<false> { 823 public: 824 RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, 825 accounting::ContinuousSpaceBitmap* bitmap, uintptr_t begin, uintptr_t end) 826 : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL), bitmap_(bitmap), begin_(begin), 827 end_(end) { 828 } 829 830 protected: 831 accounting::ContinuousSpaceBitmap* const bitmap_; 832 const uintptr_t begin_; 833 const uintptr_t end_; 834 835 virtual void Finalize() { 836 delete this; 837 } 838 839 // Scans all of the objects 840 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS { 841 ScanObjectParallelVisitor visitor(this); 842 bitmap_->VisitMarkedRange(begin_, end_, visitor); 843 // Finish by emptying our local mark stack. 844 MarkStackTask::Run(self); 845 } 846 }; 847 848 // Populates the mark stack based on the set of marked objects and 849 // recursively marks until the mark stack is emptied. 850 void MarkSweep::RecursiveMark() { 851 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 852 // RecursiveMark will build the lists of known instances of the Reference classes. See 853 // DelayReferenceReferent for details. 854 if (kUseRecursiveMark) { 855 const bool partial = GetGcType() == kGcTypePartial; 856 ScanObjectVisitor scan_visitor(this); 857 auto* self = Thread::Current(); 858 ThreadPool* thread_pool = heap_->GetThreadPool(); 859 size_t thread_count = GetThreadCount(false); 860 const bool parallel = kParallelRecursiveMark && thread_count > 1; 861 mark_stack_->Reset(); 862 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 863 if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) || 864 (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) { 865 current_space_bitmap_ = space->GetMarkBitmap(); 866 if (current_space_bitmap_ == nullptr) { 867 continue; 868 } 869 if (parallel) { 870 // We will use the mark stack the future. 871 // CHECK(mark_stack_->IsEmpty()); 872 // This function does not handle heap end increasing, so we must use the space end. 873 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); 874 uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); 875 atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue()); 876 877 // Create a few worker tasks. 878 const size_t n = thread_count * 2; 879 while (begin != end) { 880 uintptr_t start = begin; 881 uintptr_t delta = (end - begin) / n; 882 delta = RoundUp(delta, KB); 883 if (delta < 16 * KB) delta = end - begin; 884 begin += delta; 885 auto* task = new RecursiveMarkTask(thread_pool, this, current_space_bitmap_, start, 886 begin); 887 thread_pool->AddTask(self, task); 888 } 889 thread_pool->SetMaxActiveWorkers(thread_count - 1); 890 thread_pool->StartWorkers(self); 891 thread_pool->Wait(self, true, true); 892 thread_pool->StopWorkers(self); 893 } else { 894 // This function does not handle heap end increasing, so we must use the space end. 895 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); 896 uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); 897 current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor); 898 } 899 } 900 } 901 } 902 ProcessMarkStack(false); 903 } 904 905 mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) { 906 if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) { 907 return object; 908 } 909 return nullptr; 910 } 911 912 void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) { 913 ScanGrayObjects(paused, minimum_age); 914 ProcessMarkStack(paused); 915 } 916 917 void MarkSweep::ReMarkRoots() { 918 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 919 Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); 920 Runtime::Current()->VisitRoots( 921 MarkRootCallback, this, static_cast<VisitRootFlags>(kVisitRootFlagNewRoots | 922 kVisitRootFlagStopLoggingNewRoots | 923 kVisitRootFlagClearRootLog)); 924 if (kVerifyRootsMarked) { 925 TimingLogger::ScopedTiming t("(Paused)VerifyRoots", GetTimings()); 926 Runtime::Current()->VisitRoots(VerifyRootMarked, this); 927 } 928 } 929 930 void MarkSweep::SweepSystemWeaks(Thread* self) { 931 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 932 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 933 Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this); 934 } 935 936 mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) { 937 reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj); 938 // We don't actually want to sweep the object, so lets return "marked" 939 return obj; 940 } 941 942 void MarkSweep::VerifyIsLive(const Object* obj) { 943 if (!heap_->GetLiveBitmap()->Test(obj)) { 944 accounting::ObjectStack* allocation_stack = heap_->allocation_stack_.get(); 945 CHECK(std::find(allocation_stack->Begin(), allocation_stack->End(), obj) != 946 allocation_stack->End()) << "Found dead object " << obj << "\n" << heap_->DumpSpaces(); 947 } 948 } 949 950 void MarkSweep::VerifySystemWeaks() { 951 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 952 // Verify system weaks, uses a special object visitor which returns the input object. 