Home | History | Annotate | Download | only in ADT
      1 //===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the newly proposed standard C++ interfaces for hashing
     11 // arbitrary data and building hash functions for user-defined types. This
     12 // interface was originally proposed in N3333[1] and is currently under review
     13 // for inclusion in a future TR and/or standard.
     14 //
     15 // The primary interfaces provide are comprised of one type and three functions:
     16 //
     17 //  -- 'hash_code' class is an opaque type representing the hash code for some
     18 //     data. It is the intended product of hashing, and can be used to implement
     19 //     hash tables, checksumming, and other common uses of hashes. It is not an
     20 //     integer type (although it can be converted to one) because it is risky
     21 //     to assume much about the internals of a hash_code. In particular, each
     22 //     execution of the program has a high probability of producing a different
     23 //     hash_code for a given input. Thus their values are not stable to save or
     24 //     persist, and should only be used during the execution for the
     25 //     construction of hashing datastructures.
     26 //
     27 //  -- 'hash_value' is a function designed to be overloaded for each
     28 //     user-defined type which wishes to be used within a hashing context. It
     29 //     should be overloaded within the user-defined type's namespace and found
     30 //     via ADL. Overloads for primitive types are provided by this library.
     31 //
     32 //  -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
     33 //      programmers in easily and intuitively combining a set of data into
     34 //      a single hash_code for their object. They should only logically be used
     35 //      within the implementation of a 'hash_value' routine or similar context.
     36 //
     37 // Note that 'hash_combine_range' contains very special logic for hashing
     38 // a contiguous array of integers or pointers. This logic is *extremely* fast,
     39 // on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
     40 // benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
     41 // under 32-bytes.
     42 //
     43 //===----------------------------------------------------------------------===//
     44 
     45 #ifndef LLVM_ADT_HASHING_H
     46 #define LLVM_ADT_HASHING_H
     47 
     48 #include "llvm/Support/DataTypes.h"
     49 #include "llvm/Support/Host.h"
     50 #include "llvm/Support/SwapByteOrder.h"
     51 #include "llvm/Support/type_traits.h"
     52 #include <algorithm>
     53 #include <cassert>
     54 #include <cstring>
     55 #include <iterator>
     56 #include <utility>
     57 
     58 // Allow detecting C++11 feature availability when building with Clang without
     59 // breaking other compilers.
     60 #ifndef __has_feature
     61 # define __has_feature(x) 0
     62 #endif
     63 
     64 namespace llvm {
     65 
     66 /// \brief An opaque object representing a hash code.
     67 ///
     68 /// This object represents the result of hashing some entity. It is intended to
     69 /// be used to implement hashtables or other hashing-based data structures.
     70 /// While it wraps and exposes a numeric value, this value should not be
     71 /// trusted to be stable or predictable across processes or executions.
     72 ///
     73 /// In order to obtain the hash_code for an object 'x':
     74 /// \code
     75 ///   using llvm::hash_value;
     76 ///   llvm::hash_code code = hash_value(x);
     77 /// \endcode
     78 class hash_code {
     79   size_t value;
     80 
     81 public:
     82   /// \brief Default construct a hash_code.
     83   /// Note that this leaves the value uninitialized.
     84   hash_code() {}
     85 
     86   /// \brief Form a hash code directly from a numerical value.
     87   hash_code(size_t value) : value(value) {}
     88 
     89   /// \brief Convert the hash code to its numerical value for use.
     90   /*explicit*/ operator size_t() const { return value; }
     91 
     92   friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
     93     return lhs.value == rhs.value;
     94   }
     95   friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
     96     return lhs.value != rhs.value;
     97   }
     98 
     99   /// \brief Allow a hash_code to be directly run through hash_value.
    100   friend size_t hash_value(const hash_code &code) { return code.value; }
    101 };
    102 
    103 /// \brief Compute a hash_code for any integer value.
