Home | History | Annotate | Download | only in Support
      1 //===- llvm/Support/ScaledNumber.h - Support for scaled numbers -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains functions (and a class) useful for working with scaled
     11 // numbers -- in particular, pairs of integers where one represents digits and
     12 // another represents a scale.  The functions are helpers and live in the
     13 // namespace ScaledNumbers.  The class ScaledNumber is useful for modelling
     14 // certain cost metrics that need simple, integer-like semantics that are easy
     15 // to reason about.
     16 //
     17 // These might remind you of soft-floats.  If you want one of those, you're in
     18 // the wrong place.  Look at include/llvm/ADT/APFloat.h instead.
     19 //
     20 //===----------------------------------------------------------------------===//
     21 
     22 #ifndef LLVM_SUPPORT_SCALEDNUMBER_H
     23 #define LLVM_SUPPORT_SCALEDNUMBER_H
     24 
     25 #include "llvm/Support/MathExtras.h"
     26 
     27 #include <algorithm>
     28 #include <cstdint>
     29 #include <limits>
     30 #include <string>
     31 #include <tuple>
     32 #include <utility>
     33 
     34 namespace llvm {
     35 namespace ScaledNumbers {
     36 
     37 /// \brief Maximum scale; same as APFloat for easy debug printing.
     38 const int32_t MaxScale = 16383;
     39 
     40 /// \brief Maximum scale; same as APFloat for easy debug printing.
     41 const int32_t MinScale = -16382;
     42 
     43 /// \brief Get the width of a number.
     44 template <class DigitsT> inline int getWidth() { return sizeof(DigitsT) * 8; }
     45 
     46 /// \brief Conditionally round up a scaled number.
     47 ///
     48 /// Given \c Digits and \c Scale, round up iff \c ShouldRound is \c true.
     49 /// Always returns \c Scale unless there's an overflow, in which case it
     50 /// returns \c 1+Scale.
     51 ///
     52 /// \pre adding 1 to \c Scale will not overflow INT16_MAX.
     53 template <class DigitsT>
     54 inline std::pair<DigitsT, int16_t> getRounded(DigitsT Digits, int16_t Scale,
     55                                               bool ShouldRound) {
     56   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
     57 
     58   if (ShouldRound)
     59     if (!++Digits)
     60       // Overflow.
     61       return std::make_pair(DigitsT(1) << (getWidth<DigitsT>() - 1), Scale + 1);
     62   return std::make_pair(Digits, Scale);
     63 }
     64 
     65 /// \brief Convenience helper for 32-bit rounding.
     66 inline std::pair<uint32_t, int16_t> getRounded32(uint32_t Digits, int16_t Scale,
     67                                                  bool ShouldRound) {
     68   return getRounded(Digits, Scale, ShouldRound);
     69 }
     70 
     71 /// \brief Convenience helper for 64-bit rounding.
     72 inline std::pair<uint64_t, int16_t> getRounded64(uint64_t Digits, int16_t Scale,
     73                                                  bool ShouldRound) {
     74   return getRounded(Digits, Scale, ShouldRound);
     75 }
     76 
     77 /// \brief Adjust a 64-bit scaled number down to the appropriate width.
     78 ///
     79 /// \pre Adding 64 to \c Scale will not overflow INT16_MAX.
     80 template <class DigitsT>
     81 inline std::pair<DigitsT, int16_t> getAdjusted(uint64_t Digits,
     82                                                int16_t Scale = 0) {
     83   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
     84 
     85   const int Width = getWidth<DigitsT>();
     86   if (Width == 64 || Digits <= std::numeric_limits<DigitsT>::max())
     87     return std::make_pair(Digits, Scale);
     88 
     89   // Shift right and round.
     90   int Shift = 64 - Width - countLeadingZeros(Digits);
     91   return getRounded<DigitsT>(Digits >> Shift, Scale + Shift,
     92                              Digits & (UINT64_C(1) << (Shift - 1)));
     93 }
     94 
     95 /// \brief Convenience helper for adjusting to 32 bits.
     96 inline std::pair<uint32_t, int16_t> getAdjusted32(uint64_t Digits,
     97                                                   int16_t Scale = 0) {
     98   return getAdjusted<uint32_t>(Digits, Scale);
     99 }
    100 
    101 /// \brief Convenience helper for adjusting to 64 bits.
    102 inline std::pair<uint64_t, int16_t> getAdjusted64(uint64_t Digits,
    103                                                   int16_t Scale = 0) {
    104   return getAdjusted<uint64_t>(Digits, Scale);
    105 }
    106 
    107 /// \brief Multiply two 64-bit integers to create a 64-bit scaled number.
    108 ///
    109 /// Implemented with four 64-bit integer multiplies.
    110 std::pair<uint64_t, int16_t> multiply64(uint64_t LHS, uint64_t RHS);
    111 
    112 /// \brief Multiply two 32-bit integers to create a 32-bit scaled number.
    113 ///
    114 /// Implemented with one 64-bit integer multiply.
