Home | History | Annotate | Download | only in bootstub
      1 /*
      2  * bootstub 32 bit entry setting routings
      3  *
      4  * Copyright (C) 2008-2010 Intel Corporation.
      5  * Author: Alek Du <alek.du (at) intel.com>
      6  *
      7  * This program is free software; you can redistribute it and/or modify it
      8  * under the terms and conditions of the GNU General Public License,
      9  * version 2, as published by the Free Software Foundation.
     10  *
     11  * This program is distributed in the hope it will be useful, but WITHOUT
     12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
     14  * more details.
     15  *
     16  * You should have received a copy of the GNU General Public License along with
     17  * this program; if not, write to the Free Software Foundation, Inc.,
     18  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
     19  *
     20  */
     21 
     22 #include "types.h"
     23 #include "bootstub.h"
     24 #include "bootparam.h"
     25 #include "spi-uart.h"
     26 #include "ssp-uart.h"
     27 #include "mb.h"
     28 #include "sfi.h"
     29 #include "bootimg.h"
     30 
     31 #include <stdint.h>
     32 #include <stddef.h>
     33 #include "imr_toc.h"
     34 
     35 #define PAGE_SIZE_MASK	0xFFF
     36 #define MASK_1K		0x3FF
     37 #define PAGE_ALIGN_FWD(x)       ((x + PAGE_SIZE_MASK) & ~PAGE_SIZE_MASK)
     38 #define PAGE_ALIGN_BACK(x)      ((x) & ~PAGE_SIZE_MASK)
     39 
     40 #define IMR_START_ADDRESS(x)	(((x) & 0xFFFFFFFC) << 8)
     41 #define IMR_END_ADDRESS(x)	((x == 0) ? (x) : ((((x) & 0xFFFFFFFC) << 8) | MASK_1K))
     42 
     43 #define	IMR6_START_ADDRESS	IMR_START_ADDRESS(*((u32 *)0xff108160))
     44 #define	IMR6_END_ADDRESS	IMR_END_ADDRESS(*((u32 *)0xff108164))
     45 #define	IMR7_START_ADDRESS	IMR_START_ADDRESS(*((u32 *)0xff108170))
     46 #define	IMR7_END_ADDRESS	IMR_END_ADDRESS(*((u32 *)0xff108174))
     47 
     48 #define FATAL_HANG()  { asm("cli"); while (1) { asm("nop"); } }
     49 
     50 extern int no_uart_used;
     51 
     52 extern imr_toc_t imr6_toc;
     53 static u32 imr7_size;
     54 
     55 static u32 sps_load_adrs;
     56 
     57 static memory_map_t mb_mmap[E820MAX];
     58 u32 mb_magic, mb_info;
     59 
     60 struct gdt_ptr {
     61         u16 len;
     62         u32 ptr;
     63 } __attribute__((packed));
     64 
     65 static void *memcpy(void *dest, const void *src, size_t count)
     66 {
     67         char *tmp = dest;
     68         const char *s = src;
     69 	size_t _count = count / 4;
     70 
     71 	while (_count--) {
     72 		*(long *)tmp = *(long *)s;
     73 		tmp += 4;
     74 		s += 4;
     75 	}
     76 	count %= 4;
     77         while (count--)
     78                 *tmp++ = *s++;
     79         return dest;
     80 }
     81 
     82 static void *memset(void *s, unsigned char c, size_t count)
     83 {
     84         char *xs = s;
     85 	size_t _count = count / 4;
