1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_HEAP_INL_H_ 6 #define V8_HEAP_INL_H_ 7 8 #include <cmath> 9 10 #include "src/heap.h" 11 #include "src/heap-profiler.h" 12 #include "src/isolate.h" 13 #include "src/list-inl.h" 14 #include "src/objects.h" 15 #include "src/platform.h" 16 #include "src/store-buffer.h" 17 #include "src/store-buffer-inl.h" 18 19 namespace v8 { 20 namespace internal { 21 22 void PromotionQueue::insert(HeapObject* target, int size) { 23 if (emergency_stack_ != NULL) { 24 emergency_stack_->Add(Entry(target, size)); 25 return; 26 } 27 28 if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(rear_))) { 29 NewSpacePage* rear_page = 30 NewSpacePage::FromAddress(reinterpret_cast<Address>(rear_)); 31 ASSERT(!rear_page->prev_page()->is_anchor()); 32 rear_ = reinterpret_cast<intptr_t*>(rear_page->prev_page()->area_end()); 33 ActivateGuardIfOnTheSamePage(); 34 } 35 36 if (guard_) { 37 ASSERT(GetHeadPage() == 38 Page::FromAllocationTop(reinterpret_cast<Address>(limit_))); 39 40 if ((rear_ - 2) < limit_) { 41 RelocateQueueHead(); 42 emergency_stack_->Add(Entry(target, size)); 43 return; 44 } 45 } 46 47 *(--rear_) = reinterpret_cast<intptr_t>(target); 48 *(--rear_) = size; 49 // Assert no overflow into live objects. 50 #ifdef DEBUG 51 SemiSpace::AssertValidRange(target->GetIsolate()->heap()->new_space()->top(), 52 reinterpret_cast<Address>(rear_)); 53 #endif 54 } 55 56 57 void PromotionQueue::ActivateGuardIfOnTheSamePage() { 58 guard_ = guard_ || 59 heap_->new_space()->active_space()->current_page()->address() == 60 GetHeadPage()->address(); 61 } 62 63 64 template<> 65 bool inline Heap::IsOneByte(Vector<const char> str, int chars) { 66 // TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported? 67 // ASCII only check. 68 return chars == str.length(); 69 } 70 71 72 template<> 73 bool inline Heap::IsOneByte(String* str, int chars) { 74 return str->IsOneByteRepresentation(); 75 } 76 77 78 AllocationResult Heap::AllocateInternalizedStringFromUtf8( 79 Vector<const char> str, int chars, uint32_t hash_field) { 80 if (IsOneByte(str, chars)) { 81 return AllocateOneByteInternalizedString( 82 Vector<const uint8_t>::cast(str), hash_field); 83 } 84 return AllocateInternalizedStringImpl<false>(str, chars, hash_field); 85 } 86 87 88 template<typename T> 89 AllocationResult Heap::AllocateInternalizedStringImpl( 90 T t, int chars, uint32_t hash_field) { 91 if (IsOneByte(t, chars)) { 92 return AllocateInternalizedStringImpl<true>(t, chars, hash_field); 93 } 94 return AllocateInternalizedStringImpl<false>(t, chars, hash_field); 95 } 96 97 98 AllocationResult Heap::AllocateOneByteInternalizedString( 99 Vector<const uint8_t> str, 100 uint32_t hash_field) { 101 CHECK_GE(String::kMaxLength, str.length()); 102 // Compute map and object size. 103 Map* map = ascii_internalized_string_map(); 104 int size = SeqOneByteString::SizeFor(str.length()); 105 AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED); 106 107 // Allocate string. 108 HeapObject* result; 109 { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE); 110 if (!allocation.To(&result)) return allocation; 111 } 112 113 // String maps are all immortal immovable objects. 114 result->set_map_no_write_barrier(map); 115 // Set length and hash fields of the allocated string. 116 String* answer = String::cast(result); 117 answer->set_length(str.length()); 118 answer->set_hash_field(hash_field); 119 120 ASSERT_EQ(size, answer->Size()); 121 122 // Fill in the characters. 123 MemCopy(answer->address() + SeqOneByteString::kHeaderSize, str.start(), 124 str.length()); 125 126 return answer; 127 } 128 129 130 AllocationResult Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str, 131 uint32_t hash_field) { 132 CHECK_GE(String::kMaxLength, str.length()); 133 // Compute map and object size. 134 Map* map = internalized_string_map(); 135 int size = SeqTwoByteString::SizeFor(str.length()); 136 AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED); 137 138 // Allocate string. 