    115 template <class DigitsT>
    116 inline std::pair<DigitsT, int16_t> getProduct(DigitsT LHS, DigitsT RHS) {
    117   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
    118 
    119   if (getWidth<DigitsT>() <= 32 || (LHS <= UINT32_MAX && RHS <= UINT32_MAX))
    120     return getAdjusted<DigitsT>(uint64_t(LHS) * RHS);
    121 
    122   return multiply64(LHS, RHS);
    123 }
    124 
    125 /// \brief Convenience helper for 32-bit product.
    126 inline std::pair<uint32_t, int16_t> getProduct32(uint32_t LHS, uint32_t RHS) {
    127   return getProduct(LHS, RHS);
    128 }
    129 
    130 /// \brief Convenience helper for 64-bit product.
    131 inline std::pair<uint64_t, int16_t> getProduct64(uint64_t LHS, uint64_t RHS) {
    132   return getProduct(LHS, RHS);
    133 }
    134 
    135 /// \brief Divide two 64-bit integers to create a 64-bit scaled number.
    136 ///
    137 /// Implemented with long division.
    138 ///
    139 /// \pre \c Dividend and \c Divisor are non-zero.
    140 std::pair<uint64_t, int16_t> divide64(uint64_t Dividend, uint64_t Divisor);
    141 
    142 /// \brief Divide two 32-bit integers to create a 32-bit scaled number.
    143 ///
    144 /// Implemented with one 64-bit integer divide/remainder pair.
    145 ///
    146 /// \pre \c Dividend and \c Divisor are non-zero.
    147 std::pair<uint32_t, int16_t> divide32(uint32_t Dividend, uint32_t Divisor);
    148 
    149 /// \brief Divide two 32-bit numbers to create a 32-bit scaled number.
    150 ///
    151 /// Implemented with one 64-bit integer divide/remainder pair.
    152 ///
    153 /// Returns \c (DigitsT_MAX, MaxScale) for divide-by-zero (0 for 0/0).
    154 template <class DigitsT>
    155 std::pair<DigitsT, int16_t> getQuotient(DigitsT Dividend, DigitsT Divisor) {
    156   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
    157   static_assert(sizeof(DigitsT) == 4 || sizeof(DigitsT) == 8,
    158                 "expected 32-bit or 64-bit digits");
    159 
    160   // Check for zero.
    161   if (!Dividend)
    162     return std::make_pair(0, 0);
    163   if (!Divisor)
    164     return std::make_pair(std::numeric_limits<DigitsT>::max(), MaxScale);
    165 
    166   if (getWidth<DigitsT>() == 64)
    167     return divide64(Dividend, Divisor);
    168   return divide32(Dividend, Divisor);
    169 }
    170 
    171 /// \brief Convenience helper for 32-bit quotient.
    172 inline std::pair<uint32_t, int16_t> getQuotient32(uint32_t Dividend,
    173                                                   uint32_t Divisor) {
    174   return getQuotient(Dividend, Divisor);
    175 }
    176 
    177 /// \brief Convenience helper for 64-bit quotient.
    178 inline std::pair<uint64_t, int16_t> getQuotient64(uint64_t Dividend,
    179                                                   uint64_t Divisor) {
    180   return getQuotient(Dividend, Divisor);
    181 }
    182 
    183 /// \brief Implementation of getLg() and friends.
    184 ///
    185 /// Returns the rounded lg of \c Digits*2^Scale and an int specifying whether
    186 /// this was rounded up (1), down (-1), or exact (0).
    187 ///
    188 /// Returns \c INT32_MIN when \c Digits is zero.
    189 template <class DigitsT>
    190 inline std::pair<int32_t, int> getLgImpl(DigitsT Digits, int16_t Scale) {
    191   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
    192 
    193   if (!Digits)
    194     return std::make_pair(INT32_MIN, 0);
    195 
    196   // Get the floor of the lg of Digits.
    197   int32_t LocalFloor = sizeof(Digits) * 8 - countLeadingZeros(Digits) - 1;
    198 
    199   // Get the actual floor.
    200   int32_t Floor = Scale + LocalFloor;
    201   if (Digits == UINT64_C(1) << LocalFloor)
    202     return std::make_pair(Floor, 0);
    203 
    204   // Round based on the next digit.
    205   assert(LocalFloor >= 1);
    206   bool Round = Digits & UINT64_C(1) << (LocalFloor - 1);
    207   return std::make_pair(Floor + Round, Round ? 1 : -1);
    208 }
    209 
    210 /// \brief Get the lg (rounded) of a scaled number.
    211 ///
    212 /// Get the lg of \c Digits*2^Scale.
    213 ///
    214 /// Returns \c INT32_MIN when \c Digits is zero.
    215 template <class DigitsT> int32_t getLg(DigitsT Digits, int16_t Scale) {
    216   return getLgImpl(Digits, Scale).first;
    217 }
    218 
    219 /// \brief Get the lg floor of a scaled number.
    220 ///
    221 /// Get the floor of the lg of \c Digits*2^Scale.