     86 	unsigned long  _c = c << 24 | c << 16 | c << 8 | c;
     87 
     88 	while (_count--) {
     89 		*(long *)xs = _c;
     90 		xs += 4;
     91 	}
     92 	count %= 4;
     93         while (count--)
     94                 *xs++ = c;
     95         return s;
     96 }
     97 
     98 static size_t strnlen(const char *s, size_t maxlen)
     99 {
    100         const char *es = s;
    101         while (*es && maxlen) {
    102                 es++;
    103                 maxlen--;
    104         }
    105 
    106         return (es - s);
    107 }
    108 
    109 static const char *strnchr(const char *s, int c, size_t maxlen)
    110 {
    111     int i;
    112     for (i = 0; i < maxlen && *s != c; s++, i++)
    113         ;
    114     return s;
    115 }
    116 
    117 int strncmp(const char *cs, const char *ct, size_t count)
    118 {
    119 	unsigned char c1, c2;
    120 
    121 	while (count) {
    122 		c1 = *cs++;
    123 		c2 = *ct++;
    124 		if (c1 != c2)
    125 			return c1 < c2 ? -1 : 1;
    126 		if (!c1)
    127 			break;
    128 		count--;
    129 	}
    130 	return 0;
    131 }
    132 
    133 static inline int is_image_aosp(unsigned char *magic)
    134 {
    135 	return !strncmp((char *)magic, (char *)BOOT_MAGIC, sizeof(BOOT_MAGIC)-1);
    136 }
    137 
    138 static void setup_boot_params(struct boot_params *bp, struct setup_header *sh)
    139 {
    140 	bp->screen_info.orig_video_mode = 0;
    141 	bp->screen_info.orig_video_lines = 0;
    142 	bp->screen_info.orig_video_cols = 0;
    143 	bp->alt_mem_k = 128*1024; // hard coded 128M mem here, since SFI will override it
    144 	memcpy(&bp->hdr, sh, sizeof (struct setup_header));
    145 	bp->hdr.type_of_loader = 0xff; //bootstub is unknown bootloader for kernel :)
    146 	bp->hdr.hardware_subarch = X86_SUBARCH_MRST;
    147 }
    148 
    149 static u32 bzImage_setup(struct boot_params *bp, struct setup_header *sh)
    150 {
    151 	void *cmdline = (void *)BOOT_CMDLINE_OFFSET;
    152 	struct boot_img_hdr *aosp = (struct boot_img_hdr *)AOSP_HEADER_ADDRESS;
    153 	size_t cmdline_len;
    154 	u8 *initramfs, *ptr;
    155 
    156 	if (is_image_aosp(aosp->magic)) {
    157 		ptr = (u8*)aosp->kernel_addr;
    158 		cmdline_len = strnlen((const char *)aosp->cmdline, sizeof(aosp->cmdline));
    159 
    160 		/*
    161 		* Copy the command line to be after bootparams so that it won't be
    162 		* overwritten by the kernel executable.
    163 		*/
    164 		memset(cmdline, 0, sizeof(aosp->cmdline));
    165 		memcpy(cmdline, (const void *)aosp->cmdline, cmdline_len);
    166 
    167 		bp->hdr.ramdisk_size = aosp->ramdisk_size;
    168 
    169 		initramfs = (u8 *)aosp->ramdisk_addr;
    170 	} else {
    171 		ptr = (u8*)BZIMAGE_OFFSET;
    172 		cmdline_len = strnlen((const char *)CMDLINE_OFFSET, CMDLINE_SIZE);
    173 		/*
    174 		 * Copy the command line to be after bootparams so that it won't be
    175 		 * overwritten by the kernel executable.