139 HeapObject* result; 140 { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE); 141 if (!allocation.To(&result)) return allocation; 142 } 143 144 result->set_map(map); 145 // Set length and hash fields of the allocated string. 146 String* answer = String::cast(result); 147 answer->set_length(str.length()); 148 answer->set_hash_field(hash_field); 149 150 ASSERT_EQ(size, answer->Size()); 151 152 // Fill in the characters. 153 MemCopy(answer->address() + SeqTwoByteString::kHeaderSize, str.start(), 154 str.length() * kUC16Size); 155 156 return answer; 157 } 158 159 AllocationResult Heap::CopyFixedArray(FixedArray* src) { 160 if (src->length() == 0) return src; 161 return CopyFixedArrayWithMap(src, src->map()); 162 } 163 164 165 AllocationResult Heap::CopyFixedDoubleArray(FixedDoubleArray* src) { 166 if (src->length() == 0) return src; 167 return CopyFixedDoubleArrayWithMap(src, src->map()); 168 } 169 170 171 AllocationResult Heap::CopyConstantPoolArray(ConstantPoolArray* src) { 172 if (src->length() == 0) return src; 173 return CopyConstantPoolArrayWithMap(src, src->map()); 174 } 175 176 177 AllocationResult Heap::AllocateRaw(int size_in_bytes, 178 AllocationSpace space, 179 AllocationSpace retry_space) { 180 ASSERT(AllowHandleAllocation::IsAllowed()); 181 ASSERT(AllowHeapAllocation::IsAllowed()); 182 ASSERT(gc_state_ == NOT_IN_GC); 183 HeapProfiler* profiler = isolate_->heap_profiler(); 184 #ifdef DEBUG 185 if (FLAG_gc_interval >= 0 && 186 AllowAllocationFailure::IsAllowed(isolate_) && 187 Heap::allocation_timeout_-- <= 0) { 188 return AllocationResult::Retry(space); 189 } 190 isolate_->counters()->objs_since_last_full()->Increment(); 191 isolate_->counters()->objs_since_last_young()->Increment(); 192 #endif 193 194 HeapObject* object; 195 AllocationResult allocation; 196 if (NEW_SPACE == space) { 197 allocation = new_space_.AllocateRaw(size_in_bytes); 198 if (always_allocate() && 199 allocation.IsRetry() && 200 retry_space != NEW_SPACE) { 201 space = retry_space; 202 } else { 203 if (profiler->is_tracking_allocations() && allocation.To(&object)) { 204 profiler->AllocationEvent(object->address(), size_in_bytes); 205 } 206 return allocation; 207 } 208 } 209 210 if (OLD_POINTER_SPACE == space) { 211 allocation = old_pointer_space_->AllocateRaw(size_in_bytes); 212 } else if (OLD_DATA_SPACE == space) { 213 allocation = old_data_space_->AllocateRaw(size_in_bytes); 214 } else if (CODE_SPACE == space) { 215 allocation = code_space_->AllocateRaw(size_in_bytes); 216 } else if (LO_SPACE == space) { 217 allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE); 218 } else if (CELL_SPACE == space) { 219 allocation = cell_space_->AllocateRaw(size_in_bytes); 220 } else if (PROPERTY_CELL_SPACE == space) { 221 allocation = property_cell_space_->AllocateRaw(size_in_bytes); 222 } else { 223 ASSERT(MAP_SPACE == space); 224 allocation = map_space_->AllocateRaw(size_in_bytes); 225 } 226 if (allocation.IsRetry()) old_gen_exhausted_ = true; 227 if (profiler->is_tracking_allocations() && allocation.To(&object)) { 228 profiler->AllocationEvent(object->address(), size_in_bytes); 229 } 230 return allocation; 231 } 232 233 234 void Heap::FinalizeExternalString(String* string) { 235 ASSERT(string->IsExternalString()); 236 v8::String::ExternalStringResourceBase** resource_addr = 237 reinterpret_cast<v8::String::ExternalStringResourceBase**>( 238 reinterpret_cast<byte*>(string) + 239 ExternalString::kResourceOffset - 240 kHeapObjectTag); 241 242 // Dispose of the C++ object if it has not already been disposed. 243 if (*resource_addr != NULL) { 244 (*resource_addr)->Dispose(); 245 *resource_addr = NULL; 246 } 247 } 248 249 250 bool Heap::InNewSpace(Object* object) { 251 bool result = new_space_.Contains(object); 252 ASSERT(!result || // Either not in new space 253 gc_state_ != NOT_IN_GC || // ... or in the middle of GC 254 InToSpace(object)); // ... or in to-space (where we allocate). 