    222 ///
    223 /// Returns \c INT32_MIN when \c Digits is zero.
    224 template <class DigitsT> int32_t getLgFloor(DigitsT Digits, int16_t Scale) {
    225   auto Lg = getLgImpl(Digits, Scale);
    226   return Lg.first - (Lg.second > 0);
    227 }
    228 
    229 /// \brief Get the lg ceiling of a scaled number.
    230 ///
    231 /// Get the ceiling of the lg of \c Digits*2^Scale.
    232 ///
    233 /// Returns \c INT32_MIN when \c Digits is zero.
    234 template <class DigitsT> int32_t getLgCeiling(DigitsT Digits, int16_t Scale) {
    235   auto Lg = getLgImpl(Digits, Scale);
    236   return Lg.first + (Lg.second < 0);
    237 }
    238 
    239 /// \brief Implementation for comparing scaled numbers.
    240 ///
    241 /// Compare two 64-bit numbers with different scales.  Given that the scale of
    242 /// \c L is higher than that of \c R by \c ScaleDiff, compare them.  Return -1,
    243 /// 1, and 0 for less than, greater than, and equal, respectively.
    244 ///
    245 /// \pre 0 <= ScaleDiff < 64.
    246 int compareImpl(uint64_t L, uint64_t R, int ScaleDiff);
    247 
    248 /// \brief Compare two scaled numbers.
    249 ///
    250 /// Compare two scaled numbers.  Returns 0 for equal, -1 for less than, and 1
    251 /// for greater than.
    252 template <class DigitsT>
    253 int compare(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale) {
    254   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
    255 
    256   // Check for zero.
    257   if (!LDigits)
    258     return RDigits ? -1 : 0;
    259   if (!RDigits)
    260     return 1;
    261 
    262   // Check for the scale.  Use getLgFloor to be sure that the scale difference
    263   // is always lower than 64.
    264   int32_t lgL = getLgFloor(LDigits, LScale), lgR = getLgFloor(RDigits, RScale);
    265   if (lgL != lgR)
    266     return lgL < lgR ? -1 : 1;
    267 
    268   // Compare digits.
    269   if (LScale < RScale)
    270     return compareImpl(LDigits, RDigits, RScale - LScale);
    271 
    272   return -compareImpl(RDigits, LDigits, LScale - RScale);
    273 }
    274 
    275 /// \brief Match scales of two numbers.
    276 ///
    277 /// Given two scaled numbers, match up their scales.  Change the digits and
    278 /// scales in place.  Shift the digits as necessary to form equivalent numbers,
    279 /// losing precision only when necessary.
    280 ///
    281 /// If the output value of \c LDigits (\c RDigits) is \c 0, the output value of
    282 /// \c LScale (\c RScale) is unspecified.
    283 ///
    284 /// As a convenience, returns the matching scale.  If the output value of one
    285 /// number is zero, returns the scale of the other.  If both are zero, which
    286 /// scale is returned is unspecifed.
    287 template <class DigitsT>
    288 int16_t matchScales(DigitsT &LDigits, int16_t &LScale, DigitsT &RDigits,
    289                     int16_t &RScale) {
    290   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
    291 
    292   if (LScale < RScale)
    293     // Swap arguments.
    294     return matchScales(RDigits, RScale, LDigits, LScale);
    295   if (!LDigits)
    296     return RScale;
    297   if (!RDigits || LScale == RScale)
    298     return LScale;
    299 
    300   // Now LScale > RScale.  Get the difference.
    301   int32_t ScaleDiff = int32_t(LScale) - RScale;
    302   if (ScaleDiff >= 2 * getWidth<DigitsT>()) {
    303     // Don't bother shifting.  RDigits will get zero-ed out anyway.
    304     RDigits = 0;
    305     return LScale;
    306   }
    307 
    308   // Shift LDigits left as much as possible, then shift RDigits right.
    309   int32_t ShiftL = std::min<int32_t>(countLeadingZeros(LDigits), ScaleDiff);
    310   assert(ShiftL < getWidth<DigitsT>() && "can't shift more than width");
    311 
    312   int32_t ShiftR = ScaleDiff - ShiftL;
    313   if (ShiftR >= getWidth<DigitsT>()) {
    314     // Don't bother shifting.  RDigits will get zero-ed out anyway.
    315     RDigits = 0;
    316     return LScale;
    317   }
    318 
    319   LDigits <<= ShiftL;
    320   RDigits >>= ShiftR;
    321 
    322   LScale -= ShiftL;
    323   RScale += ShiftR;
    324   assert(LScale == RScale && "scales should match");
    325   return LScale;
    326 }
    327 
    328 /// \brief Get the sum of two scaled numbers.
    329 ///
    330 /// Get the sum of two scaled numbers with as much precision as possible.
    331 ///
    332 /// \pre Adding 1 to \c LScale (or \c RScale) will not overflow INT16_MAX.