    176 		 */
    177 		memset(cmdline, 0, CMDLINE_SIZE);
    178 		memcpy(cmdline, (const void *)CMDLINE_OFFSET, cmdline_len);
    179 
    180 		bp->hdr.ramdisk_size = *(u32 *)INITRD_SIZE_OFFSET;
    181 
    182 		initramfs = (u8 *)BZIMAGE_OFFSET + *(u32 *)BZIMAGE_SIZE_OFFSET;
    183 	}
    184 
    185 	bp->hdr.cmd_line_ptr = BOOT_CMDLINE_OFFSET;
    186 	bp->hdr.cmdline_size = cmdline_len;
    187 	bp->hdr.ramdisk_image = (bp->alt_mem_k*1024 - bp->hdr.ramdisk_size) & 0xFFFFF000;
    188 
    189 	if (*initramfs) {
    190 		bs_printk("Relocating initramfs to high memory ...\n");
    191 		memcpy((u8*)bp->hdr.ramdisk_image, initramfs, bp->hdr.ramdisk_size);
    192 	} else {
    193 		bs_printk("Won't relocate initramfs, are you in SLE?\n");
    194 	}
    195 
    196 	while (1){
    197 		if (*(u32 *)ptr == SETUP_SIGNATURE && *(u32 *)(ptr+4) == 0)
    198 			break;
    199 		ptr++;
    200 	}
    201 	ptr+=4;
    202 	return (((unsigned int)ptr+511)/512)*512;
    203 }
    204 
    205 static inline void cpuid(u32 op, u32 regs[4])
    206 {
    207 	__asm__ volatile (
    208 		"mov %%ebx, %%edi\n"
    209 		"cpuid\n"
    210 		"xchg %%edi, %%ebx\n"
    211 		: "=a"(regs[0]), "=D"(regs[1]), "=c"(regs[2]), "=d"(regs[3])
    212 		: "a"(op)
    213 		);
    214 }
    215 
    216 enum cpuid_regs {
    217 	CR_EAX = 0,
    218 	CR_ECX,
    219 	CR_EDX,
    220 	CR_EBX
    221 };
    222 
    223 int mid_identify_cpu(void)
    224 {
    225 	u32 regs[4];
    226 
    227 	cpuid(1, regs);
    228 
    229 	switch ( regs[CR_EAX] & CPUID_MASK ) {
    230 
    231 	case PENWELL_FAMILY:
    232 		return MID_CPU_CHIP_PENWELL;
    233 	case CLOVERVIEW_FAMILY:
    234 		return MID_CPU_CHIP_CLOVERVIEW;
    235 	case VALLEYVIEW2_FAMILY:
    236 		return MID_CPU_CHIP_VALLEYVIEW2;
    237 	case TANGIER_FAMILY:
    238 		return MID_CPU_CHIP_TANGIER;
    239 	case ANNIEDALE_FAMILY:
    240 		return MID_CPU_CHIP_ANNIEDALE;
    241 	default:
    242 		return MID_CPU_CHIP_OTHER;
    243 	}
    244 }
    245 
    246 static void setup_spi(void)
    247 {
    248 	if (!(*(int *)SPI_TYPE)) {
    249 		switch ( mid_identify_cpu() ) {
    250 
    251 		case MID_CPU_CHIP_PENWELL:
    252 			*(int *)SPI_TYPE = SPI_1;
    253 			bs_printk("PNW detected\n");
    254 			break;
    255 
    256 		case MID_CPU_CHIP_CLOVERVIEW:
    257 			*(int *)SPI_TYPE = SPI_1;
    258 			bs_printk("CLV detected\n");
    259 			break;
    260 
    261 		case MID_CPU_CHIP_TANGIER:
    262 			*(int *)SPI_TYPE = SPI_2;
    263 			bs_printk("MRD detected\n");
    264 			break;
    265 
    266 		case MID_CPU_CHIP_ANNIEDALE:
    267 			*(int *)SPI_TYPE = SPI_2;
    268 			bs_printk("ANN detected\n");
    269 			break;
    270 
    271 		case MID_CPU_CHIP_VALLEYVIEW2:
    272 		case MID_CPU_CHIP_OTHER:
    273 		default:
    274 			no_uart_used = 1;
    275 		}
    276 	}
    277 }
    278 
    279 static void setup_gdt(void)
    280 {
    281         static const u64 boot_gdt[] __attribute__((aligned(16))) = {
