Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the LoopInfo class that is used to identify natural loops
     11 // and determine the loop depth of various nodes of the CFG.  A natural loop
     12 // has exactly one entry-point, which is called the header. Note that natural
     13 // loops may actually be several loops that share the same header node.
     14 //
     15 // This analysis calculates the nesting structure of loops in a function.  For
     16 // each natural loop identified, this analysis identifies natural loops
     17 // contained entirely within the loop and the basic blocks the make up the loop.
     18 //
     19 // It can calculate on the fly various bits of information, for example:
     20 //
     21 //  * whether there is a preheader for the loop
     22 //  * the number of back edges to the header
     23 //  * whether or not a particular block branches out of the loop
     24 //  * the successor blocks of the loop
     25 //  * the loop depth
     26 //  * etc...
     27 //
     28 //===----------------------------------------------------------------------===//
     29 
     30 #ifndef LLVM_ANALYSIS_LOOPINFO_H
     31 #define LLVM_ANALYSIS_LOOPINFO_H
     32 
     33 #include "llvm/ADT/DenseMap.h"
     34 #include "llvm/ADT/DenseSet.h"
     35 #include "llvm/ADT/GraphTraits.h"
     36 #include "llvm/ADT/SmallPtrSet.h"
     37 #include "llvm/ADT/SmallVector.h"
     38 #include "llvm/IR/CFG.h"
     39 #include "llvm/IR/Instruction.h"
     40 #include "llvm/Pass.h"
     41 #include <algorithm>
     42 
     43 namespace llvm {
     44 
     45 template<typename T>
     46 inline void RemoveFromVector(std::vector<T*> &V, T *N) {
     47   typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
     48   assert(I != V.end() && "N is not in this list!");
     49   V.erase(I);
     50 }
     51 
     52 class DominatorTree;
     53 class LoopInfo;
     54 class Loop;
     55 class MDNode;
     56 class PHINode;
     57 class raw_ostream;
     58 template<class N> class DominatorTreeBase;
     59 template<class N, class M> class LoopInfoBase;
     60 template<class N, class M> class LoopBase;
     61 
     62 //===----------------------------------------------------------------------===//
     63 /// LoopBase class - Instances of this class are used to represent loops that
     64 /// are detected in the flow graph
     65 ///
     66 template<class BlockT, class LoopT>
     67 class LoopBase {
     68   LoopT *ParentLoop;
     69   // SubLoops - Loops contained entirely within this one.
     70   std::vector<LoopT *> SubLoops;
     71 
     72   // Blocks - The list of blocks in this loop.  First entry is the header node.
     73   std::vector<BlockT*> Blocks;
     74 
     75   SmallPtrSet<const BlockT*, 8> DenseBlockSet;
     76 
     77   LoopBase(const LoopBase<BlockT, LoopT> &) LLVM_DELETED_FUNCTION;
     78   const LoopBase<BlockT, LoopT>&
     79     operator=(const LoopBase<BlockT, LoopT> &) LLVM_DELETED_FUNCTION;
     80 public:
     81   /// Loop ctor - This creates an empty loop.
     82   LoopBase() : ParentLoop(nullptr) {}
     83   ~LoopBase() {
     84     for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
     85       delete SubLoops[i];
     86   }
     87 
     88   /// getLoopDepth - Return the nesting level of this loop.  An outer-most
     89   /// loop has depth 1, for consistency with loop depth values used for basic
     90   /// blocks, where depth 0 is used for blocks not inside any loops.
     91   unsigned getLoopDepth() const {
     92     unsigned D = 1;
     93     for (const LoopT *CurLoop = ParentLoop; CurLoop;
     94          CurLoop = CurLoop->ParentLoop)
     95       ++D;
     96     return D;
     97   }
     98   BlockT *getHeader() const { return Blocks.front(); }
     99   LoopT *getParentLoop() const { return ParentLoop; }
    100 
    101   /// setParentLoop is a raw interface for bypassing addChildLoop.