    333 template <class DigitsT>
    334 std::pair<DigitsT, int16_t> getSum(DigitsT LDigits, int16_t LScale,
    335                                    DigitsT RDigits, int16_t RScale) {
    336   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
    337 
    338   // Check inputs up front.  This is only relevent if addition overflows, but
    339   // testing here should catch more bugs.
    340   assert(LScale < INT16_MAX && "scale too large");
    341   assert(RScale < INT16_MAX && "scale too large");
    342 
    343   // Normalize digits to match scales.
    344   int16_t Scale = matchScales(LDigits, LScale, RDigits, RScale);
    345 
    346   // Compute sum.
    347   DigitsT Sum = LDigits + RDigits;
    348   if (Sum >= RDigits)
    349     return std::make_pair(Sum, Scale);
    350 
    351   // Adjust sum after arithmetic overflow.
    352   DigitsT HighBit = DigitsT(1) << (getWidth<DigitsT>() - 1);
    353   return std::make_pair(HighBit | Sum >> 1, Scale + 1);
    354 }
    355 
    356 /// \brief Convenience helper for 32-bit sum.
    357 inline std::pair<uint32_t, int16_t> getSum32(uint32_t LDigits, int16_t LScale,
    358                                              uint32_t RDigits, int16_t RScale) {
    359   return getSum(LDigits, LScale, RDigits, RScale);
    360 }
    361 
    362 /// \brief Convenience helper for 64-bit sum.
    363 inline std::pair<uint64_t, int16_t> getSum64(uint64_t LDigits, int16_t LScale,
    364                                              uint64_t RDigits, int16_t RScale) {
    365   return getSum(LDigits, LScale, RDigits, RScale);
    366 }
    367 
    368 /// \brief Get the difference of two scaled numbers.
    369 ///
    370 /// Get LHS minus RHS with as much precision as possible.
    371 ///
    372 /// Returns \c (0, 0) if the RHS is larger than the LHS.
    373 template <class DigitsT>
    374 std::pair<DigitsT, int16_t> getDifference(DigitsT LDigits, int16_t LScale,
    375                                           DigitsT RDigits, int16_t RScale) {
    376   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
    377 
    378   // Normalize digits to match scales.
    379   const DigitsT SavedRDigits = RDigits;
    380   const int16_t SavedRScale = RScale;
    381   matchScales(LDigits, LScale, RDigits, RScale);
    382 
    383   // Compute difference.
    384   if (LDigits <= RDigits)
    385     return std::make_pair(0, 0);
    386   if (RDigits || !SavedRDigits)
    387     return std::make_pair(LDigits - RDigits, LScale);
    388 
    389   // Check if RDigits just barely lost its last bit.  E.g., for 32-bit:
    390   //
    391   //   1*2^32 - 1*2^0 == 0xffffffff != 1*2^32
    392   const auto RLgFloor = getLgFloor(SavedRDigits, SavedRScale);
    393   if (!compare(LDigits, LScale, DigitsT(1), RLgFloor + getWidth<DigitsT>()))
    394     return std::make_pair(std::numeric_limits<DigitsT>::max(), RLgFloor);
    395 
    396   return std::make_pair(LDigits, LScale);
    397 }
    398 
    399 /// \brief Convenience helper for 32-bit difference.
    400 inline std::pair<uint32_t, int16_t> getDifference32(uint32_t LDigits,
    401                                                     int16_t LScale,
    402                                                     uint32_t RDigits,
    403                                                     int16_t RScale) {
    404   return getDifference(LDigits, LScale, RDigits, RScale);
    405 }
    406 
    407 /// \brief Convenience helper for 64-bit difference.
    408 inline std::pair<uint64_t, int16_t> getDifference64(uint64_t LDigits,
    409                                                     int16_t LScale,
    410                                                     uint64_t RDigits,
    411                                                     int16_t RScale) {
    412   return getDifference(LDigits, LScale, RDigits, RScale);
    413 }
    414 
    415 } // end namespace ScaledNumbers
    416 } // end namespace llvm
    417 
    418 namespace llvm {
    419 
    420 class raw_ostream;
    421 class ScaledNumberBase {
    422 public:
    423   static const int DefaultPrecision = 10;
    424 
    425   static void dump(uint64_t D, int16_t E, int Width);
    426   static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width,
    427                             unsigned Precision);
    428   static std::string toString(uint64_t D, int16_t E, int Width,
    429                               unsigned Precision);
    430   static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); }
    431   static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); }
    432   static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
    433 
    434   static std::pair<uint64_t, bool> splitSigned(int64_t N) {
    435     if (N >= 0)
    436       return std::make_pair(N, false);
    437     uint64_t Unsigned = N == INT64_MIN ? UINT64_C(1) << 63 : uint64_t(-N);
    438     return std::make_pair(Unsigned, true);
    439   }
    440   static int64_t joinSigned(uint64_t U, bool IsNeg) {
    441     if (U > uint64_t(INT64_MAX))
    442       return IsNeg ? INT64_MIN : INT64_MAX;
    443     return IsNeg ? -int64_t(U) : int64_t(U);
    444   }
    445 };
    446 
    447 /// \brief Simple representation of a scaled number.
