1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud (at) inria.fr> 5 // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1 (at) gmail.com> 6 // Copyright (C) 2009 Kenneth Riddile <kfriddile (at) yahoo.com> 7 // Copyright (C) 2010 Hauke Heibel <hauke.heibel (at) gmail.com> 8 // Copyright (C) 2010 Thomas Capricelli <orzel (at) freehackers.org> 9 // 10 // This Source Code Form is subject to the terms of the Mozilla 11 // Public License v. 2.0. If a copy of the MPL was not distributed 12 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 13 14 15 /***************************************************************************** 16 *** Platform checks for aligned malloc functions *** 17 *****************************************************************************/ 18 19 #ifndef EIGEN_MEMORY_H 20 #define EIGEN_MEMORY_H 21 22 #ifndef EIGEN_MALLOC_ALREADY_ALIGNED 23 24 // Try to determine automatically if malloc is already aligned. 25 26 // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see: 27 // http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html 28 // This is true at least since glibc 2.8. 29 // This leaves the question how to detect 64-bit. According to this document, 30 // http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf 31 // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed 32 // quite safe, at least within the context of glibc, to equate 64-bit with LP64. 33 #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \ 34 && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ ) 35 #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1 36 #else 37 #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0 38 #endif 39 40 // FreeBSD 6 seems to have 16-byte aligned malloc 41 // See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup 42 // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures 43 // See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup 44 #if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__) 45 #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1 46 #else 47 #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0 48 #endif 49 50 #if defined(__APPLE__) \ 51 || defined(_WIN64) \ 52 || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \ 53 || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 54 #define EIGEN_MALLOC_ALREADY_ALIGNED 1 55 #else 56 #define EIGEN_MALLOC_ALREADY_ALIGNED 0 57 #endif 58 59 #endif 60 61 // See bug 554 (http://eigen.tuxfamily.org/bz/show_bug.cgi?id=554) 62 // It seems to be unsafe to check _POSIX_ADVISORY_INFO without including unistd.h first. 63 // Currently, let's include it only on unix systems: 64 #if defined(__unix__) || defined(__unix) 65 #include <unistd.h> 66 #if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0) 67 #define EIGEN_HAS_POSIX_MEMALIGN 1 68 #endif 69 #endif 70 71 #ifndef EIGEN_HAS_POSIX_MEMALIGN 72 #define EIGEN_HAS_POSIX_MEMALIGN 0 73 #endif 74 75 #ifdef EIGEN_VECTORIZE_SSE 76 #define EIGEN_HAS_MM_MALLOC 1 77 #else 78 #define EIGEN_HAS_MM_MALLOC 0 79 #endif 80 81 namespace Eigen { 82 83 namespace internal { 84 85 inline void throw_std_bad_alloc() 86 { 87 #ifdef EIGEN_EXCEPTIONS 88 throw std::bad_alloc(); 89 #else 90 std::size_t huge = -1; 91 new int[huge]; 92 #endif 93 } 94 95 /***************************************************************************** 96 *** Implementation of handmade aligned functions *** 97 *****************************************************************************/ 98 99 /* ----- Hand made implementations of aligned malloc/free and realloc ----- */ 100 101 /** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned. 102 * Fast, but wastes 16 additional bytes of memory. Does not throw any exception. 103 */ 104 inline void* handmade_aligned_malloc(std::size_t size) 105 { 106 void *original = std::malloc(size+16); 107 if (original == 0) return 0; 108 void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(15))) + 16); 109 *(reinterpret_cast<void**>(aligned) - 1) = original; 110 return aligned; 111 } 112 113 /** \internal Frees memory allocated with handmade_aligned_malloc */ 114 inline void handmade_aligned_free(void *ptr) 115 { 116 if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1)); 117 } 118 119 /** \internal 120 * \brief Reallocates aligned memory. 121 * Since we know that our handmade version is based on std::realloc 122 * we can use std::realloc to implement efficient reallocation. 123 */ 124 inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0) 125 { 126 if (ptr == 0) return handmade_aligned_malloc(size); 127 void *original = *(reinterpret_cast<void**>(ptr) - 1); 128 std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original); 129 original = std::realloc(original,size+16); 130 if (original == 0) return 0; 131 void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(15))) + 16); 132 void *previous_aligned = static_cast<char *>(original)+previous_offset; 133 if(aligned!