Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_HEAP_INL_H_
      6 #define V8_HEAP_INL_H_
      7 
      8 #include <cmath>
      9 
     10 #include "src/heap.h"
     11 #include "src/heap-profiler.h"
     12 #include "src/isolate.h"
     13 #include "src/list-inl.h"
     14 #include "src/objects.h"
     15 #include "src/platform.h"
     16 #include "src/store-buffer.h"
     17 #include "src/store-buffer-inl.h"
     18 
     19 namespace v8 {
     20 namespace internal {
     21 
     22 void PromotionQueue::insert(HeapObject* target, int size) {
     23   if (emergency_stack_ != NULL) {
     24     emergency_stack_->Add(Entry(target, size));
     25     return;
     26   }
     27 
     28   if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(rear_))) {
     29     NewSpacePage* rear_page =
     30         NewSpacePage::FromAddress(reinterpret_cast<Address>(rear_));
     31     ASSERT(!rear_page->prev_page()->is_anchor());
     32     rear_ = reinterpret_cast<intptr_t*>(rear_page->prev_page()->area_end());
     33     ActivateGuardIfOnTheSamePage();
     34   }
     35 
     36   if (guard_) {
     37     ASSERT(GetHeadPage() ==
     38            Page::FromAllocationTop(reinterpret_cast<Address>(limit_)));
     39 
     40     if ((rear_ - 2) < limit_) {
     41       RelocateQueueHead();
     42       emergency_stack_->Add(Entry(target, size));
     43       return;
     44     }
     45   }
     46 
     47   *(--rear_) = reinterpret_cast<intptr_t>(target);
     48   *(--rear_) = size;
     49   // Assert no overflow into live objects.
     50 #ifdef DEBUG
     51   SemiSpace::AssertValidRange(target->GetIsolate()->heap()->new_space()->top(),
     52                               reinterpret_cast<Address>(rear_));
     53 #endif
     54 }
     55 
     56 
     57 void PromotionQueue::ActivateGuardIfOnTheSamePage() {
     58   guard_ = guard_ ||
     59       heap_->new_space()->active_space()->current_page()->address() ==
     60       GetHeadPage()->address();
     61 }
     62 
     63 
     64 template<>
     65 bool inline Heap::IsOneByte(Vector<const char> str, int chars) {
     66   // TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
     67   // ASCII only check.
     68   return chars == str.length();
     69 }
     70 
     71 
     72 template<>
     73 bool inline Heap::IsOneByte(String* str, int chars) {
     74   return str->IsOneByteRepresentation();
     75 }
     76 
     77 
     78 AllocationResult Heap::AllocateInternalizedStringFromUtf8(
     79     Vector<const char> str, int chars, uint32_t hash_field) {
     80   if (IsOneByte(str, chars)) {
     81     return AllocateOneByteInternalizedString(
     82         Vector<const uint8_t>::cast(str), hash_field);
     83   }
     84   return AllocateInternalizedStringImpl<false>(str, chars, hash_field);
     85 }
     86 
     87 
     88 template<typename T>
     89 AllocationResult Heap::AllocateInternalizedStringImpl(
     90     T t, int chars, uint32_t hash_field) {
     91   if (IsOneByte(t, chars)) {
     92     return AllocateInternalizedStringImpl<true>(t, chars, hash_field);
     93   }
     94   return AllocateInternalizedStringImpl<false>(t, chars, hash_field);
     95 }
     96 
     97 
     98 AllocationResult Heap::AllocateOneByteInternalizedString(
     99     Vector<const uint8_t> str,
    100     uint32_t hash_field) {
    101   CHECK_GE(String::kMaxLength, str.length());
    102   // Compute map and object size.
    103   Map* map = ascii_internalized_string_map();
    104   int size = SeqOneByteString::SizeFor(str.length());
    105   AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
    106 
    107   // Allocate string.
    108   HeapObject* result;
    109   { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
    110     if (!allocation.To(&result)) return allocation;
    111   }
    112 
    113   // String maps are all immortal immovable objects.
    114   result->set_map_no_write_barrier(map);
    115   // Set length and hash fields of the allocated string.