    448 ///
    449 /// ScaledNumber is a number represented by digits and a scale.  It uses simple
    450 /// saturation arithmetic and every operation is well-defined for every value.
    451 /// It's somewhat similar in behaviour to a soft-float, but is *not* a
    452 /// replacement for one.  If you're doing numerics, look at \a APFloat instead.
    453 /// Nevertheless, we've found these semantics useful for modelling certain cost
    454 /// metrics.
    455 ///
    456 /// The number is split into a signed scale and unsigned digits.  The number
    457 /// represented is \c getDigits()*2^getScale().  In this way, the digits are
    458 /// much like the mantissa in the x87 long double, but there is no canonical
    459 /// form so the same number can be represented by many bit representations.
    460 ///
    461 /// ScaledNumber is templated on the underlying integer type for digits, which
    462 /// is expected to be unsigned.
    463 ///
    464 /// Unlike APFloat, ScaledNumber does not model architecture floating point
    465 /// behaviour -- while this might make it a little faster and easier to reason
    466 /// about, it certainly makes it more dangerous for general numerics.
    467 ///
    468 /// ScaledNumber is totally ordered.  However, there is no canonical form, so
    469 /// there are multiple representations of most scalars.  E.g.:
    470 ///
    471 ///     ScaledNumber(8u, 0) == ScaledNumber(4u, 1)
    472 ///     ScaledNumber(4u, 1) == ScaledNumber(2u, 2)
    473 ///     ScaledNumber(2u, 2) == ScaledNumber(1u, 3)
    474 ///
    475 /// ScaledNumber implements most arithmetic operations.  Precision is kept
    476 /// where possible.  Uses simple saturation arithmetic, so that operations
    477 /// saturate to 0.0 or getLargest() rather than under or overflowing.  It has
    478 /// some extra arithmetic for unit inversion.  0.0/0.0 is defined to be 0.0.
    479 /// Any other division by 0.0 is defined to be getLargest().
    480 ///
    481 /// As a convenience for modifying the exponent, left and right shifting are
    482 /// both implemented, and both interpret negative shifts as positive shifts in
    483 /// the opposite direction.
    484 ///
    485 /// Scales are limited to the range accepted by x87 long double.  This makes
    486 /// it trivial to add functionality to convert to APFloat (this is already
    487 /// relied on for the implementation of printing).
    488 ///
    489 /// Possible (and conflicting) future directions:
    490 ///
    491 ///  1. Turn this into a wrapper around \a APFloat.
    492 ///  2. Share the algorithm implementations with \a APFloat.
    493 ///  3. Allow \a ScaledNumber to represent a signed number.
    494 template <class DigitsT> class ScaledNumber : ScaledNumberBase {
    495 public:
    496   static_assert(!std::numeric_limits<DigitsT>::is_signed,
    497                 "only unsigned floats supported");
    498 
    499   typedef DigitsT DigitsType;
    500 
    501 private:
    502   typedef std::numeric_limits<DigitsType> DigitsLimits;
    503 
    504   static const int Width = sizeof(DigitsType) * 8;
    505   static_assert(Width <= 64, "invalid integer width for digits");
    506 
    507 private:
    508   DigitsType Digits;
    509   int16_t Scale;
    510 
    511 public:
    512   ScaledNumber() : Digits(0), Scale(0) {}
    513 
    514   ScaledNumber(DigitsType Digits, int16_t Scale)
    515       : Digits(Digits), Scale(Scale) {}
    516 
    517 private:
    518   ScaledNumber(const std::pair<uint64_t, int16_t> &X)
    519       : Digits(X.first), Scale(X.second) {}
    520 
    521 public:
    522   static ScaledNumber getZero() { return ScaledNumber(0, 0); }
    523   static ScaledNumber getOne() { return ScaledNumber(1, 0); }
    524   static ScaledNumber getLargest() {
    525     return ScaledNumber(DigitsLimits::max(), ScaledNumbers::MaxScale);
    526   }
    527   static ScaledNumber get(uint64_t N) { return adjustToWidth(N, 0); }
    528   static ScaledNumber getInverse(uint64_t N) {
    529     return get(N).invert();
    530   }
    531   static ScaledNumber getFraction(DigitsType N, DigitsType D) {
    532     return getQuotient(N, D);
    533   }
    534 
    535   int16_t getScale() const { return Scale; }
    536   DigitsType getDigits() const { return Digits; }
    537 
    538   /// \brief Convert to the given integer type.
    539   ///
    540   /// Convert to \c IntT using simple saturating arithmetic, truncating if
    541   /// necessary.
    542   template <class IntT> IntT toInt() const;
    543 
    544   bool isZero() const { return !Digits; }
    545   bool isLargest() const { return *this == getLargest(); }
    546   bool isOne() const {
    547     if (Scale > 0 || Scale <= -Width)
    548       return false;
    549     return Digits == DigitsType(1) << -Scale;
    550   }
    551 
    552   /// \brief The log base 2, rounded.