    104 ///
    105 /// Note that this function is intended to compute the same hash_code for
    106 /// a particular value without regard to the pre-promotion type. This is in
    107 /// contrast to hash_combine which may produce different hash_codes for
    108 /// differing argument types even if they would implicit promote to a common
    109 /// type without changing the value.
    110 template <typename T>
    111 typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
    112 hash_value(T value);
    113 
    114 /// \brief Compute a hash_code for a pointer's address.
    115 ///
    116 /// N.B.: This hashes the *address*. Not the value and not the type.
    117 template <typename T> hash_code hash_value(const T *ptr);
    118 
    119 /// \brief Compute a hash_code for a pair of objects.
    120 template <typename T, typename U>
    121 hash_code hash_value(const std::pair<T, U> &arg);
    122 
    123 /// \brief Compute a hash_code for a standard string.
    124 template <typename T>
    125 hash_code hash_value(const std::basic_string<T> &arg);
    126 
    127 
    128 /// \brief Override the execution seed with a fixed value.
    129 ///
    130 /// This hashing library uses a per-execution seed designed to change on each
    131 /// run with high probability in order to ensure that the hash codes are not
    132 /// attackable and to ensure that output which is intended to be stable does
    133 /// not rely on the particulars of the hash codes produced.
    134 ///
    135 /// That said, there are use cases where it is important to be able to
    136 /// reproduce *exactly* a specific behavior. To that end, we provide a function
    137 /// which will forcibly set the seed to a fixed value. This must be done at the
    138 /// start of the program, before any hashes are computed. Also, it cannot be
    139 /// undone. This makes it thread-hostile and very hard to use outside of
    140 /// immediately on start of a simple program designed for reproducible
    141 /// behavior.
    142 void set_fixed_execution_hash_seed(size_t fixed_value);
    143 
    144 
    145 // All of the implementation details of actually computing the various hash
    146 // code values are held within this namespace. These routines are included in
    147 // the header file mainly to allow inlining and constant propagation.
    148 namespace hashing {
    149 namespace detail {
    150 
    151 inline uint64_t fetch64(const char *p) {
    152   uint64_t result;
    153   memcpy(&result, p, sizeof(result));
    154   if (sys::IsBigEndianHost)
    155     sys::swapByteOrder(result);
    156   return result;
    157 }
    158 
    159 inline uint32_t fetch32(const char *p) {
    160   uint32_t result;
    161   memcpy(&result, p, sizeof(result));
    162   if (sys::IsBigEndianHost)
    163     sys::swapByteOrder(result);
    164   return result;
    165 }
    166 
    167 /// Some primes between 2^63 and 2^64 for various uses.
    168 static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
    169 static const uint64_t k1 = 0xb492b66fbe98f273ULL;
    170 static const uint64_t k2 = 0x9ae16a3b2f90404fULL;
    171 static const uint64_t k3 = 0xc949d7c7509e6557ULL;
    172 
    173 /// \brief Bitwise right rotate.
    174 /// Normally this will compile to a single instruction, especially if the
    175 /// shift is a manifest constant.
    176 inline uint64_t rotate(uint64_t val, size_t shift) {
    177   // Avoid shifting by 64: doing so yields an undefined result.
    178   return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
    179 }
    180 
    181 inline uint64_t shift_mix(uint64_t val) {
    182   return val ^ (val >> 47);
    183 }
    184 
    185 inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
    186   // Murmur-inspired hashing.