    116   String* answer = String::cast(result);
    117   answer->set_length(str.length());
    118   answer->set_hash_field(hash_field);
    119 
    120   ASSERT_EQ(size, answer->Size());
    121 
    122   // Fill in the characters.
    123   MemCopy(answer->address() + SeqOneByteString::kHeaderSize, str.start(),
    124           str.length());
    125 
    126   return answer;
    127 }
    128 
    129 
    130 AllocationResult Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str,
    131                                                          uint32_t hash_field) {
    132   CHECK_GE(String::kMaxLength, str.length());
    133   // Compute map and object size.
    134   Map* map = internalized_string_map();
    135   int size = SeqTwoByteString::SizeFor(str.length());
    136   AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
    137 
    138   // Allocate string.
    139   HeapObject* result;
    140   { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
    141     if (!allocation.To(&result)) return allocation;
    142   }
    143 
    144   result->set_map(map);
    145   // Set length and hash fields of the allocated string.
    146   String* answer = String::cast(result);
    147   answer->set_length(str.length());
    148   answer->set_hash_field(hash_field);
    149 
    150   ASSERT_EQ(size, answer->Size());
    151 
    152   // Fill in the characters.
    153   MemCopy(answer->address() + SeqTwoByteString::kHeaderSize, str.start(),
    154           str.length() * kUC16Size);
    155 
    156   return answer;
    157 }
    158 
    159 AllocationResult Heap::CopyFixedArray(FixedArray* src) {
    160   if (src->length() == 0) return src;
    161   return CopyFixedArrayWithMap(src, src->map());
    162 }
    163 
    164 
    165 AllocationResult Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
    166   if (src->length() == 0) return src;
    167   return CopyFixedDoubleArrayWithMap(src, src->map());
    168 }
    169 
    170 
    171 AllocationResult Heap::CopyConstantPoolArray(ConstantPoolArray* src) {
    172   if (src->length() == 0) return src;
    173   return CopyConstantPoolArrayWithMap(src, src->map());
    174 }
    175 
    176 
    177 AllocationResult Heap::AllocateRaw(int size_in_bytes,
    178                                    AllocationSpace space,
    179                                    AllocationSpace retry_space) {
    180   ASSERT(AllowHandleAllocation::IsAllowed());
    181   ASSERT(AllowHeapAllocation::IsAllowed());
    182   ASSERT(gc_state_ == NOT_IN_GC);
    183   HeapProfiler* profiler = isolate_->heap_profiler();
    184 #ifdef DEBUG
    185   if (FLAG_gc_interval >= 0 &&
    186       AllowAllocationFailure::IsAllowed(isolate_) &&
    187       Heap::allocation_timeout_-- <= 0) {
    188     return AllocationResult::Retry(space);
    189   }
    190   isolate_->counters()->objs_since_last_full()->Increment();
    191   isolate_->counters()->objs_since_last_young()->Increment();
    192 #endif
    193 
    194   HeapObject* object;
    195   AllocationResult allocation;
    196   if (NEW_SPACE == space) {
    197     allocation = new_space_.AllocateRaw(size_in_bytes);
    198     if (always_allocate() &&
    199         allocation.IsRetry() &&
    200         retry_space != NEW_SPACE) {
    201       space = retry_space;
    202     } else {
    203       if (profiler->is_tracking_allocations() && allocation.To(&object)) {
    204         profiler->AllocationEvent(object->address(), size_in_bytes);
    205       }
    206       return allocation;
    207     }
    208   }
    209 
    210   if (OLD_POINTER_SPACE == space) {
    211     allocation = old_pointer_space_->AllocateRaw(size_in_bytes);
    212   } else if (OLD_DATA_SPACE == space) {
    213     allocation = old_data_space_->AllocateRaw(size_in_bytes);
    214   } else if (CODE_SPACE == space) {
    215     allocation = code_space_->AllocateRaw(size_in_bytes);
    216   } else if (LO_SPACE == space) {
    217     allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
    218   } else if (CELL_SPACE == space) {
    219     allocation = cell_space_->AllocateRaw(size_in_bytes);
    220   } else if (PROPERTY_CELL_SPACE == space) {
    221     allocation = property_cell_space_->AllocateRaw(size_in_bytes);
    222   } else {
    223     ASSERT(MAP_SPACE == space);
    224     allocation = map_space_->AllocateRaw(size_in_bytes);
    225   }
    226   if (allocation.IsRetry()) old_gen_exhausted_ = true;
    227   if (profiler->is_tracking_allocations() && allocation.To(&object)) {
    228     profiler->AllocationEvent(object->address(), size_in_bytes);
    229   }
    230   return allocation;
    231 }
    232 
    233 
    234 void Heap::FinalizeExternalString(String* string) {
    235   ASSERT(string->IsExternalString());
    236   v8::String::ExternalStringResourceBase** resource_addr =
    237       reinterpret_cast<v8::String::ExternalStringResourceBase**>(
    238           reinterpret_cast<byte*>(string) +
    239           ExternalString::kResourceOffset -
    240           kHeapObjectTag);
    241 
    242   // Dispose of the C++ object if it has not already been disposed.