    553   ///
    554   /// Get the lg of the scalar.  lg 0 is defined to be INT32_MIN.
    555   int32_t lg() const { return ScaledNumbers::getLg(Digits, Scale); }
    556 
    557   /// \brief The log base 2, rounded towards INT32_MIN.
    558   ///
    559   /// Get the lg floor.  lg 0 is defined to be INT32_MIN.
    560   int32_t lgFloor() const { return ScaledNumbers::getLgFloor(Digits, Scale); }
    561 
    562   /// \brief The log base 2, rounded towards INT32_MAX.
    563   ///
    564   /// Get the lg ceiling.  lg 0 is defined to be INT32_MIN.
    565   int32_t lgCeiling() const {
    566     return ScaledNumbers::getLgCeiling(Digits, Scale);
    567   }
    568 
    569   bool operator==(const ScaledNumber &X) const { return compare(X) == 0; }
    570   bool operator<(const ScaledNumber &X) const { return compare(X) < 0; }
    571   bool operator!=(const ScaledNumber &X) const { return compare(X) != 0; }
    572   bool operator>(const ScaledNumber &X) const { return compare(X) > 0; }
    573   bool operator<=(const ScaledNumber &X) const { return compare(X) <= 0; }
    574   bool operator>=(const ScaledNumber &X) const { return compare(X) >= 0; }
    575 
    576   bool operator!() const { return isZero(); }
    577 
    578   /// \brief Convert to a decimal representation in a string.
    579   ///
    580   /// Convert to a string.  Uses scientific notation for very large/small
    581   /// numbers.  Scientific notation is used roughly for numbers outside of the
    582   /// range 2^-64 through 2^64.
    583   ///
    584   /// \c Precision indicates the number of decimal digits of precision to use;
    585   /// 0 requests the maximum available.
    586   ///
    587   /// As a special case to make debugging easier, if the number is small enough
    588   /// to convert without scientific notation and has more than \c Precision
    589   /// digits before the decimal place, it's printed accurately to the first
    590   /// digit past zero.  E.g., assuming 10 digits of precision:
    591   ///
    592   ///     98765432198.7654... => 98765432198.8
    593   ///      8765432198.7654... =>  8765432198.8
    594   ///       765432198.7654... =>   765432198.8
    595   ///        65432198.7654... =>    65432198.77
    596   ///         5432198.7654... =>     5432198.765
    597   std::string toString(unsigned Precision = DefaultPrecision) {
    598     return ScaledNumberBase::toString(Digits, Scale, Width, Precision);
    599   }
    600 
    601   /// \brief Print a decimal representation.
    602   ///
    603   /// Print a string.  See toString for documentation.
    604   raw_ostream &print(raw_ostream &OS,
    605                      unsigned Precision = DefaultPrecision) const {
    606     return ScaledNumberBase::print(OS, Digits, Scale, Width, Precision);
    607   }
    608   void dump() const { return ScaledNumberBase::dump(Digits, Scale, Width); }
    609 
    610   ScaledNumber &operator+=(const ScaledNumber &X) {
    611     std::tie(Digits, Scale) =
    612         ScaledNumbers::getSum(Digits, Scale, X.Digits, X.Scale);
    613     // Check for exponent past MaxScale.
    614     if (Scale > ScaledNumbers::MaxScale)
    615       *this = getLargest();
    616     return *this;
    617   }
    618   ScaledNumber &operator-=(const ScaledNumber &X) {
    619     std::tie(Digits, Scale) =
    620         ScaledNumbers::getDifference(Digits, Scale, X.Digits, X.Scale);
    621     return *this;
    622   }
    623   ScaledNumber &operator*=(const ScaledNumber &X);
    624   ScaledNumber &operator/=(const ScaledNumber &X);
    625   ScaledNumber &operator<<=(int16_t Shift) {
    626     shiftLeft(Shift);
    627     return *this;
    628   }
    629   ScaledNumber &operator>>=(int16_t Shift) {
    630     shiftRight(Shift);
    631     return *this;
    632   }
    633 
    634 private:
    635   void shiftLeft(int32_t Shift);
    636   void shiftRight(int32_t Shift);
    637 
    638   /// \brief Adjust two floats to have matching exponents.
    639   ///
    640   /// Adjust \c this and \c X to have matching exponents.  Returns the new \c X
    641   /// by value.  Does nothing if \a isZero() for either.
    642   ///
    643   /// The value that compares smaller will lose precision, and possibly become
    644   /// \a isZero().
    645   ScaledNumber matchScales(ScaledNumber X) {
    646     ScaledNumbers::matchScales(Digits, Scale, X.Digits, X.Scale);
    647     return X;
    648   }
    649 
    650 public:
    651   /// \brief Scale a large number accurately.
    652   ///
    653   /// Scale N (multiply it by this).  Uses full precision multiplication, even
    654   /// if Width is smaller than 64, so information is not lost.