953 Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this); 954 } 955 956 class CheckpointMarkThreadRoots : public Closure { 957 public: 958 explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep, 959 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) 960 : mark_sweep_(mark_sweep), 961 revoke_ros_alloc_thread_local_buffers_at_checkpoint_( 962 revoke_ros_alloc_thread_local_buffers_at_checkpoint) { 963 } 964 965 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS { 966 ATRACE_BEGIN("Marking thread roots"); 967 // Note: self is not necessarily equal to thread since thread may be suspended. 968 Thread* self = Thread::Current(); 969 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) 970 << thread->GetState() << " thread " << thread << " self " << self; 971 thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_); 972 ATRACE_END(); 973 if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) { 974 ATRACE_BEGIN("RevokeRosAllocThreadLocalBuffers"); 975 mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread); 976 ATRACE_END(); 977 } 978 mark_sweep_->GetBarrier().Pass(self); 979 } 980 981 private: 982 MarkSweep* const mark_sweep_; 983 const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_; 984 }; 985 986 void MarkSweep::MarkRootsCheckpoint(Thread* self, 987 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) { 988 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 989 CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint); 990 ThreadList* thread_list = Runtime::Current()->GetThreadList(); 991 // Request the check point is run on all threads returning a count of the threads that must 992 // run through the barrier including self. 993 size_t barrier_count = thread_list->RunCheckpoint(&check_point); 994 // Release locks then wait for all mutator threads to pass the barrier. 995 // TODO: optimize to not release locks when there are no threads to wait for. 996 Locks::heap_bitmap_lock_->ExclusiveUnlock(self); 997 Locks::mutator_lock_->SharedUnlock(self); 998 { 999 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); 1000 gc_barrier_->Increment(self, barrier_count); 1001 } 1002 Locks::mutator_lock_->SharedLock(self); 1003 Locks::heap_bitmap_lock_->ExclusiveLock(self); 1004 } 1005 1006 void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) { 1007 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1008 Thread* self = Thread::Current(); 1009 mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>( 1010 sweep_array_free_buffer_mem_map_->BaseBegin()); 1011 size_t chunk_free_pos = 0; 1012 ObjectBytePair freed; 1013 ObjectBytePair freed_los; 1014 // How many objects are left in the array, modified after each space is swept. 1015 Object** objects = allocations->Begin(); 1016 size_t count = allocations->Size(); 1017 // Change the order to ensure that the non-moving space last swept as an optimization. 1018 std::vector<space::ContinuousSpace*> sweep_spaces; 1019 space::ContinuousSpace* non_moving_space = nullptr; 1020 for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) { 1021 if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) && 1022 space->GetLiveBitmap() != nullptr) { 1023 if (space == heap_->GetNonMovingSpace()) { 1024 non_moving_space = space; 1025 } else { 1026 sweep_spaces.push_back(space); 1027 } 1028 } 1029 } 1030 // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after 1031 // the other alloc spaces as an optimization. 1032 if (non_moving_space != nullptr) { 1033 sweep_spaces.push_back(non_moving_space); 1034 } 1035 // Start by sweeping the continuous spaces. 1036 for (space::ContinuousSpace* space : sweep_spaces) { 1037 space::AllocSpace* alloc_space = space->AsAllocSpace(); 1038 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); 1039 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap(); 1040 if (swap_bitmaps) { 1041 std::swap(live_bitmap, mark_bitmap); 1042 } 1043 Object** out = objects; 1044 for (size_t i = 0; i < count; ++i) { 1045 Object* obj = objects[i]; 1046 if (kUseThreadLocalAllocationStack && obj == nullptr) { 1047 continue; 1048 } 1049 if (space->HasAddress(obj)) { 1050 // This object is in the space, remove it from the array and add it to the sweep buffer 1051 // if needed. 