=previous_aligned) 134 std::memmove(aligned, previous_aligned, size); 135 136 *(reinterpret_cast<void**>(aligned) - 1) = original; 137 return aligned; 138 } 139 140 /***************************************************************************** 141 *** Implementation of generic aligned realloc (when no realloc can be used)*** 142 *****************************************************************************/ 143 144 void* aligned_malloc(std::size_t size); 145 void aligned_free(void *ptr); 146 147 /** \internal 148 * \brief Reallocates aligned memory. 149 * Allows reallocation with aligned ptr types. This implementation will 150 * always create a new memory chunk and copy the old data. 151 */ 152 inline void* generic_aligned_realloc(void* ptr, size_t size, size_t old_size) 153 { 154 if (ptr==0) 155 return aligned_malloc(size); 156 157 if (size==0) 158 { 159 aligned_free(ptr); 160 return 0; 161 } 162 163 void* newptr = aligned_malloc(size); 164 if (newptr == 0) 165 { 166 #ifdef EIGEN_HAS_ERRNO 167 errno = ENOMEM; // according to the standard 168 #endif 169 return 0; 170 } 171 172 if (ptr != 0) 173 { 174 std::memcpy(newptr, ptr, (std::min)(size,old_size)); 175 aligned_free(ptr); 176 } 177 178 return newptr; 179 } 180 181 /***************************************************************************** 182 *** Implementation of portable aligned versions of malloc/free/realloc *** 183 *****************************************************************************/ 184 185 #ifdef EIGEN_NO_MALLOC 186 inline void check_that_malloc_is_allowed() 187 { 188 eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)"); 189 } 190 #elif defined EIGEN_RUNTIME_NO_MALLOC 191 inline bool is_malloc_allowed_impl(bool update, bool new_value = false) 192 { 193 static bool value = true; 194 if (update == 1) 195 value = new_value; 196 return value; 197 } 198 inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); } 199 inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); } 200 inline void check_that_malloc_is_allowed() 201 { 202 eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)"); 203 } 204 #else 205 inline void check_that_malloc_is_allowed() 206 {} 207 #endif 208 209 /** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 bytes alignment. 210 * On allocation error, the returned pointer is null, and std::bad_alloc is thrown. 211 */ 212 inline void* aligned_malloc(size_t size) 213 { 214 check_that_malloc_is_allowed(); 215 216 void *result; 217 #if !EIGEN_ALIGN 218 result = std::malloc(size); 219 #elif EIGEN_MALLOC_ALREADY_ALIGNED 220 result = std::malloc(size); 221 #elif EIGEN_HAS_POSIX_MEMALIGN 222 if(posix_memalign(&result, 16, size)) result = 0; 223 #elif EIGEN_HAS_MM_MALLOC 224 result = _mm_malloc(size, 16); 225 #elif defined(_MSC_VER) && (!defined(_WIN32_WCE)) 226 result = _aligned_malloc(size, 16); 227 #else 228 result = handmade_aligned_malloc(size); 229 #endif 230 231 if(!result && size) 232 throw_std_bad_alloc(); 233 234 return result; 235 } 236 237 /** \internal Frees memory allocated with aligned_malloc. */ 238 inline void aligned_free(void *ptr) 239 { 240 #if !EIGEN_ALIGN 241 std::free(ptr); 242 #elif EIGEN_MALLOC_ALREADY_ALIGNED 243 std::free(ptr); 244 #elif EIGEN_HAS_POSIX_MEMALIGN 245 std::free(ptr); 246 #elif EIGEN_HAS_MM_MALLOC 247 _mm_free(ptr); 248 #elif defined(_MSC_VER) && (!defined(_WIN32_WCE)) 249 _aligned_free(ptr); 250 #else 251 handmade_aligned_free(ptr); 252 #endif 253 } 254 255 /** 256 * \internal 257 * \brief Reallocates an aligned block of memory. 258 * \throws std::bad_alloc on allocation failure 259 **/ 260 inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size) 261 { 262 EIGEN_UNUSED_VARIABLE(old_size); 263 264 void *result; 265 #if !EIGEN_ALIGN 266 result = std::realloc(ptr,new_size); 267 #elif EIGEN_MALLOC_ALREADY_ALIGNED 268 result = std::realloc(ptr,new_size); 269 #elif EIGEN_HAS_POSIX_MEMALIGN 270 result = generic_aligned_realloc(ptr,new_size,old_size); 271 #elif EIGEN_HAS_MM_MALLOC 272 // The defined(_mm_free) is just here to verify that this MSVC version 273 // implements _mm_malloc/_mm_free based on the corresponding _aligned_ 274 // functions. This may not always be the case and we just try to be safe. 275 #if defined(_MSC_VER) && (!defined(_WIN32_WCE)) && defined(_mm_free) 276 result = _aligned_realloc(ptr,new_size,16); 277 #else 278 result = generic_aligned_realloc(ptr,new_size,old_size); 279 #endif 280 #elif defined(_MSC_VER) && (!defined(_WIN32_WCE)) 281 result = _aligned_realloc(ptr,new_size,16); 282 #else 283 result = handmade_aligned_realloc(ptr,new_size,old_size); 284 #endif 285 286 if (!result && new_size) 287 throw_std_bad_alloc(); 288 289 return result; 290 } 291 292 /***************************************************************************** 293 *** Implementation of conditionally aligned functions *** 294 *****************************************************************************/ 295 296 /** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned. 297 * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown. 