    243   if (*resource_addr != NULL) {
    244     (*resource_addr)->Dispose();
    245     *resource_addr = NULL;
    246   }
    247 }
    248 
    249 
    250 bool Heap::InNewSpace(Object* object) {
    251   bool result = new_space_.Contains(object);
    252   ASSERT(!result ||                  // Either not in new space
    253          gc_state_ != NOT_IN_GC ||   // ... or in the middle of GC
    254          InToSpace(object));         // ... or in to-space (where we allocate).
    255   return result;
    256 }
    257 
    258 
    259 bool Heap::InNewSpace(Address address) {
    260   return new_space_.Contains(address);
    261 }
    262 
    263 
    264 bool Heap::InFromSpace(Object* object) {
    265   return new_space_.FromSpaceContains(object);
    266 }
    267 
    268 
    269 bool Heap::InToSpace(Object* object) {
    270   return new_space_.ToSpaceContains(object);
    271 }
    272 
    273 
    274 bool Heap::InOldPointerSpace(Address address) {
    275   return old_pointer_space_->Contains(address);
    276 }
    277 
    278 
    279 bool Heap::InOldPointerSpace(Object* object) {
    280   return InOldPointerSpace(reinterpret_cast<Address>(object));
    281 }
    282 
    283 
    284 bool Heap::InOldDataSpace(Address address) {
    285   return old_data_space_->Contains(address);
    286 }
    287 
    288 
    289 bool Heap::InOldDataSpace(Object* object) {
    290   return InOldDataSpace(reinterpret_cast<Address>(object));
    291 }
    292 
    293 
    294 bool Heap::OldGenerationAllocationLimitReached() {
    295   if (!incremental_marking()->IsStopped()) return false;
    296   return OldGenerationSpaceAvailable() < 0;
    297 }
    298 
    299 
    300 bool Heap::ShouldBePromoted(Address old_address, int object_size) {
    301   // An object should be promoted if:
    302   // - the object has survived a scavenge operation or
    303   // - to space is already 25% full.
    304   NewSpacePage* page = NewSpacePage::FromAddress(old_address);
    305   Address age_mark = new_space_.age_mark();
    306   bool below_mark = page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
    307       (!page->ContainsLimit(age_mark) || old_address < age_mark);
    308   return below_mark || (new_space_.Size() + object_size) >=
    309                         (new_space_.EffectiveCapacity() >> 2);
    310 }
    311 
    312 
    313 void Heap::RecordWrite(Address address, int offset) {
    314   if (!InNewSpace(address)) store_buffer_.Mark(address + offset);
    315 }
    316 
    317 
    318 void Heap::RecordWrites(Address address, int start, int len) {
    319   if (!InNewSpace(address)) {
    320     for (int i = 0; i < len; i++) {
    321       store_buffer_.Mark(address + start + i * kPointerSize);
    322     }
    323   }
    324 }
    325 
    326 
    327 OldSpace* Heap::TargetSpace(HeapObject* object) {
    328   InstanceType type = object->map()->instance_type();
    329   AllocationSpace space = TargetSpaceId(type);
    330   return (space == OLD_POINTER_SPACE)
    331       ? old_pointer_space_
    332       : old_data_space_;
    333 }
    334 
    335 
    336 AllocationSpace Heap::TargetSpaceId(InstanceType type) {
    337   // Heap numbers and sequential strings are promoted to old data space, all
    338   // other object types are promoted to old pointer space.  We do not use
    339   // object->IsHeapNumber() and object->IsSeqString() because we already
    340   // know that object has the heap object tag.