255 return result; 256 } 257 258 259 bool Heap::InNewSpace(Address address) { 260 return new_space_.Contains(address); 261 } 262 263 264 bool Heap::InFromSpace(Object* object) { 265 return new_space_.FromSpaceContains(object); 266 } 267 268 269 bool Heap::InToSpace(Object* object) { 270 return new_space_.ToSpaceContains(object); 271 } 272 273 274 bool Heap::InOldPointerSpace(Address address) { 275 return old_pointer_space_->Contains(address); 276 } 277 278 279 bool Heap::InOldPointerSpace(Object* object) { 280 return InOldPointerSpace(reinterpret_cast<Address>(object)); 281 } 282 283 284 bool Heap::InOldDataSpace(Address address) { 285 return old_data_space_->Contains(address); 286 } 287 288 289 bool Heap::InOldDataSpace(Object* object) { 290 return InOldDataSpace(reinterpret_cast<Address>(object)); 291 } 292 293 294 bool Heap::OldGenerationAllocationLimitReached() { 295 if (!incremental_marking()->IsStopped()) return false; 296 return OldGenerationSpaceAvailable() < 0; 297 } 298 299 300 bool Heap::ShouldBePromoted(Address old_address, int object_size) { 301 // An object should be promoted if: 302 // - the object has survived a scavenge operation or 303 // - to space is already 25% full. 304 NewSpacePage* page = NewSpacePage::FromAddress(old_address); 305 Address age_mark = new_space_.age_mark(); 306 bool below_mark = page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) && 307 (!page->ContainsLimit(age_mark) || old_address < age_mark); 308 return below_mark || (new_space_.Size() + object_size) >= 309 (new_space_.EffectiveCapacity() >> 2); 310 } 311 312 313 void Heap::RecordWrite(Address address, int offset) { 314 if (!InNewSpace(address)) store_buffer_.Mark(address + offset); 315 } 316 317 318 void Heap::RecordWrites(Address address, int start, int len) { 319 if (!InNewSpace(address)) { 320 for (int i = 0; i < len; i++) { 321 store_buffer_.Mark(address + start + i * kPointerSize); 322 } 323 } 324 } 325 326 327 OldSpace* Heap::TargetSpace(HeapObject* object) { 328 InstanceType type = object->map()->instance_type(); 329 AllocationSpace space = TargetSpaceId(type); 330 return (space == OLD_POINTER_SPACE) 331 ? old_pointer_space_ 332 : old_data_space_; 333 } 334 335 336 AllocationSpace Heap::TargetSpaceId(InstanceType type) { 337 // Heap numbers and sequential strings are promoted to old data space, all 338 // other object types are promoted to old pointer space. We do not use 339 // object->IsHeapNumber() and object->IsSeqString() because we already 340 // know that object has the heap object tag. 341 342 // These objects are never allocated in new space. 343 ASSERT(type != MAP_TYPE); 344 ASSERT(type != CODE_TYPE); 345 ASSERT(type != ODDBALL_TYPE); 346 ASSERT(type != CELL_TYPE); 347 ASSERT(type != PROPERTY_CELL_TYPE); 348 349 if (type <= LAST_NAME_TYPE) { 350 if (type == SYMBOL_TYPE) return OLD_POINTER_SPACE; 351 ASSERT(type < FIRST_NONSTRING_TYPE); 352 // There are four string representations: sequential strings, external 353 // strings, cons strings, and sliced strings. 354 // Only the latter two contain non-map-word pointers to heap objects. 355 return ((type & kIsIndirectStringMask) == kIsIndirectStringTag) 356 ? OLD_POINTER_SPACE 357 : OLD_DATA_SPACE; 358 } else { 359 return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE; 360 } 361 } 362 363 364 bool Heap::AllowedToBeMigrated(HeapObject* obj, AllocationSpace dst) { 365 // Object migration is governed by the following rules: 366 // 367 // 1) Objects in new-space can be migrated to one of the old spaces 368 // that matches their target space or they stay in new-space. 369 // 2) Objects in old-space stay in the same space when migrating. 370 // 3) Fillers (two or more words) can migrate due to left-trimming of 371 // fixed arrays in new-space, old-data-space and old-pointer-space. 372 // 4) Fillers (one word) can never migrate, they are skipped by 373 // incremental marking explicitly to prevent invalid pattern. 