298 */ 299 template<bool Align> inline void* conditional_aligned_malloc(size_t size) 300 { 301 return aligned_malloc(size); 302 } 303 304 template<> inline void* conditional_aligned_malloc<false>(size_t size) 305 { 306 check_that_malloc_is_allowed(); 307 308 void *result = std::malloc(size); 309 if(!result && size) 310 throw_std_bad_alloc(); 311 return result; 312 } 313 314 /** \internal Frees memory allocated with conditional_aligned_malloc */ 315 template<bool Align> inline void conditional_aligned_free(void *ptr) 316 { 317 aligned_free(ptr); 318 } 319 320 template<> inline void conditional_aligned_free<false>(void *ptr) 321 { 322 std::free(ptr); 323 } 324 325 template<bool Align> inline void* conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size) 326 { 327 return aligned_realloc(ptr, new_size, old_size); 328 } 329 330 template<> inline void* conditional_aligned_realloc<false>(void* ptr, size_t new_size, size_t) 331 { 332 return std::realloc(ptr, new_size); 333 } 334 335 /***************************************************************************** 336 *** Construction/destruction of array elements *** 337 *****************************************************************************/ 338 339 /** \internal Constructs the elements of an array. 340 * The \a size parameter tells on how many objects to call the constructor of T. 341 */ 342 template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size) 343 { 344 for (size_t i=0; i < size; ++i) ::new (ptr + i) T; 345 return ptr; 346 } 347 348 /** \internal Destructs the elements of an array. 349 * The \a size parameters tells on how many objects to call the destructor of T. 350 */ 351 template<typename T> inline void destruct_elements_of_array(T *ptr, size_t size) 352 { 353 // always destruct an array starting from the end. 354 if(ptr) 355 while(size) ptr[--size].~T(); 356 } 357 358 /***************************************************************************** 359 *** Implementation of aligned new/delete-like functions *** 360 *****************************************************************************/ 361 362 template<typename T> 363 EIGEN_ALWAYS_INLINE void check_size_for_overflow(size_t size) 364 { 365 if(size > size_t(-1) / sizeof(T)) 366 throw_std_bad_alloc(); 367 } 368 369 /** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment. 370 * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown. 371 * The default constructor of T is called. 372 */ 373 template<typename T> inline T* aligned_new(size_t size) 374 { 375 check_size_for_overflow<T>(size); 376 T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size)); 377 return construct_elements_of_array(result, size); 378 } 379 380 template<typename T, bool Align> inline T* conditional_aligned_new(size_t size) 381 { 382 check_size_for_overflow<T>(size); 383 T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size)); 384 return construct_elements_of_array(result, size); 385 } 386 387 /** \internal Deletes objects constructed with aligned_new 388 * The \a size parameters tells on how many objects to call the destructor of T. 389 */ 390 template<typename T> inline void aligned_delete(T *ptr, size_t size) 391 { 392 destruct_elements_of_array<T>(ptr, size); 393 aligned_free(ptr); 394 } 395 396 /** \internal Deletes objects constructed with conditional_aligned_new 397 * The \a size parameters tells on how many objects to call the destructor of T. 398 */ 399 template<typename T, bool Align> inline void conditional_aligned_delete(T *ptr, size_t size) 400 { 401 destruct_elements_of_array<T>(ptr, size); 402 conditional_aligned_free<Align>(ptr); 403 } 404 405 template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pts, size_t new_size, size_t old_size) 406 { 407 check_size_for_overflow<T>(new_size); 408 check_size_for_overflow<T>(old_size); 409 if(new_size < old_size) 410 destruct_elements_of_array(pts+new_size, old_size-new_size); 411 T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size)); 412 if(new_size > old_size) 413 construct_elements_of_array(result+old_size, new_size-old_size); 414 return result; 415 } 416 417 418 template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t size) 419 { 420 check_size_for_overflow<T>(size); 421 T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size)); 422 if(NumTraits<T>::RequireInitialization) 423 construct_elements_of_array(result, size); 424 return result; 425 } 426 427 template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, size_t new_size, size_t old_size) 428 { 429 check_size_for_overflow<T>(new_size); 430 check_size_for_overflow<T>(old_size); 431 if(NumTraits<T>::RequireInitialization && (new_size < old_size)) 432 destruct_elements_of_array(pts+new_size, old_size-new_size); 433 T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size)); 434 if(NumTraits<T>::RequireInitialization && (new_size > old_size)) 435 construct_elements_of_array(result+old_size, new_size-old_size); 436 return result; 437 } 438 439 template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *ptr, size_t size) 440 { 441 if(NumTraits<T>::RequireInitialization) 442 destruct_elements_of_array<T>(ptr, size); 443 conditional_aligned_free<Align>(ptr); 444 } 445 446 /****************************************************************************/ 447 448 /** \internal Returns the index of the first element of the array that is well aligned for vectorization. 