    102   void setParentLoop(LoopT *L) { ParentLoop = L; }
    103 
    104   /// contains - Return true if the specified loop is contained within in
    105   /// this loop.
    106   ///
    107   bool contains(const LoopT *L) const {
    108     if (L == this) return true;
    109     if (!L)        return false;
    110     return contains(L->getParentLoop());
    111   }
    112 
    113   /// contains - Return true if the specified basic block is in this loop.
    114   ///
    115   bool contains(const BlockT *BB) const {
    116     return DenseBlockSet.count(BB);
    117   }
    118 
    119   /// contains - Return true if the specified instruction is in this loop.
    120   ///
    121   template<class InstT>
    122   bool contains(const InstT *Inst) const {
    123     return contains(Inst->getParent());
    124   }
    125 
    126   /// iterator/begin/end - Return the loops contained entirely within this loop.
    127   ///
    128   const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
    129   std::vector<LoopT *> &getSubLoopsVector() { return SubLoops; }
    130   typedef typename std::vector<LoopT *>::const_iterator iterator;
    131   typedef typename std::vector<LoopT *>::const_reverse_iterator
    132     reverse_iterator;
    133   iterator begin() const { return SubLoops.begin(); }
    134   iterator end() const { return SubLoops.end(); }
    135   reverse_iterator rbegin() const { return SubLoops.rbegin(); }
    136   reverse_iterator rend() const { return SubLoops.rend(); }
    137   bool empty() const { return SubLoops.empty(); }
    138 
    139   /// getBlocks - Get a list of the basic blocks which make up this loop.
    140   ///
    141   const std::vector<BlockT*> &getBlocks() const { return Blocks; }
    142   typedef typename std::vector<BlockT*>::const_iterator block_iterator;
    143   block_iterator block_begin() const { return Blocks.begin(); }
    144   block_iterator block_end() const { return Blocks.end(); }
    145 
    146   /// getNumBlocks - Get the number of blocks in this loop in constant time.
    147   unsigned getNumBlocks() const {
    148     return Blocks.size();
    149   }
    150 
    151   /// isLoopExiting - True if terminator in the block can branch to another
    152   /// block that is outside of the current loop.
    153   ///
    154   bool isLoopExiting(const BlockT *BB) const {
    155     typedef GraphTraits<const BlockT*> BlockTraits;
    156     for (typename BlockTraits::ChildIteratorType SI =
    157          BlockTraits::child_begin(BB),
    158          SE = BlockTraits::child_end(BB); SI != SE; ++SI) {
    159       if (!contains(*SI))
    160         return true;
    161     }
    162     return false;
    163   }
    164 
    165   /// getNumBackEdges - Calculate the number of back edges to the loop header
    166   ///
    167   unsigned getNumBackEdges() const {
    168     unsigned NumBackEdges = 0;
    169     BlockT *H = getHeader();
    170 
    171     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    172     for (typename InvBlockTraits::ChildIteratorType I =
    173          InvBlockTraits::child_begin(H),
    174          E = InvBlockTraits::child_end(H); I != E; ++I)
    175       if (contains(*I))
    176         ++NumBackEdges;
    177 
    178     return NumBackEdges;
    179   }
    180 
    181   //===--------------------------------------------------------------------===//
    182   // APIs for simple analysis of the loop.
    183   //
    184   // Note that all of these methods can fail on general loops (ie, there may not
    185   // be a preheader, etc).  For best success, the loop simplification and
    186   // induction variable canonicalization pass should be used to normalize loops
    187   // for easy analysis.  These methods assume canonical loops.
    188 
    189   /// getExitingBlocks - Return all blocks inside the loop that have successors
    190   /// outside of the loop.  These are the blocks _inside of the current loop_
    191   /// which branch out.  The returned list is always unique.
    192   ///
    193   void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
    194 
    195   /// getExitingBlock - If getExitingBlocks would return exactly one block,
    196   /// return that block. Otherwise return null.
    197   BlockT *getExitingBlock() const;
    198 
    199   /// getExitBlocks - Return all of the successor blocks of this loop.  These
    200   /// are the blocks _outside of the current loop_ which are branched to.