    282                 /* CS: code, read/execute, 4 GB, base 0 */
    283                 [GDT_ENTRY_BOOT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff),
    284                 /* DS: data, read/write, 4 GB, base 0 */
    285                 [GDT_ENTRY_BOOT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff),
    286         };
    287         static struct gdt_ptr gdt;
    288 
    289         gdt.len = sizeof(boot_gdt)-1;
    290         gdt.ptr = (u32)&boot_gdt;
    291 
    292         asm volatile("lgdtl %0" : : "m" (gdt));
    293 }
    294 
    295 static void setup_idt(void)
    296 {
    297         static const struct gdt_ptr null_idt = {0, 0};
    298         asm volatile("lidtl %0" : : "m" (null_idt));
    299 }
    300 
    301 static void vxe_fw_setup(void)
    302 {
    303 	u8 *vxe_fw_image;
    304 	u32 vxe_fw_size;
    305 	u32 vxe_fw_load_adrs;
    306 
    307 	vxe_fw_size = *(u32*)VXE_FW_SIZE_OFFSET;
    308 	/* do we have a VXE FW image? */
    309 	if (vxe_fw_size == 0)
    310 		return;
    311 
    312 	/* Do we have enough room to load the image? */
    313 	if (vxe_fw_size > imr6_toc.entries[IMR_TOC_ENTRY_VXE_FW].size) {
    314 		bs_printk("FATAL ERROR: VXE FW image size is too large for IMR\n");
    315 		FATAL_HANG();
    316 	}
    317 
    318 	vxe_fw_image = (u8 *)(
    319 		BZIMAGE_OFFSET
    320 		+ *(u32 *)BZIMAGE_SIZE_OFFSET
    321 		+ *(u32 *)INITRD_SIZE_OFFSET
    322 	);
    323 
    324 	vxe_fw_load_adrs = IMR6_START_ADDRESS + imr6_toc.entries[IMR_TOC_ENTRY_VXE_FW].start_offset;
    325 	memcpy((u8 *)vxe_fw_load_adrs, vxe_fw_image, vxe_fw_size);
    326 }
    327 
    328 static void load_imr_toc(u32 imr, u32 imrsize, imr_toc_t *toc, u32 tocsize)
    329 {
    330 	if (imr == 0 || imrsize == 0 || toc == NULL || tocsize == 0 || imrsize < tocsize )
    331 	{
    332                 bs_printk("FATAL ERROR: TOC size is too large for IMR\n");
    333 		FATAL_HANG();
    334 	}
    335 	memcpy((u8 *)imr, (u8 *)toc, tocsize);
    336 }
    337 
    338 
    339 static u32 xen_multiboot_setup(void)
    340 {
    341 	u32 *magic, *xen_image, i;
    342 	char *src, *dst;
    343 	u32 xen_size;
    344 	u32 xen_jump_adrs;
    345 	static module_t modules[3];
    346 	static multiboot_info_t mb = {
    347 		.flags = MBI_CMDLINE | MBI_MODULES | MBI_MEMMAP | MBI_DRIVES,
    348 		.mmap_addr = (u32)mb_mmap,
    349 		.mods_count = 3,
    350 		.mods_addr = (u32)modules,
    351 	};
    352 
    353 	xen_size =  *(u32 *)XEN_SIZE_OFFSET;
    354 	/* do we have a xen image? */
    355 	if (xen_size == 0) {
    356 		return 0;
    357         }
    358 
    359 	/* Compute the actual offset of the Xen image */
    360 	xen_image = (u32*)(
    361 		BZIMAGE_OFFSET
    362 		+ *(u32 *)BZIMAGE_SIZE_OFFSET
    363 		+ *(u32 *)INITRD_SIZE_OFFSET
    364 		+ *(u32 *)VXE_FW_SIZE_OFFSET
    365 		+ *(u32 *)SEC_PLAT_SVCS_SIZE_OFFSET
    366 	);
    367 
    368 	/* the multiboot signature should be located in the first 8192 bytes */
    369 	for (magic = xen_image; magic < xen_image + 2048; magic++)