449 * 450 * \param array the address of the start of the array 451 * \param size the size of the array 452 * 453 * \note If no element of the array is well aligned, the size of the array is returned. Typically, 454 * for example with SSE, "well aligned" means 16-byte-aligned. If vectorization is disabled or if the 455 * packet size for the given scalar type is 1, then everything is considered well-aligned. 456 * 457 * \note If the scalar type is vectorizable, we rely on the following assumptions: sizeof(Scalar) is a 458 * power of 2, the packet size in bytes is also a power of 2, and is a multiple of sizeof(Scalar). On the 459 * other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for 460 * example with Scalar=double on certain 32-bit platforms, see bug #79. 461 * 462 * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h. 463 */ 464 template<typename Scalar, typename Index> 465 static inline Index first_aligned(const Scalar* array, Index size) 466 { 467 enum { PacketSize = packet_traits<Scalar>::size, 468 PacketAlignedMask = PacketSize-1 469 }; 470 471 if(PacketSize==1) 472 { 473 // Either there is no vectorization, or a packet consists of exactly 1 scalar so that all elements 474 // of the array have the same alignment. 475 return 0; 476 } 477 else if(size_t(array) & (sizeof(Scalar)-1)) 478 { 479 // There is vectorization for this scalar type, but the array is not aligned to the size of a single scalar. 480 // Consequently, no element of the array is well aligned. 481 return size; 482 } 483 else 484 { 485 return std::min<Index>( (PacketSize - (Index((size_t(array)/sizeof(Scalar))) & PacketAlignedMask)) 486 & PacketAlignedMask, size); 487 } 488 } 489 490 /** \internal Returns the smallest integer multiple of \a base and greater or equal to \a size 491 */ 492 template<typename Index> 493 inline static Index first_multiple(Index size, Index base) 494 { 495 return ((size+base-1)/base)*base; 496 } 497 498 // std::copy is much slower than memcpy, so let's introduce a smart_copy which 499 // use memcpy on trivial types, i.e., on types that does not require an initialization ctor. 500 template<typename T, bool UseMemcpy> struct smart_copy_helper; 501 502 template<typename T> void smart_copy(const T* start, const T* end, T* target) 503 { 504 smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target); 505 } 506 507 template<typename T> struct smart_copy_helper<T,true> { 508 static inline void run(const T* start, const T* end, T* target) 509 { memcpy(target, start, std::ptrdiff_t(end)-std::ptrdiff_t(start)); } 510 }; 511 512 template<typename T> struct smart_copy_helper<T,false> { 513 static inline void run(const T* start, const T* end, T* target) 514 { std::copy(start, end, target); } 515 }; 516 517 518 /***************************************************************************** 519 *** Implementation of runtime stack allocation (falling back to malloc) *** 520 *****************************************************************************/ 521 522 // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA 523 // to the appropriate stack allocation function 524 #ifndef EIGEN_ALLOCA 525 #if (defined __linux__) 526 #define EIGEN_ALLOCA alloca 527 #elif defined(_MSC_VER) 528 #define EIGEN_ALLOCA _alloca 529 #endif 530 #endif 531 532 // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data 533 // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions. 534 template<typename T> class aligned_stack_memory_handler 535 { 536 public: 537 /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size. 538 * Note that \a ptr can be 0 regardless of the other parameters. 539 * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization). 540 * In this case, the buffer elements will also be destructed when this handler will be destructed. 541 * Finally, if \a dealloc is true, then the pointer \a ptr is freed. 542 **/ 543 aligned_stack_memory_handler(T* ptr, size_t size, bool dealloc) 544 : m_ptr(ptr), m_size(size), m_deallocate(dealloc) 545 { 546 if(NumTraits<T>::RequireInitialization && m_ptr) 547 Eigen::internal::construct_elements_of_array(m_ptr, size); 548 } 549 ~aligned_stack_memory_handler() 550 { 551 if(NumTraits<T>::RequireInitialization && m_ptr) 552 Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size); 553 if(m_deallocate) 554 Eigen::internal::aligned_free(m_ptr); 555 } 556 protected: 557 T* m_ptr; 558 size_t m_size; 559 bool m_deallocate; 560 }; 561 562 } // end namespace internal 563 564 /** \internal 565 * Declares, allocates and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack 566 * if SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform 567 * (currently, this is Linux and Visual Studio only). Otherwise the memory is allocated on the heap. 568 * The allocated buffer is automatically deleted when exiting the scope of this declaration. 