    201   ///
    202   void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const;
    203 
    204   /// getExitBlock - If getExitBlocks would return exactly one block,
    205   /// return that block. Otherwise return null.
    206   BlockT *getExitBlock() const;
    207 
    208   /// Edge type.
    209   typedef std::pair<const BlockT*, const BlockT*> Edge;
    210 
    211   /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
    212   void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
    213 
    214   /// getLoopPreheader - If there is a preheader for this loop, return it.  A
    215   /// loop has a preheader if there is only one edge to the header of the loop
    216   /// from outside of the loop.  If this is the case, the block branching to the
    217   /// header of the loop is the preheader node.
    218   ///
    219   /// This method returns null if there is no preheader for the loop.
    220   ///
    221   BlockT *getLoopPreheader() const;
    222 
    223   /// getLoopPredecessor - If the given loop's header has exactly one unique
    224   /// predecessor outside the loop, return it. Otherwise return null.
    225   /// This is less strict that the loop "preheader" concept, which requires
    226   /// the predecessor to have exactly one successor.
    227   ///
    228   BlockT *getLoopPredecessor() const;
    229 
    230   /// getLoopLatch - If there is a single latch block for this loop, return it.
    231   /// A latch block is a block that contains a branch back to the header.
    232   BlockT *getLoopLatch() const;
    233 
    234   /// getLoopLatches - Return all loop latch blocks of this loop. A latch block
    235   /// is a block that contains a branch back to the header.
    236   void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
    237     BlockT *H = getHeader();
    238     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    239     for (typename InvBlockTraits::ChildIteratorType I =
    240          InvBlockTraits::child_begin(H),
    241          E = InvBlockTraits::child_end(H); I != E; ++I)
    242       if (contains(*I))
    243         LoopLatches.push_back(*I);
    244   }
    245 
    246   //===--------------------------------------------------------------------===//
    247   // APIs for updating loop information after changing the CFG
    248   //
    249 
    250   /// addBasicBlockToLoop - This method is used by other analyses to update loop
    251   /// information.  NewBB is set to be a new member of the current loop.
    252   /// Because of this, it is added as a member of all parent loops, and is added
    253   /// to the specified LoopInfo object as being in the current basic block.  It
    254   /// is not valid to replace the loop header with this method.
    255   ///
    256   void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
    257 
    258   /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
    259   /// the OldChild entry in our children list with NewChild, and updates the
    260   /// parent pointer of OldChild to be null and the NewChild to be this loop.
    261   /// This updates the loop depth of the new child.
    262   void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
    263 
    264   /// addChildLoop - Add the specified loop to be a child of this loop.  This
    265   /// updates the loop depth of the new child.
    266   ///
    267   void addChildLoop(LoopT *NewChild) {
    268     assert(!NewChild->ParentLoop && "NewChild already has a parent!");
    269     NewChild->ParentLoop = static_cast<LoopT *>(this);
    270     SubLoops.push_back(NewChild);
    271   }
    272 
    273   /// removeChildLoop - This removes the specified child from being a subloop of
    274   /// this loop.  The loop is not deleted, as it will presumably be inserted
    275   /// into another loop.
    276   LoopT *removeChildLoop(iterator I) {
    277     assert(I != SubLoops.end() && "Cannot remove end iterator!");
    278     LoopT *Child = *I;
    279     assert(Child->ParentLoop == this && "Child is not a child of this loop!");
    280     SubLoops.erase(SubLoops.begin()+(I-begin()));
    281     Child->ParentLoop = nullptr;
    282     return Child;
    283   }
    284 
    285   /// addBlockEntry - This adds a basic block directly to the basic block list.
    286   /// This should only be used by transformations that create new loops.  Other
    287   /// transformations should use addBasicBlockToLoop.