1052 if (!mark_bitmap->Test(obj)) { 1053 if (chunk_free_pos >= kSweepArrayChunkFreeSize) { 1054 TimingLogger::ScopedTiming t("FreeList", GetTimings()); 1055 freed.objects += chunk_free_pos; 1056 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer); 1057 chunk_free_pos = 0; 1058 } 1059 chunk_free_buffer[chunk_free_pos++] = obj; 1060 } 1061 } else { 1062 *(out++) = obj; 1063 } 1064 } 1065 if (chunk_free_pos > 0) { 1066 TimingLogger::ScopedTiming t("FreeList", GetTimings()); 1067 freed.objects += chunk_free_pos; 1068 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer); 1069 chunk_free_pos = 0; 1070 } 1071 // All of the references which space contained are no longer in the allocation stack, update 1072 // the count. 1073 count = out - objects; 1074 } 1075 // Handle the large object space. 1076 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 1077 accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap(); 1078 accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap(); 1079 if (swap_bitmaps) { 1080 std::swap(large_live_objects, large_mark_objects); 1081 } 1082 for (size_t i = 0; i < count; ++i) { 1083 Object* obj = objects[i]; 1084 // Handle large objects. 1085 if (kUseThreadLocalAllocationStack && obj == nullptr) { 1086 continue; 1087 } 1088 if (!large_mark_objects->Test(obj)) { 1089 ++freed_los.objects; 1090 freed_los.bytes += large_object_space->Free(self, obj); 1091 } 1092 } 1093 { 1094 TimingLogger::ScopedTiming t("RecordFree", GetTimings()); 1095 RecordFree(freed); 1096 RecordFreeLOS(freed_los); 1097 t.NewTiming("ResetStack"); 1098 allocations->Reset(); 1099 } 1100 sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero(); 1101 } 1102 1103 void MarkSweep::Sweep(bool swap_bitmaps) { 1104 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1105 // Ensure that nobody inserted items in the live stack after we swapped the stacks. 1106 CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size()); 1107 { 1108 TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings()); 1109 // Mark everything allocated since the last as GC live so that we can sweep concurrently, 1110 // knowing that new allocations won't be marked as live. 1111 accounting::ObjectStack* live_stack = heap_->GetLiveStack(); 1112 heap_->MarkAllocStackAsLive(live_stack); 1113 live_stack->Reset(); 1114 DCHECK(mark_stack_->IsEmpty()); 1115 } 1116 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 1117 if (space->IsContinuousMemMapAllocSpace()) { 1118 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace(); 1119 TimingLogger::ScopedTiming split( 1120 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", GetTimings()); 1121 RecordFree(alloc_space->Sweep(swap_bitmaps)); 1122 } 1123 } 1124 SweepLargeObjects(swap_bitmaps); 1125 } 1126 1127 void MarkSweep::SweepLargeObjects(bool swap_bitmaps) { 1128 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings()); 1129 RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps)); 1130 } 1131 1132 // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been 1133 // marked, put it on the appropriate list in the heap for later processing. 1134 void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) { 1135 if (kCountJavaLangRefs) { 1136 ++reference_count_; 1137 } 1138 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, &HeapReferenceMarkedCallback, 1139 this); 1140 } 1141 1142 class MarkObjectVisitor { 1143 public: 1144 explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) { 1145 } 1146 1147 void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const 1148 ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 1149 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 1150 if (kCheckLocks) { 1151 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 1152 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 1153 } 1154 mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset)); 1155 } 1156 1157 private: 1158 MarkSweep* const mark_sweep_; 1159 }; 1160 1161 // Scans an object reference. Determines the type of the reference 1162 // and dispatches to a specialized scanning routine. 