1 /* 2 * QEMU Firmware configuration device emulation 3 * 4 * Copyright (c) 2008 Gleb Natapov 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "cpu.h" 25 #include "hw/hw.h" 26 #include "sysemu/sysemu.h" 27 #include "hw/isa/isa.h" 28 #include "hw/nvram/fw_cfg.h" 29 30 /* debug firmware config */ 31 //#define DEBUG_FW_CFG 32 33 #ifdef DEBUG_FW_CFG 34 #define FW_CFG_DPRINTF(fmt, ...) \ 35 do { printf("FW_CFG: " fmt , ## __VA_ARGS__); } while (0) 36 #else 37 #define FW_CFG_DPRINTF(fmt, ...) 38 #endif 39 40 #define FW_CFG_SIZE 2 41 42 typedef struct _FWCfgEntry { 43 uint16_t len; 44 uint8_t *data; 45 void *callback_opaque; 46 FWCfgCallback callback; 47 } FWCfgEntry; 48 49 struct FWCfgState { 50 FWCfgEntry entries[2][FW_CFG_MAX_ENTRY]; 51 uint16_t cur_entry; 52 uint16_t cur_offset; 53 }; 54 55 static void fw_cfg_write(FWCfgState *s, uint8_t value) 56 { 57 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 58 FWCfgEntry *e = &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 59 60 FW_CFG_DPRINTF("write %d\n", value); 61 62 if (s->cur_entry & FW_CFG_WRITE_CHANNEL && s->cur_offset < e->len) { 63 e->data[s->cur_offset++] = value; 64 if (s->cur_offset == e->len) { 65 e->callback(e->callback_opaque, e->data); 66 s->cur_offset = 0; 67 } 68 } 69 } 70 71 static int fw_cfg_select(FWCfgState *s, uint16_t key) 72 { 73 int ret; 74 75 s->cur_offset = 0; 76 if ((key & FW_CFG_ENTRY_MASK) >= FW_CFG_MAX_ENTRY) { 77 s->cur_entry = FW_CFG_INVALID; 78 ret = 0; 79 } else { 80 s->cur_entry = key; 81 ret = 1; 82 } 83 84 FW_CFG_DPRINTF("select key %d (%sfound)\n", key, ret ? "" : "not "); 85 86 return ret; 87 } 88 89 static uint8_t fw_cfg_read(FWCfgState *s) 90 { 91 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 92 FWCfgEntry *e = &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 93 uint8_t ret; 94 95 if (s->cur_entry == FW_CFG_INVALID || !e->data || s->cur_offset >= e->len) 96 ret = 0; 97 else 98 ret = e->data[s->cur_offset++]; 99 100 FW_CFG_DPRINTF("read %d\n", ret); 101 102 return ret; 103 } 104 105 static uint32_t fw_cfg_io_readb(void *opaque, uint32_t addr) 106 { 107 return fw_cfg_read(opaque); 108 } 109 110 static void fw_cfg_io_writeb(void *opaque, uint32_t addr, uint32_t value) 111 { 112 fw_cfg_write(opaque, (uint8_t)value); 113 } 114 115 static void fw_cfg_io_writew(void *opaque, uint32_t addr, uint32_t value) 116 { 117 fw_cfg_select(opaque, (uint16_t)value); 118 } 119 120 static uint32_t fw_cfg_mem_readb(void *opaque, hwaddr addr) 121 { 122 return fw_cfg_read(opaque); 123 } 124 125 static void fw_cfg_mem_writeb(void *opaque, hwaddr addr, 126 uint32_t value) 127 { 128 fw_cfg_write(opaque, (uint8_t)value); 129 } 130 131 static void fw_cfg_mem_writew(void *opaque, hwaddr addr, 132 uint32_t value) 133 { 134 fw_cfg_select(opaque, (uint16_t)value); 135 } 136 137 static CPUReadMemoryFunc *fw_cfg_ctl_mem_read[3] = { 138 NULL, 139 NULL, 140 NULL, 141 }; 142 143 static CPUWriteMemoryFunc *fw_cfg_ctl_mem_write[3] = { 144 NULL, 145 fw_cfg_mem_writew, 146 NULL, 147 }; 148 149 static CPUReadMemoryFunc *fw_cfg_data_mem_read[3] = { 150 fw_cfg_mem_readb, 151 NULL, 152 NULL, 153 }; 154 155 static CPUWriteMemoryFunc *fw_cfg_data_mem_write[3] = { 156 fw_cfg_mem_writeb, 157 NULL, 158 NULL, 159 }; 160 161 static void fw_cfg_reset(void *opaque) 162 { 163 FWCfgState *s = opaque; 164 165 fw_cfg_select(s, 0); 166 } 167 168 static void fw_cfg_save(QEMUFile *f, void *opaque) 169 { 170 FWCfgState *s = opaque; 171 172 qemu_put_be16s(f, &s->cur_entry); 173 qemu_put_be16s(f, &s->cur_offset); 174 } 175 176 static int fw_cfg_load(QEMUFile *f, void *opaque, int version_id) 177 { 178 FWCfgState *s = opaque; 179 180 if (version_id > 1) 181 return -EINVAL; 182 183 qemu_get_be16s(f, &s->cur_entry); 184 qemu_get_be16s(f, &s->cur_offset); 185 186 return 0; 187 } 188 189 int fw_cfg_add_bytes(void *opaque, uint16_t key, uint8_t *data, uint16_t len) 190 { 191 FWCfgState *s = opaque; 192 int arch = !!(key & FW_CFG_ARCH_LOCAL); 193 194 key &= FW_CFG_ENTRY_MASK; 195 196 if (key >= FW_CFG_MAX_ENTRY) 197 return 0; 198 199 s->entries[arch][key].data = data; 200 s->entries[arch][key].len = len; 201 202 return 1; 203 } 204 205 int fw_cfg_add_i16(void *opaque, uint16_t key, uint16_t value) 206 { 207 uint16_t *copy; 208 209 copy = g_malloc(sizeof(value)); 210 *copy = cpu_to_le16(value); 211 return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value)); 212 } 213 214 int fw_cfg_add_i32(void *opaque, uint16_t key, uint32_t value) 215 { 216 uint32_t *copy; 217 218 copy = g_malloc(sizeof(value)); 219 *copy = cpu_to_le32(value); 220 return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value)); 221 } 222 223 int fw_cfg_add_i64(void *opaque, uint16_t key, uint64_t value) 224 { 225 uint64_t *copy; 226 227 copy = g_malloc(sizeof(value)); 228 *copy = cpu_to_le64(value); 229 return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value)); 230 } 231 232 int fw_cfg_add_callback(void *opaque, uint16_t key, FWCfgCallback callback, 233 void *callback_opaque, uint8_t *data, size_t len) 234 { 235 FWCfgState *s = opaque; 236 int arch = !!(key & FW_CFG_ARCH_LOCAL); 237 238 if (!(key & FW_CFG_WRITE_CHANNEL)) 239 return 0; 240 241 key &= FW_CFG_ENTRY_MASK; 242 243 if (key >= FW_CFG_MAX_ENTRY || len > 65535) 244 return 0; 245 246 s->entries[arch][key].data = data; 247 s->entries[arch][key].len = len; 248 s->entries[arch][key].callback_opaque = callback_opaque; 249 s->entries[arch][key].callback = callback; 250 251 return 1; 252 } 253 254 void *fw_cfg_init(uint32_t ctl_port, uint32_t data_port, 255 hwaddr ctl_addr, hwaddr data_addr) 256 { 257 FWCfgState *s; 258 int io_ctl_memory, io_data_memory; 259 260 s = g_malloc0(sizeof(FWCfgState)); 261 262 if (ctl_port) { 263 register_ioport_write(ctl_port, 2, 2, fw_cfg_io_writew, s); 264 } 265 if (data_port) { 266 register_ioport_read(data_port, 1, 1, fw_cfg_io_readb, s); 267 register_ioport_write(data_port, 1, 1, fw_cfg_io_writeb, s); 268 } 269 if (ctl_addr) { 270 io_ctl_memory = cpu_register_io_memory(fw_cfg_ctl_mem_read, 271 fw_cfg_ctl_mem_write, s); 272 cpu_register_physical_memory(ctl_addr, FW_CFG_SIZE, io_ctl_memory); 273 } 274 if (data_addr) { 275 io_data_memory = cpu_register_io_memory(fw_cfg_data_mem_read, 276 fw_cfg_data_mem_write, s); 277 cpu_register_physical_memory(data_addr, FW_CFG_SIZE, io_data_memory); 278 } 279 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (uint8_t *)"QEMU", 4); 280 fw_cfg_add_bytes(s, FW_CFG_UUID, qemu_uuid, 16); 281 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)(display_type == DT_NOGRAPHIC)); 282 fw_cfg_add_i16(s, FW_CFG_NB_CPUS, (uint16_t)smp_cpus); 283 284 register_savevm(NULL, "fw_cfg", -1, 1, fw_cfg_save, fw_cfg_load, s); 285 qemu_register_reset(fw_cfg_reset, 0, s); 286 fw_cfg_reset(s); 287 288 return s; 289 } 290