    288   void addBlockEntry(BlockT *BB) {
    289     Blocks.push_back(BB);
    290     DenseBlockSet.insert(BB);
    291   }
    292 
    293   /// reverseBlocks - interface to reverse Blocks[from, end of loop] in this loop
    294   void reverseBlock(unsigned from) {
    295     std::reverse(Blocks.begin() + from, Blocks.end());
    296   }
    297 
    298   /// reserveBlocks- interface to do reserve() for Blocks
    299   void reserveBlocks(unsigned size) {
    300     Blocks.reserve(size);
    301   }
    302 
    303   /// moveToHeader - This method is used to move BB (which must be part of this
    304   /// loop) to be the loop header of the loop (the block that dominates all
    305   /// others).
    306   void moveToHeader(BlockT *BB) {
    307     if (Blocks[0] == BB) return;
    308     for (unsigned i = 0; ; ++i) {
    309       assert(i != Blocks.size() && "Loop does not contain BB!");
    310       if (Blocks[i] == BB) {
    311         Blocks[i] = Blocks[0];
    312         Blocks[0] = BB;
    313         return;
    314       }
    315     }
    316   }
    317 
    318   /// removeBlockFromLoop - This removes the specified basic block from the
    319   /// current loop, updating the Blocks as appropriate.  This does not update
    320   /// the mapping in the LoopInfo class.
    321   void removeBlockFromLoop(BlockT *BB) {
    322     RemoveFromVector(Blocks, BB);
    323     DenseBlockSet.erase(BB);
    324   }
    325 
    326   /// verifyLoop - Verify loop structure
    327   void verifyLoop() const;
    328 
    329   /// verifyLoop - Verify loop structure of this loop and all nested loops.
    330   void verifyLoopNest(DenseSet<const LoopT*> *Loops) const;
    331 
    332   void print(raw_ostream &OS, unsigned Depth = 0) const;
    333 
    334 protected:
    335   friend class LoopInfoBase<BlockT, LoopT>;
    336   explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
    337     Blocks.push_back(BB);
    338     DenseBlockSet.insert(BB);
    339   }
    340 };
    341 
    342 template<class BlockT, class LoopT>
    343 raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
    344   Loop.print(OS);
    345   return OS;
    346 }
    347 
    348 // Implementation in LoopInfoImpl.h
    349 #ifdef __GNUC__
    350 __extension__ extern template class LoopBase<BasicBlock, Loop>;
    351 #endif
    352 
    353 class Loop : public LoopBase<BasicBlock, Loop> {
    354 public:
    355   Loop() {}
    356 
    357   /// isLoopInvariant - Return true if the specified value is loop invariant
    358   ///
    359   bool isLoopInvariant(Value *V) const;
    360 
    361   /// hasLoopInvariantOperands - Return true if all the operands of the
    362   /// specified instruction are loop invariant.
    363   bool hasLoopInvariantOperands(Instruction *I) const;
    364 
    365   /// makeLoopInvariant - If the given value is an instruction inside of the
    366   /// loop and it can be hoisted, do so to make it trivially loop-invariant.
    367   /// Return true if the value after any hoisting is loop invariant. This
    368   /// function can be used as a slightly more aggressive replacement for
    369   /// isLoopInvariant.
    370   ///
    371   /// If InsertPt is specified, it is the point to hoist instructions to.
    372   /// If null, the terminator of the loop preheader is used.
    373   ///
    374   bool makeLoopInvariant(Value *V, bool &Changed,
    375                          Instruction *InsertPt = nullptr) const;
    376 
    377   /// makeLoopInvariant - If the given instruction is inside of the
    378   /// loop and it can be hoisted, do so to make it trivially loop-invariant.
    379   /// Return true if the instruction after any hoisting is loop invariant. This
    380   /// function can be used as a slightly more aggressive replacement for
    381   /// isLoopInvariant.
    382   ///
    383   /// If InsertPt is specified, it is the point to hoist instructions to.
    384   /// If null, the terminator of the loop preheader is used.