374 // 5) Short external strings can end up in old pointer space when a cons 375 // string in old pointer space is made external (String::MakeExternal). 376 // 377 // Since this function is used for debugging only, we do not place 378 // asserts here, but check everything explicitly. 379 if (obj->map() == one_pointer_filler_map()) return false; 380 InstanceType type = obj->map()->instance_type(); 381 MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address()); 382 AllocationSpace src = chunk->owner()->identity(); 383 switch (src) { 384 case NEW_SPACE: 385 return dst == src || dst == TargetSpaceId(type); 386 case OLD_POINTER_SPACE: 387 return dst == src && 388 (dst == TargetSpaceId(type) || obj->IsFiller() || 389 (obj->IsExternalString() && ExternalString::cast(obj)->is_short())); 390 case OLD_DATA_SPACE: 391 return dst == src && dst == TargetSpaceId(type); 392 case CODE_SPACE: 393 return dst == src && type == CODE_TYPE; 394 case MAP_SPACE: 395 case CELL_SPACE: 396 case PROPERTY_CELL_SPACE: 397 case LO_SPACE: 398 return false; 399 case INVALID_SPACE: 400 break; 401 } 402 UNREACHABLE(); 403 return false; 404 } 405 406 407 void Heap::CopyBlock(Address dst, Address src, int byte_size) { 408 CopyWords(reinterpret_cast<Object**>(dst), 409 reinterpret_cast<Object**>(src), 410 static_cast<size_t>(byte_size / kPointerSize)); 411 } 412 413 414 void Heap::MoveBlock(Address dst, Address src, int byte_size) { 415 ASSERT(IsAligned(byte_size, kPointerSize)); 416 417 int size_in_words = byte_size / kPointerSize; 418 419 if ((dst < src) || (dst >= (src + byte_size))) { 420 Object** src_slot = reinterpret_cast<Object**>(src); 421 Object** dst_slot = reinterpret_cast<Object**>(dst); 422 Object** end_slot = src_slot + size_in_words; 423 424 while (src_slot != end_slot) { 425 *dst_slot++ = *src_slot++; 426 } 427 } else { 428 MemMove(dst, src, static_cast<size_t>(byte_size)); 429 } 430 } 431 432 433 void Heap::ScavengePointer(HeapObject** p) { 434 ScavengeObject(p, *p); 435 } 436 437 438 AllocationMemento* Heap::FindAllocationMemento(HeapObject* object) { 439 // Check if there is potentially a memento behind the object. If 440 // the last word of the momento is on another page we return 441 // immediately. 442 Address object_address = object->address(); 443 Address memento_address = object_address + object->Size(); 444 Address last_memento_word_address = memento_address + kPointerSize; 445 if (!NewSpacePage::OnSamePage(object_address, 446 last_memento_word_address)) { 447 return NULL; 448 } 449 450 HeapObject* candidate = HeapObject::FromAddress(memento_address); 451 if (candidate->map() != allocation_memento_map()) return NULL; 452 453 // Either the object is the last object in the new space, or there is another 454 // object of at least word size (the header map word) following it, so 455 // suffices to compare ptr and top here. Note that technically we do not have 456 // to compare with the current top pointer of the from space page during GC, 457 // since we always install filler objects above the top pointer of a from 458 // space page when performing a garbage collection. However, always performing 459 // the test makes it possible to have a single, unified version of 460 // FindAllocationMemento that is used both by the GC and the mutator. 461 Address top = NewSpaceTop(); 462 ASSERT(memento_address == top || 463 memento_address + HeapObject::kHeaderSize <= top || 464 !NewSpacePage::OnSamePage(memento_address, top)); 465 if (memento_address == top) return NULL; 466 467 AllocationMemento* memento = AllocationMemento::cast(candidate); 468 if (!memento->IsValid()) return NULL; 469 return memento; 470 } 471 472 473 void Heap::UpdateAllocationSiteFeedback(HeapObject* object, 474 ScratchpadSlotMode mode) { 475 Heap* heap = object->GetHeap(); 476 ASSERT(heap->InFromSpace(object)); 477 478 if (!FLAG_allocation_site_pretenuring || 479 !AllocationSite::CanTrack(object->map()->instance_type())) return; 480 481 AllocationMemento* memento = heap->FindAllocationMemento(object); 482 if (memento == NULL) return; 483 484 if (memento->GetAllocationSite()->IncrementMementoFoundCount()) { 485 heap->AddAllocationSiteToScratchpad(memento->GetAllocationSite(), mode); 486 } 487 } 488 489 490 void Heap::ScavengeObject(HeapObject** p, HeapObject* object) { 491 ASSERT(object->GetIsolate()->heap()->InFromSpace(object)); 492 493 // We use the first word (where the map pointer usually is) of a heap 494 // object to record the forwarding pointer. A forwarding pointer can 495 // point to an old space, the code space, or the to space of the new 496 // generation. 497 MapWord first_word = object->map_word(); 498 499 // If the first word is a forwarding address, the object has already been 500 // copied. 501 if (first_word.IsForwardingAddress()) { 502 HeapObject* dest = first_word.ToForwardingAddress(); 503 ASSERT(object->GetIsolate()->heap()->InFromSpace(*p)); 504 *p = dest; 505 return; 506 } 507 508 UpdateAllocationSiteFeedback(object, IGNORE_SCRATCHPAD_SLOT); 509 510 // AllocationMementos are unrooted and shouldn't survive a scavenge 511 ASSERT(object->map() != object->GetHeap()->allocation_memento_map()); 512 // Call the slow part of scavenge object. 513 return ScavengeObjectSlow(p, object); 514 } 515 516 517 bool Heap::CollectGarbage(AllocationSpace space, 518 const char* gc_reason, 519 const v8::GCCallbackFlags callbackFlags) { 520 const char* collector_reason = NULL; 521 GarbageCollector collector = SelectGarbageCollector(space, &collector_reason); 522 return CollectGarbage(collector, gc_reason, collector_reason, callbackFlags); 523 } 524 525 526 Isolate* Heap::isolate() { 527 return reinterpret_cast<Isolate*>(reinterpret_cast<intptr_t>(this) - 528 reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(4)->heap()) + 4); 529 } 530 531 532 // Calls the FUNCTION_CALL function and retries it up to three times 533 // to guarantee that any allocations performed during the call will 534 // succeed if there's enough memory. 535 536 // Warning: Do not use the identifiers __object__, __maybe_object__ or 537 // __scope__ in a call to this macro. 538 539 #define RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \ 540 if (__allocation__.To(&__object__)) { \ 541 ASSERT(__object__ != (ISOLATE)->heap()->exception()); \ 542 RETURN_VALUE; \ 543 } 544 545 #define CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) \ 546 do { \ 547 AllocationResult __allocation__ = FUNCTION_CALL; \ 548 Object* __object__ = NULL; \ 549 RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \ 550 (ISOLATE)->heap()->CollectGarbage(__allocation__.RetrySpace(), \ 551 "allocation failure"); \ 552 __allocation__ = FUNCTION_CALL; \ 553 RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \ 554 (ISOLATE)->counters()->gc_last_resort_from_handles()->Increment(); \ 555 (ISOLATE)->heap()->CollectAllAvailableGarbage("last resort gc"); \ 556 { \ 557 AlwaysAllocateScope __scope__(ISOLATE); \ 558 __allocation__ = FUNCTION_CALL; \ 559 } \ 560 RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \ 561 /* TODO(1181417): Fix this. */ \ 562 v8::internal::Heap::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true); \ 563 RETURN_EMPTY; \ 564 } while (false) 565 566 #define CALL_AND_RETRY_OR_DIE( \ 567 ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) \ 568 CALL_AND_RETRY( \ 569 ISOLATE, \ 570 FUNCTION_CALL, \ 571 RETURN_VALUE, \ 572 RETURN_EMPTY) 573 574 #define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE) \ 575 CALL_AND_RETRY_OR_DIE(ISOLATE, \ 576 FUNCTION_CALL, \ 577 return Handle<TYPE>(TYPE::cast(__object__), ISOLATE), \ 578 return Handle<TYPE>()) \ 579 580 581 #define CALL_HEAP_FUNCTION_VOID(ISOLATE, FUNCTION_CALL) \ 582 CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, return, return) 583 584 585 void ExternalStringTable::AddString(String* string) { 586 