    370 		if (*magic == MULTIBOOT_HEADER_MAGIC)
    371 			break;
    372 	if (*magic != MULTIBOOT_HEADER_MAGIC) {
    373 		return 0;
    374         }
    375 
    376 	mb.cmdline = (u32)strnchr((char *)CMDLINE_OFFSET, '$', CMDLINE_SIZE) + 1;
    377 	dst = (char *)mb.cmdline + strnlen((const char *)mb.cmdline, CMDLINE_SIZE) - 1;
    378 	*dst = ' ';
    379 	dst++;
    380 	src = (char *)CMDLINE_OFFSET;
    381 	for (i = 0 ;i < strnlen((const char *)CMDLINE_OFFSET, CMDLINE_SIZE);i++) {
    382 		if (!strncmp(src, "capfreq=", 8)) {
    383 			while (*src != ' ' && *src != 0) {
    384 				*dst = *src;
    385 				dst++;
    386 				src++;
    387 			}
    388 			break;
    389 		}
    390 		src++;
    391 	}
    392 
    393 	/* fill in the multiboot module information: dom0 kernel + initrd + Platform Services Image */
    394 	modules[0].mod_start = BZIMAGE_OFFSET;
    395 	modules[0].mod_end = BZIMAGE_OFFSET + *(u32 *)BZIMAGE_SIZE_OFFSET;
    396 	modules[0].string = CMDLINE_OFFSET;
    397 
    398 	modules[1].mod_start = modules[0].mod_end ;
    399 	modules[1].mod_end = modules[1].mod_start + *(u32 *)INITRD_SIZE_OFFSET;
    400 	modules[1].string = 0;
    401 
    402 	modules[2].mod_start = sps_load_adrs;
    403 	modules[2].mod_end = modules[2].mod_start + *(u32 *)SEC_PLAT_SVCS_SIZE_OFFSET;
    404 	modules[2].string = 0;
    405 
    406 	mb.drives_addr = IMR6_START_ADDRESS + imr6_toc.entries[IMR_TOC_ENTRY_XEN_EXTRA].start_offset;
    407 	mb.drives_length = imr6_toc.entries[IMR_TOC_ENTRY_XEN_EXTRA].size;
    408 
    409 	for(i = 0; i < E820MAX; i++)
    410 		if (!mb_mmap[i].size)
    411 			break;
    412 	mb.mmap_length = i * sizeof(memory_map_t);
    413 
    414 	/* relocate xen to start address */
    415 	if (xen_size > imr7_size) {
    416 		bs_printk("FATAL ERROR: Xen image size is too large for IMR\n");
    417 		FATAL_HANG();
    418 	}
    419 	xen_jump_adrs = IMR7_START_ADDRESS;
    420 	memcpy((u8 *)xen_jump_adrs, xen_image, xen_size);
    421 
    422 	mb_info = (u32)&mb;
    423 	mb_magic = MULTIBOOT_BOOTLOADER_MAGIC;
    424 
    425 	return (u32)xen_jump_adrs;
    426 }
    427 
    428 static void sec_plat_svcs_setup(void)
    429 {
    430 	u8 *sps_image;
    431 	u32 sps_size;
    432 
    433 	sps_size = PAGE_ALIGN_FWD(*(u32*)SEC_PLAT_SVCS_SIZE_OFFSET);
    434 	/* do we have a SPS image? */
    435 	if (sps_size == 0)
    436 		return;
    437 
    438 	/* Do we have enough room to load the image? */
    439 	if (sps_size > imr7_size) {
    440 		bs_printk("FATAL ERROR: SPS image size is too large for IMR\n");
    441 		FATAL_HANG();
    442 	}
    443 
    444 	sps_image = (u8 *)(
    445 		BZIMAGE_OFFSET
    446 		+ *(u32 *)BZIMAGE_SIZE_OFFSET
    447 		+ *(u32 *)INITRD_SIZE_OFFSET
    448 		+ *(u32 *)VXE_FW_SIZE_OFFSET
    449 	);
    450 
    451 	/* load SPS image (with assumed CHAABI Mailboxes suffixed) */
    452 	/* at bottom of IMR7 */
    453 	/* Must be page-aligned or Xen will panic */