    385   ///
    386   bool makeLoopInvariant(Instruction *I, bool &Changed,
    387                          Instruction *InsertPt = nullptr) const;
    388 
    389   /// getCanonicalInductionVariable - Check to see if the loop has a canonical
    390   /// induction variable: an integer recurrence that starts at 0 and increments
    391   /// by one each time through the loop.  If so, return the phi node that
    392   /// corresponds to it.
    393   ///
    394   /// The IndVarSimplify pass transforms loops to have a canonical induction
    395   /// variable.
    396   ///
    397   PHINode *getCanonicalInductionVariable() const;
    398 
    399   /// isLCSSAForm - Return true if the Loop is in LCSSA form
    400   bool isLCSSAForm(DominatorTree &DT) const;
    401 
    402   /// isLoopSimplifyForm - Return true if the Loop is in the form that
    403   /// the LoopSimplify form transforms loops to, which is sometimes called
    404   /// normal form.
    405   bool isLoopSimplifyForm() const;
    406 
    407   /// isSafeToClone - Return true if the loop body is safe to clone in practice.
    408   bool isSafeToClone() const;
    409 
    410   /// Returns true if the loop is annotated parallel.
    411   ///
    412   /// A parallel loop can be assumed to not contain any dependencies between
    413   /// iterations by the compiler. That is, any loop-carried dependency checking
    414   /// can be skipped completely when parallelizing the loop on the target
    415   /// machine. Thus, if the parallel loop information originates from the
    416   /// programmer, e.g. via the OpenMP parallel for pragma, it is the
    417   /// programmer's responsibility to ensure there are no loop-carried
    418   /// dependencies. The final execution order of the instructions across
    419   /// iterations is not guaranteed, thus, the end result might or might not
    420   /// implement actual concurrent execution of instructions across multiple
    421   /// iterations.
    422   bool isAnnotatedParallel() const;
    423 
    424   /// Return the llvm.loop loop id metadata node for this loop if it is present.
    425   ///
    426   /// If this loop contains the same llvm.loop metadata on each branch to the
    427   /// header then the node is returned. If any latch instruction does not
    428   /// contain llvm.loop or or if multiple latches contain different nodes then
    429   /// 0 is returned.
    430   MDNode *getLoopID() const;
    431   /// Set the llvm.loop loop id metadata for this loop.
    432   ///
    433   /// The LoopID metadata node will be added to each terminator instruction in
    434   /// the loop that branches to the loop header.
    435   ///
    436   /// The LoopID metadata node should have one or more operands and the first
    437   /// operand should should be the node itself.
    438   void setLoopID(MDNode *LoopID) const;
    439 
    440   /// hasDedicatedExits - Return true if no exit block for the loop
    441   /// has a predecessor that is outside the loop.
    442   bool hasDedicatedExits() const;
    443 
    444   /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
    445   /// These are the blocks _outside of the current loop_ which are branched to.
    446   /// This assumes that loop exits are in canonical form.
    447   ///
    448   void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
    449 
    450   /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
    451   /// block, return that block. Otherwise return null.
    452   BasicBlock *getUniqueExitBlock() const;
    453 
    454   void dump() const;
    455 
    456   /// \brief Return the debug location of the start of this loop.
    457   /// This looks for a BB terminating instruction with a known debug
    458   /// location by looking at the preheader and header blocks. If it
    459   /// cannot find a terminating instruction with location information,
    460   /// it returns an unknown location.
    461   DebugLoc getStartLoc() const {
    462     DebugLoc StartLoc;
    463     BasicBlock *HeadBB;
    464 
    465     // Try the pre-header first.
    466     if ((HeadBB = getLoopPreheader()) != nullptr) {
    467       StartLoc = HeadBB->getTerminator()->getDebugLoc();
    468       if (!StartLoc.isUnknown())
    469         return StartLoc;
    470     }
    471 
    472     // If we have no pre-header or there are no instructions with debug
    473     // info in it, try the header.