    341 
    342   // These objects are never allocated in new space.
    343   ASSERT(type != MAP_TYPE);
    344   ASSERT(type != CODE_TYPE);
    345   ASSERT(type != ODDBALL_TYPE);
    346   ASSERT(type != CELL_TYPE);
    347   ASSERT(type != PROPERTY_CELL_TYPE);
    348 
    349   if (type <= LAST_NAME_TYPE) {
    350     if (type == SYMBOL_TYPE) return OLD_POINTER_SPACE;
    351     ASSERT(type < FIRST_NONSTRING_TYPE);
    352     // There are four string representations: sequential strings, external
    353     // strings, cons strings, and sliced strings.
    354     // Only the latter two contain non-map-word pointers to heap objects.
    355     return ((type & kIsIndirectStringMask) == kIsIndirectStringTag)
    356         ? OLD_POINTER_SPACE
    357         : OLD_DATA_SPACE;
    358   } else {
    359     return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE;
    360   }
    361 }
    362 
    363 
    364 bool Heap::AllowedToBeMigrated(HeapObject* obj, AllocationSpace dst) {
    365   // Object migration is governed by the following rules:
    366   //
    367   // 1) Objects in new-space can be migrated to one of the old spaces
    368   //    that matches their target space or they stay in new-space.
    369   // 2) Objects in old-space stay in the same space when migrating.
    370   // 3) Fillers (two or more words) can migrate due to left-trimming of
    371   //    fixed arrays in new-space, old-data-space and old-pointer-space.
    372   // 4) Fillers (one word) can never migrate, they are skipped by
    373   //    incremental marking explicitly to prevent invalid pattern.
    374   // 5) Short external strings can end up in old pointer space when a cons
    375   //    string in old pointer space is made external (String::MakeExternal).
    376   //
    377   // Since this function is used for debugging only, we do not place
    378   // asserts here, but check everything explicitly.
    379   if (obj->map() == one_pointer_filler_map()) return false;
    380   InstanceType type = obj->map()->instance_type();
    381   MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
    382   AllocationSpace src = chunk->owner()->identity();
    383   switch (src) {
    384     case NEW_SPACE:
    385       return dst == src || dst == TargetSpaceId(type);
    386     case OLD_POINTER_SPACE:
    387       return dst == src &&
    388           (dst == TargetSpaceId(type) || obj->IsFiller() ||
    389           (obj->IsExternalString() && ExternalString::cast(obj)->is_short()));
    390     case OLD_DATA_SPACE:
    391       return dst == src && dst == TargetSpaceId(type);
    392     case CODE_SPACE:
    393       return dst == src && type == CODE_TYPE;
    394     case MAP_SPACE:
    395     case CELL_SPACE:
    396     case PROPERTY_CELL_SPACE:
    397     case LO_SPACE:
    398       return false;
    399     case INVALID_SPACE:
    400       break;
    401   }
    402   UNREACHABLE();
    403   return false;
    404 }
    405 
    406 
    407 void Heap::CopyBlock(Address dst, Address src, int byte_size) {
    408   CopyWords(reinterpret_cast<Object**>(dst),
    409             reinterpret_cast<Object**>(src),
    410             static_cast<size_t>(byte_size / kPointerSize));
    411 }
    412 
    413 
    414 void Heap::MoveBlock(Address dst, Address src, int byte_size) {
    415   ASSERT(IsAligned(byte_size, kPointerSize));
    416 
    417   int size_in_words = byte_size / kPointerSize;
    418 
    419   if ((dst < src) || (dst >= (src + byte_size))) {
    420     Object** src_slot = reinterpret_cast<Object**>(src);
    421     Object** dst_slot = reinterpret_cast<Object**>(dst);
    422     Object** end_slot = src_slot + size_in_words;
    423 
    424     while (src_slot != end_slot) {
    425       *dst_slot++ = *src_slot++;
    426     }
    427   } else {
    428     MemMove(dst, src, static_cast<size_t>(byte_size));
    429   }
    430 }
    431 
    432 
    433 void Heap::ScavengePointer(HeapObject** p) {
    434   ScavengeObject(p, *p);
    435 }
    436 
    437 
    438 AllocationMemento* Heap::FindAllocationMemento(HeapObject* object) {
    439   // Check if there is potentially a memento behind the object. If
    440   // the last word of the momento is on another page we return
    441   // immediately.