ASSERT(string->IsExternalString()); 587 if (heap_->InNewSpace(string)) { 588 new_space_strings_.Add(string); 589 } else { 590 old_space_strings_.Add(string); 591 } 592 } 593 594 595 void ExternalStringTable::Iterate(ObjectVisitor* v) { 596 if (!new_space_strings_.is_empty()) { 597 Object** start = &new_space_strings_[0]; 598 v->VisitPointers(start, start + new_space_strings_.length()); 599 } 600 if (!old_space_strings_.is_empty()) { 601 Object** start = &old_space_strings_[0]; 602 v->VisitPointers(start, start + old_space_strings_.length()); 603 } 604 } 605 606 607 // Verify() is inline to avoid ifdef-s around its calls in release 608 // mode. 609 void ExternalStringTable::Verify() { 610 #ifdef DEBUG 611 for (int i = 0; i < new_space_strings_.length(); ++i) { 612 Object* obj = Object::cast(new_space_strings_[i]); 613 ASSERT(heap_->InNewSpace(obj)); 614 ASSERT(obj != heap_->the_hole_value()); 615 } 616 for (int i = 0; i < old_space_strings_.length(); ++i) { 617 Object* obj = Object::cast(old_space_strings_[i]); 618 ASSERT(!heap_->InNewSpace(obj)); 619 ASSERT(obj != heap_->the_hole_value()); 620 } 621 #endif 622 } 623 624 625 void ExternalStringTable::AddOldString(String* string) { 626 ASSERT(string->IsExternalString()); 627 ASSERT(!heap_->InNewSpace(string)); 628 old_space_strings_.Add(string); 629 } 630 631 632 void ExternalStringTable::ShrinkNewStrings(int position) { 633 new_space_strings_.Rewind(position); 634 #ifdef VERIFY_HEAP 635 if (FLAG_verify_heap) { 636 Verify(); 637 } 638 #endif 639 } 640 641 642 void Heap::ClearInstanceofCache() { 643 set_instanceof_cache_function(the_hole_value()); 644 } 645 646 647 Object* Heap::ToBoolean(bool condition) { 648 return condition ? true_value() : false_value(); 649 } 650 651 652 void Heap::CompletelyClearInstanceofCache() { 653 set_instanceof_cache_map(the_hole_value()); 654 set_instanceof_cache_function(the_hole_value()); 655 } 656 657 658 AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate) 659 : heap_(isolate->heap()), daf_(isolate) { 660 // We shouldn't hit any nested scopes, because that requires 661 // non-handle code to call handle code. The code still works but 662 // performance will degrade, so we want to catch this situation 663 // in debug mode. 664 ASSERT(heap_->always_allocate_scope_depth_ == 0); 665 heap_->always_allocate_scope_depth_++; 666 } 667 668 669 AlwaysAllocateScope::~AlwaysAllocateScope() { 670 heap_->always_allocate_scope_depth_--; 671 ASSERT(heap_->always_allocate_scope_depth_ == 0); 672 } 673 674 675 #ifdef VERIFY_HEAP 676 NoWeakObjectVerificationScope::NoWeakObjectVerificationScope() { 677 Isolate* isolate = Isolate::Current(); 678 isolate->heap()->no_weak_object_verification_scope_depth_++; 679 } 680 681 682 NoWeakObjectVerificationScope::~NoWeakObjectVerificationScope() { 683 Isolate* isolate = Isolate::Current(); 684 isolate->heap()->no_weak_object_verification_scope_depth_--; 685 } 686 #endif 687 688 689 GCCallbacksScope::GCCallbacksScope(Heap* heap) : heap_(heap) { 690 heap_->gc_callbacks_depth_++; 691 } 692 693 694 GCCallbacksScope::~GCCallbacksScope() { 695 heap_->gc_callbacks_depth_--; 696 } 697 698 699 bool GCCallbacksScope::CheckReenter() { 700 return heap_->gc_callbacks_depth_ == 1; 701 } 702 703 704 void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) { 705 for (Object** current = start; current < end; current++) { 706 if ((*current)->IsHeapObject()) { 707 HeapObject* object = HeapObject::cast(*current); 708 CHECK(object->GetIsolate()->heap()->Contains(object)); 709 CHECK(object->map()->IsMap()); 710 } 711 } 712 } 713 714 715 void VerifySmisVisitor::VisitPointers(Object** start, Object** end) { 716 for (Object** current = start; current < end; current++) { 717 CHECK((*current)->IsSmi()); 718 } 719 } 720 721 722 double GCTracer::SizeOfHeapObjects() { 723 return (static_cast<double>(heap_->SizeOfObjects())) / MB; 724 } 725 726 727 } } // namespace v8::internal 728 729 #endif // V8_HEAP_INL_H_ 730