    474     HeadBB = getHeader();
    475     if (HeadBB)
    476       StartLoc = HeadBB->getTerminator()->getDebugLoc();
    477 
    478     return StartLoc;
    479   }
    480 
    481 private:
    482   friend class LoopInfoBase<BasicBlock, Loop>;
    483   explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
    484 };
    485 
    486 //===----------------------------------------------------------------------===//
    487 /// LoopInfo - This class builds and contains all of the top level loop
    488 /// structures in the specified function.
    489 ///
    490 
    491 template<class BlockT, class LoopT>
    492 class LoopInfoBase {
    493   // BBMap - Mapping of basic blocks to the inner most loop they occur in
    494   DenseMap<BlockT *, LoopT *> BBMap;
    495   std::vector<LoopT *> TopLevelLoops;
    496   friend class LoopBase<BlockT, LoopT>;
    497   friend class LoopInfo;
    498 
    499   void operator=(const LoopInfoBase &) LLVM_DELETED_FUNCTION;
    500   LoopInfoBase(const LoopInfo &) LLVM_DELETED_FUNCTION;
    501 public:
    502   LoopInfoBase() { }
    503   ~LoopInfoBase() { releaseMemory(); }
    504 
    505   void releaseMemory() {
    506     for (typename std::vector<LoopT *>::iterator I =
    507          TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
    508       delete *I;   // Delete all of the loops...
    509 
    510     BBMap.clear();                           // Reset internal state of analysis
    511     TopLevelLoops.clear();
    512   }
    513 
    514   /// iterator/begin/end - The interface to the top-level loops in the current
    515   /// function.
    516   ///
    517   typedef typename std::vector<LoopT *>::const_iterator iterator;
    518   typedef typename std::vector<LoopT *>::const_reverse_iterator
    519     reverse_iterator;
    520   iterator begin() const { return TopLevelLoops.begin(); }
    521   iterator end() const { return TopLevelLoops.end(); }
    522   reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
    523   reverse_iterator rend() const { return TopLevelLoops.rend(); }
    524   bool empty() const { return TopLevelLoops.empty(); }
    525 
    526   /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
    527   /// block is in no loop (for example the entry node), null is returned.
    528   ///
    529   LoopT *getLoopFor(const BlockT *BB) const {
    530     return BBMap.lookup(const_cast<BlockT*>(BB));
    531   }
    532 
    533   /// operator[] - same as getLoopFor...
    534   ///
    535   const LoopT *operator[](const BlockT *BB) const {
    536     return getLoopFor(BB);
    537   }
    538 
    539   /// getLoopDepth - Return the loop nesting level of the specified block.  A
    540   /// depth of 0 means the block is not inside any loop.
    541   ///
    542   unsigned getLoopDepth(const BlockT *BB) const {
    543     const LoopT *L = getLoopFor(BB);
    544     return L ? L->getLoopDepth() : 0;
    545   }
    546 
    547   // isLoopHeader - True if the block is a loop header node
    548   bool isLoopHeader(BlockT *BB) const {
    549     const LoopT *L = getLoopFor(BB);
    550     return L && L->getHeader() == BB;
    551   }
    552 
    553   /// removeLoop - This removes the specified top-level loop from this loop info
    554   /// object.  The loop is not deleted, as it will presumably be inserted into
    555   /// another loop.
    556   LoopT *removeLoop(iterator I) {
    557     assert(I != end() && "Cannot remove end iterator!");
    558     LoopT *L = *I;
    559     assert(!L->getParentLoop() && "Not a top-level loop!");
    560     TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
    561     return L;
    562   }
    563 
    564   /// changeLoopFor - Change the top-level loop that contains BB to the
    565   /// specified loop.  This should be used by transformations that restructure
    566   /// the loop hierarchy tree.
    567   void changeLoopFor(BlockT *BB, LoopT *L) {
    568     if (!L) {
    569       BBMap.erase(BB);
    570       return;
    571     }
    572     BBMap[BB] = L;
    573   }
    574 
    575   /// changeTopLevelLoop - Replace the specified loop in the top-level loops
    576   /// list with the indicated loop.