    442   Address object_address = object->address();
    443   Address memento_address = object_address + object->Size();
    444   Address last_memento_word_address = memento_address + kPointerSize;
    445   if (!NewSpacePage::OnSamePage(object_address,
    446                                 last_memento_word_address)) {
    447     return NULL;
    448   }
    449 
    450   HeapObject* candidate = HeapObject::FromAddress(memento_address);
    451   if (candidate->map() != allocation_memento_map()) return NULL;
    452 
    453   // Either the object is the last object in the new space, or there is another
    454   // object of at least word size (the header map word) following it, so
    455   // suffices to compare ptr and top here. Note that technically we do not have
    456   // to compare with the current top pointer of the from space page during GC,
    457   // since we always install filler objects above the top pointer of a from
    458   // space page when performing a garbage collection. However, always performing
    459   // the test makes it possible to have a single, unified version of
    460   // FindAllocationMemento that is used both by the GC and the mutator.
    461   Address top = NewSpaceTop();
    462   ASSERT(memento_address == top ||
    463          memento_address + HeapObject::kHeaderSize <= top ||
    464          !NewSpacePage::OnSamePage(memento_address, top));
    465   if (memento_address == top) return NULL;
    466 
    467   AllocationMemento* memento = AllocationMemento::cast(candidate);
    468   if (!memento->IsValid()) return NULL;
    469   return memento;
    470 }
    471 
    472 
    473 void Heap::UpdateAllocationSiteFeedback(HeapObject* object,
    474                                         ScratchpadSlotMode mode) {
    475   Heap* heap = object->GetHeap();
    476   ASSERT(heap->InFromSpace(object));
    477 
    478   if (!FLAG_allocation_site_pretenuring ||
    479       !AllocationSite::CanTrack(object->map()->instance_type())) return;
    480 
    481   AllocationMemento* memento = heap->FindAllocationMemento(object);
    482   if (memento == NULL) return;
    483 
    484   if (memento->GetAllocationSite()->IncrementMementoFoundCount()) {
    485     heap->AddAllocationSiteToScratchpad(memento->GetAllocationSite(), mode);
    486   }
    487 }
    488 
    489 
    490 void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
    491   ASSERT(object->GetIsolate()->heap()->InFromSpace(object));
    492 
    493   // We use the first word (where the map pointer usually is) of a heap
    494   // object to record the forwarding pointer.  A forwarding pointer can
    495   // point to an old space, the code space, or the to space of the new
    496   // generation.
    497   MapWord first_word = object->map_word();
    498 
    499   // If the first word is a forwarding address, the object has already been
    500   // copied.
    501   if (first_word.IsForwardingAddress()) {
    502     HeapObject* dest = first_word.ToForwardingAddress();
    503     ASSERT(object->GetIsolate()->heap()->InFromSpace(*p));
    504     *p = dest;
    505     return;
    506   }
    507 
    508   UpdateAllocationSiteFeedback(object, IGNORE_SCRATCHPAD_SLOT);
    509 
    510   // AllocationMementos are unrooted and shouldn't survive a scavenge
    511   ASSERT(object->map() != object->GetHeap()->allocation_memento_map());
    512   // Call the slow part of scavenge object.