569 * If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs. 570 * Here is an example: 571 * \code 572 * { 573 * ei_declare_aligned_stack_constructed_variable(float,data,size,0); 574 * // use data[0] to data[size-1] 575 * } 576 * \endcode 577 * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token. 578 */ 579 #ifdef EIGEN_ALLOCA 580 581 #if defined(__arm__) || defined(_WIN32) 582 #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+16)) & ~(size_t(15))) + 16) 583 #else 584 #define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA 585 #endif 586 587 #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \ 588 Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \ 589 TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \ 590 : reinterpret_cast<TYPE*>( \ 591 (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \ 592 : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \ 593 Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT) 594 595 #else 596 597 #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \ 598 Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \ 599 TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \ 600 Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true) 601 602 #endif 603 604 605 /***************************************************************************** 606 *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] *** 607 *****************************************************************************/ 608 609 #if EIGEN_ALIGN 610 #ifdef EIGEN_EXCEPTIONS 611 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ 612 void* operator new(size_t size, const std::nothrow_t&) throw() { \ 613 try { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \ 614 catch (...) { return 0; } \ 615 return 0; \ 616 } 617 #else 618 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ 619 void* operator new(size_t size, const std::nothrow_t&) throw() { \ 620 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \ 621 } 622 #endif 623 624 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \ 625 void *operator new(size_t size) { \ 626 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \ 627 } \ 628 void *operator new[](size_t size) { \ 629 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \ 630 } \ 631 void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ 632 void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ 633 /* in-place new and delete. since (at least afaik) there is no actual */ \ 634 /* memory allocated we can safely let the default implementation handle */ \ 635 /* this particular case. */ \ 636 static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \ 637 static void *operator new[](size_t size, void* ptr) { return ::operator new[](size,ptr); } \ 638 void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \ 639 void operator delete[](void * memory, void *ptr) throw() { return ::operator delete[](memory,ptr); } \ 640 /* nothrow-new (returns zero instead of std::bad_alloc) */ \ 641 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ 642 void operator delete(void *ptr, const std::nothrow_t&) throw() { \ 643 Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \ 644 } \ 645 typedef void eigen_aligned_operator_new_marker_type; 646 #else 647 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) 648 #endif 649 650 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true) 651 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \ 652 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0))) 653 654 /****************************************************************************/ 655 656 /** \class aligned_allocator 657 * \ingroup Core_Module 658 * 659 * \brief STL compatible allocator to use with with 16 byte aligned types 660 * 661 * Example: 662 * \code 663 * // Matrix4f requires 16 bytes alignment: 664 * std::map< int, Matrix4f, std::less<int>, 665 * aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4; 666 * // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator: 667 * std::map< int, Vector3f > my_map_vec3; 668 * \endcode 669 * 670 * \sa \ref TopicStlContainers. 