    577   void changeTopLevelLoop(LoopT *OldLoop,
    578                           LoopT *NewLoop) {
    579     typename std::vector<LoopT *>::iterator I =
    580                  std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
    581     assert(I != TopLevelLoops.end() && "Old loop not at top level!");
    582     *I = NewLoop;
    583     assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
    584            "Loops already embedded into a subloop!");
    585   }
    586 
    587   /// addTopLevelLoop - This adds the specified loop to the collection of
    588   /// top-level loops.
    589   void addTopLevelLoop(LoopT *New) {
    590     assert(!New->getParentLoop() && "Loop already in subloop!");
    591     TopLevelLoops.push_back(New);
    592   }
    593 
    594   /// removeBlock - This method completely removes BB from all data structures,
    595   /// including all of the Loop objects it is nested in and our mapping from
    596   /// BasicBlocks to loops.
    597   void removeBlock(BlockT *BB) {
    598     typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
    599     if (I != BBMap.end()) {
    600       for (LoopT *L = I->second; L; L = L->getParentLoop())
    601         L->removeBlockFromLoop(BB);
    602 
    603       BBMap.erase(I);
    604     }
    605   }
    606 
    607   // Internals
    608 
    609   static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
    610                                       const LoopT *ParentLoop) {
    611     if (!SubLoop) return true;
    612     if (SubLoop == ParentLoop) return false;
    613     return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
    614   }
    615 
    616   /// Create the loop forest using a stable algorithm.
    617   void Analyze(DominatorTreeBase<BlockT> &DomTree);
    618 
    619   // Debugging
    620 
    621   void print(raw_ostream &OS) const;
    622 };
    623 
    624 // Implementation in LoopInfoImpl.h
    625 #ifdef __GNUC__
    626 __extension__ extern template class LoopInfoBase<BasicBlock, Loop>;
    627 #endif
    628 
    629 class LoopInfo : public FunctionPass {
    630   LoopInfoBase<BasicBlock, Loop> LI;
    631   friend class LoopBase<BasicBlock, Loop>;
    632 
    633   void operator=(const LoopInfo &) LLVM_DELETED_FUNCTION;
    634   LoopInfo(const LoopInfo &) LLVM_DELETED_FUNCTION;
    635 public:
    636   static char ID; // Pass identification, replacement for typeid
    637 
    638   LoopInfo() : FunctionPass(ID) {
    639     initializeLoopInfoPass(*PassRegistry::getPassRegistry());
    640   }
    641 
    642   LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
    643 
    644   /// iterator/begin/end - The interface to the top-level loops in the current
    645   /// function.
    646   ///
    647   typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
    648   typedef LoopInfoBase<BasicBlock, Loop>::reverse_iterator reverse_iterator;
    649   inline iterator begin() const { return LI.begin(); }
    650   inline iterator end() const { return LI.end(); }
    651   inline reverse_iterator rbegin() const { return LI.rbegin(); }
    652   inline reverse_iterator rend() const { return LI.rend(); }
    653   bool empty() const { return LI.empty(); }
    654 
    655   /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
    656   /// block is in no loop (for example the entry node), null is returned.
    657   ///
    658   inline Loop *getLoopFor(const BasicBlock *BB) const {
    659     return LI.getLoopFor(BB);
    660   }
    661 
    662   /// operator[] - same as getLoopFor...
    663   ///
    664   inline const Loop *operator[](const BasicBlock *BB) const {
    665     return LI.getLoopFor(BB);
    666   }
    667 
    668   /// getLoopDepth - Return the loop nesting level of the specified block.  A
    669   /// depth of 0 means the block is not inside any loop.
    670   ///
    671   inline unsigned getLoopDepth(const BasicBlock *BB) const {
    672     return LI.getLoopDepth(BB);
    673   }
    674 
    675   // isLoopHeader - True if the block is a loop header node
    676   inline bool isLoopHeader(BasicBlock *BB) const {
    677     return LI.isLoopHeader(BB);
    678   }
    679 
    680   /// runOnFunction - Calculate the natural loop information.