    655   uint64_t scale(uint64_t N) const;
    656   uint64_t scaleByInverse(uint64_t N) const {
    657     // TODO: implement directly, rather than relying on inverse.  Inverse is
    658     // expensive.
    659     return inverse().scale(N);
    660   }
    661   int64_t scale(int64_t N) const {
    662     std::pair<uint64_t, bool> Unsigned = splitSigned(N);
    663     return joinSigned(scale(Unsigned.first), Unsigned.second);
    664   }
    665   int64_t scaleByInverse(int64_t N) const {
    666     std::pair<uint64_t, bool> Unsigned = splitSigned(N);
    667     return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second);
    668   }
    669 
    670   int compare(const ScaledNumber &X) const {
    671     return ScaledNumbers::compare(Digits, Scale, X.Digits, X.Scale);
    672   }
    673   int compareTo(uint64_t N) const {
    674     ScaledNumber Scaled = get(N);
    675     int Compare = compare(Scaled);
    676     if (Width == 64 || Compare != 0)
    677       return Compare;
    678 
    679     // Check for precision loss.  We know *this == RoundTrip.
    680     uint64_t RoundTrip = Scaled.template toInt<uint64_t>();
    681     return N == RoundTrip ? 0 : RoundTrip < N ? -1 : 1;
    682   }
    683   int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); }
    684 
    685   ScaledNumber &invert() { return *this = ScaledNumber::get(1) / *this; }
    686   ScaledNumber inverse() const { return ScaledNumber(*this).invert(); }
    687 
    688 private:
    689   static ScaledNumber getProduct(DigitsType LHS, DigitsType RHS) {
    690     return ScaledNumbers::getProduct(LHS, RHS);
    691   }
    692   static ScaledNumber getQuotient(DigitsType Dividend, DigitsType Divisor) {
    693     return ScaledNumbers::getQuotient(Dividend, Divisor);
    694   }
    695 
    696   static int countLeadingZerosWidth(DigitsType Digits) {
    697     if (Width == 64)
    698       return countLeadingZeros64(Digits);
    699     if (Width == 32)
    700       return countLeadingZeros32(Digits);
    701     return countLeadingZeros32(Digits) + Width - 32;
    702   }
    703 
    704   /// \brief Adjust a number to width, rounding up if necessary.
    705   ///
    706   /// Should only be called for \c Shift close to zero.
    707   ///
    708   /// \pre Shift >= MinScale && Shift + 64 <= MaxScale.
    709   static ScaledNumber adjustToWidth(uint64_t N, int32_t Shift) {
    710     assert(Shift >= ScaledNumbers::MinScale && "Shift should be close to 0");
    711     assert(Shift <= ScaledNumbers::MaxScale - 64 &&
    712            "Shift should be close to 0");
    713     auto Adjusted = ScaledNumbers::getAdjusted<DigitsT>(N, Shift);
    714     return Adjusted;
    715   }
    716 
    717   static ScaledNumber getRounded(ScaledNumber P, bool Round) {
    718     // Saturate.
    719     if (P.isLargest())
    720       return P;
    721 
    722     return ScaledNumbers::getRounded(P.Digits, P.Scale, Round);
    723   }
    724 };
    725 
    726 #define SCALED_NUMBER_BOP(op, base)                                            \
    727   template <class DigitsT>                                                     \
    728   ScaledNumber<DigitsT> operator op(const ScaledNumber<DigitsT> &L,            \
    729                                     const ScaledNumber<DigitsT> &R) {          \
    730     return ScaledNumber<DigitsT>(L) base R;                                    \
    731   }
    732 SCALED_NUMBER_BOP(+, += )
    733 SCALED_NUMBER_BOP(-, -= )
    734 SCALED_NUMBER_BOP(*, *= )
    735 SCALED_NUMBER_BOP(/, /= )
    736 SCALED_NUMBER_BOP(<<, <<= )
    737 SCALED_NUMBER_BOP(>>, >>= )
    738 #undef SCALED_NUMBER_BOP
    739 
    740 template <class DigitsT>
    741 raw_ostream &operator<<(raw_ostream &OS, const ScaledNumber<DigitsT> &X) {
    742   return X.print(OS, 10);
    743 }
    744 
    745 #define SCALED_NUMBER_COMPARE_TO_TYPE(op, T1, T2)                              \
    746   template <class DigitsT>                                                     \
    747   bool operator op(const ScaledNumber<DigitsT> &L, T1 R) {                     \
    748     return L.compareTo(T2(R)) op 0;                                            \
    749   }                                                                            \
    750   template <class DigitsT>                                                     \
    751   bool operator op(T1 L, const ScaledNumber<DigitsT> &R) {                     \
    752     return 0 op R.compareTo(T2(L));                                            \
    753   }
    754 #define SCALED_NUMBER_COMPARE_TO(op)                                           \
    755   SCALED_NUMBER_COMPARE_TO_TYPE(op, uint64_t, uint64_t)                        \
    756   SCALED_NUMBER_COMPARE_TO_TYPE(op, uint32_t, uint64_t)                        \
    757   SCALED_NUMBER_COMPARE_TO_TYPE(op, int64_t, int64_t)                          \
    758   SCALED_NUMBER_COMPARE_TO_TYPE(op, int32_t, int64_t)
    759 SCALED_NUMBER_COMPARE_TO(< )
    760 SCALED_NUMBER_COMPARE_TO(> )
    761 SCALED_NUMBER_COMPARE_TO(== )
    762 SCALED_NUMBER_COMPARE_TO(!= )
    763 SCALED_NUMBER_COMPARE_TO(<= )
    764 SCALED_NUMBER_COMPARE_TO(>= )
    765 #undef SCALED_NUMBER_COMPARE_TO
    766 #undef SCALED_NUMBER_COMPARE_TO_TYPE
    767 
    768 template <class DigitsT>
    769 uint64_t ScaledNumber<DigitsT>::scale(uint64_t N) const {
    770   if (Width == 64 || N <= DigitsLimits::max())
    771     return (get(N) * *this).template toInt<uint64_t>();
    772 
    773   // Defer to the 64-bit version.