    454 	sps_load_adrs = PAGE_ALIGN_BACK(IMR7_START_ADDRESS + imr7_size - sps_size);
    455 	memcpy((u8 *)sps_load_adrs, sps_image, sps_size);
    456 
    457 	/* reduce remaining size for Xen image size check */
    458 	imr7_size -= sps_size;
    459 }
    460 
    461 int bootstub(void)
    462 {
    463 	u32 jmp;
    464 	struct boot_img_hdr *aosp = (struct boot_img_hdr *)AOSP_HEADER_ADDRESS;
    465 	struct boot_params *bp = (struct boot_params *)BOOT_PARAMS_OFFSET;
    466 	struct setup_header *sh;
    467 	u32 imr_size;
    468 	int nr_entries;
    469 
    470 	if (is_image_aosp(aosp->magic)) {
    471 		sh = (struct setup_header *)((unsigned  int)aosp->kernel_addr + 0x1F1);
    472 		/* disable the bs_printk through SPI/UART */
    473 		*(int *)SPI_UART_SUPPRESSION = 1;
    474 		*(int *)SPI_TYPE = SPI_2;
    475 	} else
    476 		sh = (struct setup_header *)SETUP_HEADER_OFFSET;
    477 
    478 	setup_idt();
    479 	setup_gdt();
    480 	setup_spi();
    481 	bs_printk("Bootstub Version: 1.4 ...\n");
    482 
    483 	memset(bp, 0, sizeof (struct boot_params));
    484 
    485 	if (mid_identify_cpu() == MID_CPU_CHIP_VALLEYVIEW2) {
    486 		nr_entries = get_e820_by_bios(bp->e820_map);
    487 		bp->e820_entries = (nr_entries > 0) ? nr_entries : 0;
    488 	} else {
    489 	        sfi_setup_mmap(bp, mb_mmap);
    490 	}
    491 
    492 	if ((mid_identify_cpu() != MID_CPU_CHIP_TANGIER) && (mid_identify_cpu() != MID_CPU_CHIP_ANNIEDALE)) {
    493 		if ((IMR6_END_ADDRESS > IMR6_START_ADDRESS) && (IMR7_END_ADDRESS > IMR7_START_ADDRESS)) {
    494 			imr_size  = PAGE_ALIGN_FWD(IMR6_END_ADDRESS - IMR6_START_ADDRESS);
    495 			load_imr_toc(IMR6_START_ADDRESS, imr_size, &imr6_toc, sizeof(imr6_toc));
    496 			vxe_fw_setup();
    497 			sfi_add_e820_entry(bp, mb_mmap, IMR6_START_ADDRESS, imr_size, E820_RESERVED);
    498 
    499 			imr7_size  = PAGE_ALIGN_FWD(IMR7_END_ADDRESS - IMR7_START_ADDRESS);
    500 			sec_plat_svcs_setup();
    501 			sfi_add_e820_entry(bp, mb_mmap, IMR7_START_ADDRESS, imr7_size, E820_RESERVED);
    502 		} else {
    503 			*(u32 *)XEN_SIZE_OFFSET = 0;	/* Don't allow Xen to boot */
    504 		}
    505 	} else {
    506 		*(u32 *)XEN_SIZE_OFFSET = 0;	/* Don't allow Xen to boot */
    507 	}
    508 
    509 	setup_boot_params(bp, sh);
    510 
    511 	jmp = xen_multiboot_setup();
    512 	if (!jmp) {
    513 		bs_printk("Using bzImage to boot\n");
    514 		jmp = bzImage_setup(bp, sh);
    515 	} else
    516 		bs_printk("Using multiboot image to boot\n");
    517 
    518 	bs_printk("Jump to kernel 32bit entry\n");
    519 	return jmp;
    520 }
    521 
    522 void bs_printk(const char *str)
    523 {
    524         if (*(int *)SPI_UART_SUPPRESSION)
    525                 return;
    526 
    527         switch (*(int *)SPI_TYPE) {
    528 
    529         case SPI_1:
    530                 bs_spi_printk(str);
    531                 break;
    532 
    533         case SPI_2:
    534                 bs_ssp_printk(str);
    535                 break;
    536         }
    537 }
    538