    513   return ScavengeObjectSlow(p, object);
    514 }
    515 
    516 
    517 bool Heap::CollectGarbage(AllocationSpace space,
    518                           const char* gc_reason,
    519                           const v8::GCCallbackFlags callbackFlags) {
    520   const char* collector_reason = NULL;
    521   GarbageCollector collector = SelectGarbageCollector(space, &collector_reason);
    522   return CollectGarbage(collector, gc_reason, collector_reason, callbackFlags);
    523 }
    524 
    525 
    526 Isolate* Heap::isolate() {
    527   return reinterpret_cast<Isolate*>(reinterpret_cast<intptr_t>(this) -
    528       reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(4)->heap()) + 4);
    529 }
    530 
    531 
    532 // Calls the FUNCTION_CALL function and retries it up to three times
    533 // to guarantee that any allocations performed during the call will
    534 // succeed if there's enough memory.
    535 
    536 // Warning: Do not use the identifiers __object__, __maybe_object__ or
    537 // __scope__ in a call to this macro.
    538 
    539 #define RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE)                      \
    540   if (__allocation__.To(&__object__)) {                                        \
    541     ASSERT(__object__ != (ISOLATE)->heap()->exception());                      \
    542     RETURN_VALUE;                                                              \
    543   }
    544 
    545 #define CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY)     \
    546   do {                                                                         \
    547     AllocationResult __allocation__ = FUNCTION_CALL;                           \
    548     Object* __object__ = NULL;                                                 \
    549     RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE)                          \
    550     (ISOLATE)->heap()->CollectGarbage(__allocation__.RetrySpace(),             \
    551                                       "allocation failure");                   \
    552     __allocation__ = FUNCTION_CALL;                                            \
    553     RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE)                          \
    554     (ISOLATE)->counters()->gc_last_resort_from_handles()->Increment();         \
    555     (ISOLATE)->heap()->CollectAllAvailableGarbage("last resort gc");           \
    556     {                                                                          \
    557       AlwaysAllocateScope __scope__(ISOLATE);                                  \
    558       __allocation__ = FUNCTION_CALL;                                          \
    559     }                                                                          \
    560     RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE)                          \
    561       /* TODO(1181417): Fix this. */                                           \
    562     v8::internal::Heap::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true);  \
    563     RETURN_EMPTY;                                                              \
    564   } while (false)
    565 
    566 #define CALL_AND_RETRY_OR_DIE(                                             \
    567      ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY)                   \
    568   CALL_AND_RETRY(                                                          \
    569       ISOLATE,                                                             \
    570       FUNCTION_CALL,                                                       \
    571       RETURN_VALUE,                                                        \
    572       RETURN_EMPTY)
    573 
    574 #define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE)                      \
    575   CALL_AND_RETRY_OR_DIE(ISOLATE,                                              \
    576                         FUNCTION_CALL,                                        \
    577                         return Handle<TYPE>(TYPE::cast(__object__), ISOLATE), \
    578                         return Handle<TYPE>())                                \
    579 
    580 
    581 #define CALL_HEAP_FUNCTION_VOID(ISOLATE, FUNCTION_CALL)  \
    582   CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, return, return)
    583 
    584 
    585 void ExternalStringTable::AddString(String* string) {
    586   ASSERT(string->IsExternalString());
    587   if (heap_->InNewSpace(string)) {
    588     new_space_strings_.Add(string);
    589   } else {
    590     old_space_strings_.Add(string);
    591   }
    592 }
    593 
    594 
    595 void ExternalStringTable::Iterate(ObjectVisitor* v) {
    596   if (!new_space_strings_.is_empty()) {
    597     Object** start = &new_space_strings_[0];
    598     v->VisitPointers(start, start + new_space_strings_.length());
    599   }
    600   if (!old_space_strings_.is_empty()) {
    601     Object** start = &old_space_strings_[0];
    602     v->VisitPointers(start, start + old_space_strings_.length());
    603   }
    604 }
    605 
    606 
    607 // Verify() is inline to avoid ifdef-s around its calls in release
    608 // mode.