    681   ///
    682   bool runOnFunction(Function &F) override;
    683 
    684   void verifyAnalysis() const override;
    685 
    686   void releaseMemory() override { LI.releaseMemory(); }
    687 
    688   void print(raw_ostream &O, const Module* M = nullptr) const override;
    689 
    690   void getAnalysisUsage(AnalysisUsage &AU) const override;
    691 
    692   /// removeLoop - This removes the specified top-level loop from this loop info
    693   /// object.  The loop is not deleted, as it will presumably be inserted into
    694   /// another loop.
    695   inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
    696 
    697   /// changeLoopFor - Change the top-level loop that contains BB to the
    698   /// specified loop.  This should be used by transformations that restructure
    699   /// the loop hierarchy tree.
    700   inline void changeLoopFor(BasicBlock *BB, Loop *L) {
    701     LI.changeLoopFor(BB, L);
    702   }
    703 
    704   /// changeTopLevelLoop - Replace the specified loop in the top-level loops
    705   /// list with the indicated loop.
    706   inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
    707     LI.changeTopLevelLoop(OldLoop, NewLoop);
    708   }
    709 
    710   /// addTopLevelLoop - This adds the specified loop to the collection of
    711   /// top-level loops.
    712   inline void addTopLevelLoop(Loop *New) {
    713     LI.addTopLevelLoop(New);
    714   }
    715 
    716   /// removeBlock - This method completely removes BB from all data structures,
    717   /// including all of the Loop objects it is nested in and our mapping from
    718   /// BasicBlocks to loops.
    719   void removeBlock(BasicBlock *BB) {
    720     LI.removeBlock(BB);
    721   }
    722 
    723   /// updateUnloop - Update LoopInfo after removing the last backedge from a
    724   /// loop--now the "unloop". This updates the loop forest and parent loops for
    725   /// each block so that Unloop is no longer referenced, but the caller must
    726   /// actually delete the Unloop object.
    727   void updateUnloop(Loop *Unloop);
    728 
    729   /// replacementPreservesLCSSAForm - Returns true if replacing From with To
    730   /// everywhere is guaranteed to preserve LCSSA form.
    731   bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
    732     // Preserving LCSSA form is only problematic if the replacing value is an
    733     // instruction.
    734     Instruction *I = dyn_cast<Instruction>(To);
    735     if (!I) return true;
    736     // If both instructions are defined in the same basic block then replacement
    737     // cannot break LCSSA form.
    738     if (I->getParent() == From->getParent())
    739       return true;
    740     // If the instruction is not defined in a loop then it can safely replace
    741     // anything.
    742     Loop *ToLoop = getLoopFor(I->getParent());
    743     if (!ToLoop) return true;
    744     // If the replacing instruction is defined in the same loop as the original
    745     // instruction, or in a loop that contains it as an inner loop, then using
    746     // it as a replacement will not break LCSSA form.
    747     return ToLoop->contains(getLoopFor(From->getParent()));
    748   }
    749 };
    750 
    751 
    752 // Allow clients to walk the list of nested loops...
    753 template <> struct GraphTraits<const Loop*> {
    754   typedef const Loop NodeType;
    755   typedef LoopInfo::iterator ChildIteratorType;
    756 
    757   static NodeType *getEntryNode(const Loop *L) { return L; }
    758   static inline ChildIteratorType child_begin(NodeType *N) {
    759     return N->begin();
    760   }
    761   static inline ChildIteratorType child_end(NodeType *N) {
    762     return N->end();
    763   }
    764 };
    765 
    766 template <> struct GraphTraits<Loop*> {
    767   typedef Loop NodeType;
    768   typedef LoopInfo::iterator ChildIteratorType;
    769 
    770   static NodeType *getEntryNode(Loop *L) { return L; }
    771   static inline ChildIteratorType child_begin(NodeType *N) {
    772     return N->begin();
    773   }
    774   static inline ChildIteratorType child_end(NodeType *N) {
    775     return N->end();
    776   }
    777 };
    778 
    779 } // End llvm namespace
    780 
    781 #endif
    782