671 */ 672 template<class T> 673 class aligned_allocator 674 { 675 public: 676 typedef size_t size_type; 677 typedef std::ptrdiff_t difference_type; 678 typedef T* pointer; 679 typedef const T* const_pointer; 680 typedef T& reference; 681 typedef const T& const_reference; 682 typedef T value_type; 683 684 template<class U> 685 struct rebind 686 { 687 typedef aligned_allocator<U> other; 688 }; 689 690 pointer address( reference value ) const 691 { 692 return &value; 693 } 694 695 const_pointer address( const_reference value ) const 696 { 697 return &value; 698 } 699 700 aligned_allocator() 701 { 702 } 703 704 aligned_allocator( const aligned_allocator& ) 705 { 706 } 707 708 template<class U> 709 aligned_allocator( const aligned_allocator<U>& ) 710 { 711 } 712 713 ~aligned_allocator() 714 { 715 } 716 717 size_type max_size() const 718 { 719 return (std::numeric_limits<size_type>::max)(); 720 } 721 722 pointer allocate( size_type num, const void* hint = 0 ) 723 { 724 EIGEN_UNUSED_VARIABLE(hint); 725 internal::check_size_for_overflow<T>(num); 726 return static_cast<pointer>( internal::aligned_malloc( num * sizeof(T) ) ); 727 } 728 729 void construct( pointer p, const T& value ) 730 { 731 ::new( p ) T( value ); 732 } 733 734 void destroy( pointer p ) 735 { 736 p->~T(); 737 } 738 739 void deallocate( pointer p, size_type /*num*/ ) 740 { 741 internal::aligned_free( p ); 742 } 743 744 bool operator!=(const aligned_allocator<T>& ) const 745 { return false; } 746 747 bool operator==(const aligned_allocator<T>& ) const 748 { return true; } 749 }; 750 751 //---------- Cache sizes ---------- 752 753 #if !defined(EIGEN_NO_CPUID) 754 # if defined(__GNUC__) && ( defined(__i386__) || defined(__x86_64__) ) 755 # if defined(__PIC__) && defined(__i386__) 756 // Case for x86 with PIC 757 # define EIGEN_CPUID(abcd,func,id) \ 758 __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id)); 759 # elif defined(__PIC__) && defined(__x86_64__) 760 // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model. 761 // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway. 762 # define EIGEN_CPUID(abcd,func,id) \ 763 __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id)); 764 # else 765 // Case for x86_64 or x86 w/o PIC 766 # define EIGEN_CPUID(abcd,func,id) \ 767 __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) ); 768 # endif 769 # elif defined(_MSC_VER) 770 # if (_MSC_VER > 1500) && ( defined(_M_IX86) || defined(_M_X64) ) 771 # define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id) 772 # endif 773 # endif 774 #endif 775 776 namespace internal { 777 778 #ifdef EIGEN_CPUID 779 780 inline bool cpuid_is_vendor(int abcd[4], const int vendor[3]) 781 { 782 return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2]; 783 } 784 785 inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3) 786 { 787 int abcd[4]; 788 l1 = l2 = l3 = 0; 789 int cache_id = 0; 790 int cache_type = 0; 791 do { 792 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; 793 EIGEN_CPUID(abcd,0x4,cache_id); 794 cache_type = (abcd[0] & 0x0F) >> 0; 795 if(cache_type==1||cache_type==3) // data or unified cache 796 { 797 int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5] 798 int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22] 799 int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12] 800 int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0] 801 int sets = (abcd[2]); // C[31:0] 802 803 int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1); 804 805 switch(cache_level) 806 { 807 case 1: l1 = cache_size; break; 808 case 2: l2 = cache_size; break; 809 case 3: l3 = cache_size; break; 810 default: break; 811 } 812 } 813 cache_id++; 814 } while(cache_type>0 && cache_id<16); 815 } 816 817 inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3) 818 { 819 int abcd[4]; 820 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; 821 l1 = l2 = l3 = 0; 822 EIGEN_CPUID(abcd,0x00000002,0); 823 unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2; 824 bool check_for_p2_core2 = false; 825 for(int i=0; i<14; ++i) 826 { 827 switch(bytes[i]) 828 { 829 case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines 830 case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines 831 case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines 832 case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64) 833 case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64) 834 case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines 835 case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines 836 case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored 837 case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored 838 case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored 839 case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored 840 case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64) 841 case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored 842 case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored 843 case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored 844 case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored 845 case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored 846 case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored 847 case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored 848 case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored 849 case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored 850 case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored 851 