1163 void MarkSweep::ScanObject(Object* obj) { 1164 MarkObjectVisitor mark_visitor(this); 1165 DelayReferenceReferentVisitor ref_visitor(this); 1166 ScanObjectVisit(obj, mark_visitor, ref_visitor); 1167 } 1168 1169 void MarkSweep::ProcessMarkStackCallback(void* arg) { 1170 reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(false); 1171 } 1172 1173 void MarkSweep::ProcessMarkStackParallel(size_t thread_count) { 1174 Thread* self = Thread::Current(); 1175 ThreadPool* thread_pool = GetHeap()->GetThreadPool(); 1176 const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1, 1177 static_cast<size_t>(MarkStackTask<false>::kMaxSize)); 1178 CHECK_GT(chunk_size, 0U); 1179 // Split the current mark stack up into work tasks. 1180 for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) { 1181 const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size); 1182 thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it)); 1183 it += delta; 1184 } 1185 thread_pool->SetMaxActiveWorkers(thread_count - 1); 1186 thread_pool->StartWorkers(self); 1187 thread_pool->Wait(self, true, true); 1188 thread_pool->StopWorkers(self); 1189 mark_stack_->Reset(); 1190 CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(), 1191 work_chunks_deleted_.LoadSequentiallyConsistent()) 1192 << " some of the work chunks were leaked"; 1193 } 1194 1195 // Scan anything that's on the mark stack. 1196 void MarkSweep::ProcessMarkStack(bool paused) { 1197 TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings()); 1198 size_t thread_count = GetThreadCount(paused); 1199 if (kParallelProcessMarkStack && thread_count > 1 && 1200 mark_stack_->Size() >= kMinimumParallelMarkStackSize) { 1201 ProcessMarkStackParallel(thread_count); 1202 } else { 1203 // TODO: Tune this. 1204 static const size_t kFifoSize = 4; 1205 BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo; 1206 for (;;) { 1207 Object* obj = NULL; 1208 if (kUseMarkStackPrefetch) { 1209 while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) { 1210 Object* obj = mark_stack_->PopBack(); 1211 DCHECK(obj != NULL); 1212 __builtin_prefetch(obj); 1213 prefetch_fifo.push_back(obj); 1214 } 1215 if (prefetch_fifo.empty()) { 1216 break; 1217 } 1218 obj = prefetch_fifo.front(); 1219 prefetch_fifo.pop_front(); 1220 } else { 1221 if (mark_stack_->IsEmpty()) { 1222 break; 1223 } 1224 obj = mark_stack_->PopBack(); 1225 } 1226 DCHECK(obj != nullptr); 1227 ScanObject(obj); 1228 } 1229 } 1230 } 1231 1232 inline bool MarkSweep::IsMarked(const Object* object) const { 1233 if (immune_region_.ContainsObject(object)) { 1234 return true; 1235 } 1236 if (current_space_bitmap_->HasAddress(object)) { 1237 return current_space_bitmap_->Test(object); 1238 } 1239 return mark_bitmap_->Test(object); 1240 } 1241 1242 void MarkSweep::FinishPhase() { 1243 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1244 if (kCountScannedTypes) { 1245 VLOG(gc) << "MarkSweep scanned classes=" << class_count_.LoadRelaxed() 1246 << " arrays=" << array_count_.LoadRelaxed() << " other=" << other_count_.LoadRelaxed(); 1247 } 1248 if (kCountTasks) { 1249 VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed(); 1250 } 1251 if (kMeasureOverhead) { 1252 VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed()); 1253 } 1254 if (kProfileLargeObjects) { 1255 VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed() 1256 << " marked " << large_object_mark_.LoadRelaxed(); 1257 } 1258 if (kCountJavaLangRefs) { 1259 VLOG(gc) << "References scanned " << reference_count_.LoadRelaxed(); 1260 } 1261 if (kCountMarkedObjects) { 1262 VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed() 1263 << " immune=" << mark_immune_count_.LoadRelaxed() 1264 << " fastpath=" << mark_fastpath_count_.LoadRelaxed() 1265 << " slowpath=" << mark_slowpath_count_.LoadRelaxed(); 1266 } 1267 CHECK(mark_stack_->IsEmpty()); // Ensure that the mark stack is empty. 1268 mark_stack_->Reset(); 1269 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 1270 heap_->ClearMarkedObjects(); 1271 } 1272 1273 void MarkSweep::RevokeAllThreadLocalBuffers() { 1274 if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) { 1275 // If concurrent, rosalloc thread-local buffers are revoked at the 1276 // thread checkpoint. Bump pointer space thread-local buffers must 1277 // not be in use. 1278 GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked(); 1279 } else { 1280 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1281 GetHeap()->RevokeAllThreadLocalBuffers(); 1282 } 1283 } 1284 1285 } // namespace collector 1286 } // namespace gc 1287 } // namespace art 1288