    774   return ScaledNumber<uint64_t>(Digits, Scale).scale(N);
    775 }
    776 
    777 template <class DigitsT>
    778 template <class IntT>
    779 IntT ScaledNumber<DigitsT>::toInt() const {
    780   typedef std::numeric_limits<IntT> Limits;
    781   if (*this < 1)
    782     return 0;
    783   if (*this >= Limits::max())
    784     return Limits::max();
    785 
    786   IntT N = Digits;
    787   if (Scale > 0) {
    788     assert(size_t(Scale) < sizeof(IntT) * 8);
    789     return N << Scale;
    790   }
    791   if (Scale < 0) {
    792     assert(size_t(-Scale) < sizeof(IntT) * 8);
    793     return N >> -Scale;
    794   }
    795   return N;
    796 }
    797 
    798 template <class DigitsT>
    799 ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
    800 operator*=(const ScaledNumber &X) {
    801   if (isZero())
    802     return *this;
    803   if (X.isZero())
    804     return *this = X;
    805 
    806   // Save the exponents.
    807   int32_t Scales = int32_t(Scale) + int32_t(X.Scale);
    808 
    809   // Get the raw product.
    810   *this = getProduct(Digits, X.Digits);
    811 
    812   // Combine with exponents.
    813   return *this <<= Scales;
    814 }
    815 template <class DigitsT>
    816 ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
    817 operator/=(const ScaledNumber &X) {
    818   if (isZero())
    819     return *this;
    820   if (X.isZero())
    821     return *this = getLargest();
    822 
    823   // Save the exponents.
    824   int32_t Scales = int32_t(Scale) - int32_t(X.Scale);
    825 
    826   // Get the raw quotient.
    827   *this = getQuotient(Digits, X.Digits);
    828 
    829   // Combine with exponents.
    830   return *this <<= Scales;
    831 }
    832 template <class DigitsT> void ScaledNumber<DigitsT>::shiftLeft(int32_t Shift) {
    833   if (!Shift || isZero())
    834     return;
    835   assert(Shift != INT32_MIN);
    836   if (Shift < 0) {
    837     shiftRight(-Shift);
    838     return;
    839   }
    840 
    841   // Shift as much as we can in the exponent.
    842   int32_t ScaleShift = std::min(Shift, ScaledNumbers::MaxScale - Scale);
    843   Scale += ScaleShift;
    844   if (ScaleShift == Shift)
    845     return;
    846 
    847   // Check this late, since it's rare.
    848   if (isLargest())
    849     return;
    850 
    851   // Shift the digits themselves.
    852   Shift -= ScaleShift;
    853   if (Shift > countLeadingZerosWidth(Digits)) {
    854     // Saturate.
    855     *this = getLargest();
    856     return;
    857   }
    858 
    859   Digits <<= Shift;
    860   return;
    861 }
    862 
    863 template <class DigitsT> void ScaledNumber<DigitsT>::shiftRight(int32_t Shift) {
    864   if (!Shift || isZero())
    865     return;
    866   assert(Shift != INT32_MIN);
    867   if (Shift < 0) {
    868     shiftLeft(-Shift);
    869     return;
    870   }
    871 
    872   // Shift as much as we can in the exponent.
    873   int32_t ScaleShift = std::min(Shift, Scale - ScaledNumbers::MinScale);
    874   Scale -= ScaleShift;
    875   if (ScaleShift == Shift)
    876     return;
    877 
    878   // Shift the digits themselves.
    879   Shift -= ScaleShift;
    880   if (Shift >= Width) {
    881     // Saturate.
    882     *this = getZero();
    883     return;
    884   }
    885 
    886   Digits >>= Shift;
    887   return;
    888 }
    889 
    890 template <typename T> struct isPodLike;
    891 template <typename T> struct isPodLike<ScaledNumber<T>> {
    892   static const bool value = true;
    893 };
    894 
    895 } // end namespace llvm
    896 
    897 #endif
    898