case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core) 852 case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines 853 case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines 854 case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines 855 case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines 856 case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines 857 case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines 858 case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines 859 case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines 860 case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2 861 case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines 862 case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines 863 case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines 864 case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines 865 case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines 866 case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines 867 case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored 868 case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored 869 case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored 870 case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored 871 case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines 872 case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64) 873 case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines 874 case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines 875 case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines 876 case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines 877 case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines 878 case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines 879 case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines 880 case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines 881 case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines 882 case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64) 883 case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64) 884 case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64) 885 case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64) 886 887 default: break; 888 } 889 } 890 if(check_for_p2_core2 && l2 == l3) 891 l3 = 0; 892 l1 *= 1024; 893 l2 *= 1024; 894 l3 *= 1024; 895 } 896 897 inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs) 898 { 899 if(max_std_funcs>=4) 900 queryCacheSizes_intel_direct(l1,l2,l3); 901 else 902 queryCacheSizes_intel_codes(l1,l2,l3); 903 } 904 905 inline void queryCacheSizes_amd(int& l1, int& l2, int& l3) 906 { 907 int abcd[4]; 908 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; 909 EIGEN_CPUID(abcd,0x80000005,0); 910 l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB 911 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; 912 EIGEN_CPUID(abcd,0x80000006,0); 913 l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB 914 l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB 915 } 916 #endif 917 918 /** \internal 919 * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */ 920 inline void queryCacheSizes(int& l1, int& l2, int& l3) 921 { 922 #ifdef EIGEN_CPUID 923 int abcd[4]; 924 const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e}; 925 const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163}; 926 const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!" 927 928 // identify the CPU vendor 929 EIGEN_CPUID(abcd,0x0,0); 930 int max_std_funcs = abcd[1]; 931 if(cpuid_is_vendor(abcd,GenuineIntel)) 932 queryCacheSizes_intel(l1,l2,l3,max_std_funcs); 933 else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_)) 934 queryCacheSizes_amd(l1,l2,l3); 935 else 936 // by default let's use Intel's API 937 queryCacheSizes_intel(l1,l2,l3,max_std_funcs); 938 939 // here is the list of other vendors: 940 // ||cpuid_is_vendor(abcd,"VIA VIA VIA ") 941 // ||cpuid_is_vendor(abcd,"CyrixInstead") 942 // ||cpuid_is_vendor(abcd,"CentaurHauls") 943 // ||cpuid_is_vendor(abcd,"GenuineTMx86") 944 // ||cpuid_is_vendor(abcd,"TransmetaCPU") 945 // ||cpuid_is_vendor(abcd,"RiseRiseRise") 946 // ||cpuid_is_vendor(abcd,"Geode by NSC") 947 // ||cpuid_is_vendor(abcd,"SiS SiS SiS ") 948 // ||cpuid_is_vendor(abcd,"UMC UMC UMC ") 949 // ||cpuid_is_vendor(abcd,"NexGenDriven") 950 #else 951 l1 = l2 = l3 = -1; 952 #endif 953 } 954 955 /** \internal 956 * \returns the size in Bytes of the L1 data cache */ 957 inline int queryL1CacheSize() 958 { 959 int l1(-1), l2, l3; 960 queryCacheSizes(l1,l2,l3); 961 return l1; 962 } 963 964 /** \internal 965 * \returns the size in Bytes of the L2 or L3 cache if this later is present */ 966 inline int queryTopLevelCacheSize() 967 { 968 int l1, l2(-1), l3(-1); 969 queryCacheSizes(l1,l2,l3); 970 return (std::max)(l2,l3); 971 } 972 973 } // end namespace internal 974 975 } // end namespace Eigen 976 977 #endif // EIGEN_MEMORY_H 978