    609 void ExternalStringTable::Verify() {
    610 #ifdef DEBUG
    611   for (int i = 0; i < new_space_strings_.length(); ++i) {
    612     Object* obj = Object::cast(new_space_strings_[i]);
    613     ASSERT(heap_->InNewSpace(obj));
    614     ASSERT(obj != heap_->the_hole_value());
    615   }
    616   for (int i = 0; i < old_space_strings_.length(); ++i) {
    617     Object* obj = Object::cast(old_space_strings_[i]);
    618     ASSERT(!heap_->InNewSpace(obj));
    619     ASSERT(obj != heap_->the_hole_value());
    620   }
    621 #endif
    622 }
    623 
    624 
    625 void ExternalStringTable::AddOldString(String* string) {
    626   ASSERT(string->IsExternalString());
    627   ASSERT(!heap_->InNewSpace(string));
    628   old_space_strings_.Add(string);
    629 }
    630 
    631 
    632 void ExternalStringTable::ShrinkNewStrings(int position) {
    633   new_space_strings_.Rewind(position);
    634 #ifdef VERIFY_HEAP
    635   if (FLAG_verify_heap) {
    636     Verify();
    637   }
    638 #endif
    639 }
    640 
    641 
    642 void Heap::ClearInstanceofCache() {
    643   set_instanceof_cache_function(the_hole_value());
    644 }
    645 
    646 
    647 Object* Heap::ToBoolean(bool condition) {
    648   return condition ? true_value() : false_value();
    649 }
    650 
    651 
    652 void Heap::CompletelyClearInstanceofCache() {
    653   set_instanceof_cache_map(the_hole_value());
    654   set_instanceof_cache_function(the_hole_value());
    655 }
    656 
    657 
    658 AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate)
    659     : heap_(isolate->heap()), daf_(isolate) {
    660   // We shouldn't hit any nested scopes, because that requires
    661   // non-handle code to call handle code. The code still works but
    662   // performance will degrade, so we want to catch this situation
    663   // in debug mode.
    664   ASSERT(heap_->always_allocate_scope_depth_ == 0);
    665   heap_->always_allocate_scope_depth_++;
    666 }
    667 
    668 
    669 AlwaysAllocateScope::~AlwaysAllocateScope() {
    670   heap_->always_allocate_scope_depth_--;
    671   ASSERT(heap_->always_allocate_scope_depth_ == 0);
    672 }
    673 
    674 
    675 #ifdef VERIFY_HEAP
    676 NoWeakObjectVerificationScope::NoWeakObjectVerificationScope() {
    677   Isolate* isolate = Isolate::Current();
    678   isolate->heap()->no_weak_object_verification_scope_depth_++;
    679 }
    680 
    681 
    682 NoWeakObjectVerificationScope::~NoWeakObjectVerificationScope() {
    683   Isolate* isolate = Isolate::Current();
    684   isolate->heap()->no_weak_object_verification_scope_depth_--;
    685 }
    686 #endif
    687 
    688 
    689 GCCallbacksScope::GCCallbacksScope(Heap* heap) : heap_(heap) {
    690   heap_->gc_callbacks_depth_++;
    691 }
    692 
    693 
    694 GCCallbacksScope::~GCCallbacksScope() {
    695   heap_->gc_callbacks_depth_--;
    696 }
    697 
    698 
    699 bool GCCallbacksScope::CheckReenter() {
    700   return heap_->gc_callbacks_depth_ == 1;
    701 }
    702 
    703 
    704 void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) {
    705   for (Object** current = start; current < end; current++) {
    706     if ((*current)->IsHeapObject()) {
    707       HeapObject* object = HeapObject::cast(*current);
    708       CHECK(object->GetIsolate()->heap()->Contains(object));
    709       CHECK(object->map()->IsMap());
    710     }
    711   }
    712 }
    713 
    714 
    715 void VerifySmisVisitor::VisitPointers(Object** start, Object** end) {
    716   for (Object** current = start; current < end; current++) {
    717      CHECK((*current)->IsSmi());
    718   }
    719 }
    720 
    721 
    722 double GCTracer::SizeOfHeapObjects() {
    723   return (static_cast<double>(heap_->SizeOfObjects())) / MB;
    724 }
    725 
    726 
    727 } }  // namespace v8::internal
    728 
    729 #endif  // V8_HEAP_INL_H_
    730