    187   const uint64_t kMul = 0x9ddfea08eb382d69ULL;
    188   uint64_t a = (low ^ high) * kMul;
    189   a ^= (a >> 47);
    190   uint64_t b = (high ^ a) * kMul;
    191   b ^= (b >> 47);
    192   b *= kMul;
    193   return b;
    194 }
    195 
    196 inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
    197   uint8_t a = s[0];
    198   uint8_t b = s[len >> 1];
    199   uint8_t c = s[len - 1];
    200   uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
    201   uint32_t z = len + (static_cast<uint32_t>(c) << 2);
    202   return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
    203 }
    204 
    205 inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
    206   uint64_t a = fetch32(s);
    207   return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
    208 }
    209 
    210 inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
    211   uint64_t a = fetch64(s);
    212   uint64_t b = fetch64(s + len - 8);
    213   return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
    214 }
    215 
    216 inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
    217   uint64_t a = fetch64(s) * k1;
    218   uint64_t b = fetch64(s + 8);
    219   uint64_t c = fetch64(s + len - 8) * k2;
    220   uint64_t d = fetch64(s + len - 16) * k0;
    221   return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d,
    222                        a + rotate(b ^ k3, 20) - c + len + seed);
    223 }
    224 
    225 inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
    226   uint64_t z = fetch64(s + 24);
    227   uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
    228   uint64_t b = rotate(a + z, 52);
    229   uint64_t c = rotate(a, 37);
    230   a += fetch64(s + 8);
    231   c += rotate(a, 7);
    232   a += fetch64(s + 16);
    233   uint64_t vf = a + z;
    234   uint64_t vs = b + rotate(a, 31) + c;
    235   a = fetch64(s + 16) + fetch64(s + len - 32);
    236   z = fetch64(s + len - 8);
    237   b = rotate(a + z, 52);
    238   c = rotate(a, 37);
    239   a += fetch64(s + len - 24);
    240   c += rotate(a, 7);
    241   a += fetch64(s + len - 16);
    242   uint64_t wf = a + z;
    243   uint64_t ws = b + rotate(a, 31) + c;
    244   uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
    245   return shift_mix((seed ^ (r * k0)) + vs) * k2;
    246 }
    247 
    248 inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
    249   if (length >= 4 && length <= 8)
    250     return hash_4to8_bytes(s, length, seed);
    251   if (length > 8 && length <= 16)
    252     return hash_9to16_bytes(s, length, seed);
    253   if (length > 16 && length <= 32)
    254     return hash_17to32_bytes(s, length, seed);
    255   if (length > 32)
    256     return hash_33to64_bytes(s, length, seed);
    257   if (length != 0)
    258     return hash_1to3_bytes(s, length, seed);
    259 
    260   return k2 ^ seed;
    261 }
    262 
    263 /// \brief The intermediate state used during hashing.
    264 /// Currently, the algorithm for computing hash codes is based on CityHash and
    265 /// keeps 56 bytes of arbitrary state.
    266 struct hash_state {
    267   uint64_t h0, h1, h2, h3, h4, h5, h6;
    268 
    269   /// \brief Create a new hash_state structure and initialize it based on the
    270   /// seed and the first 64-byte chunk.
    271   /// This effectively performs the initial mix.
    272   static hash_state create(const char *s, uint64_t seed) {
    273     hash_state state = {
    274       0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49),
    275       seed * k1, shift_mix(seed), 0 };
    276     state.h6 = hash_16_bytes(state.h4, state.h5);
    277     state.mix(s);
    278     return state;
    279   }
    280 
    281   /// \brief Mix 32-bytes from the input sequence into the 16-bytes of 'a'
    282   /// and 'b', including whatever is already in 'a' and 'b'.
    283   static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
    284     a += fetch64(s);
    285     uint64_t c = fetch64(s + 24);
    286     b = rotate(b + a + c, 21);
    287     uint64_t d = a;
    288     a += fetch64(s + 8) + fetch64(s + 16);
    289     b += rotate(a, 44) + d;
    290     a += c;
    291   }
    292 
    293   /// \brief Mix in a 64-byte buffer of data.
    294   /// We mix all 64 bytes even when the chunk length is smaller, but we
    295   /// record the actual length.
    296   void mix(const char *s) {
    297     h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
    298     h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1;
    299     h0 ^= h6;
    300     h1 += h3 + fetch64(s + 40);
    301     h2 = rotate(h2 + h5, 33) * k1;
    302     h3 = h4 * k1;
    303     h4 = h0 + h5;
    304     mix_32_bytes(s, h3, h4);
    305     h5 = h2 + h6;
    306     h6 = h1 + fetch64(s + 16);
    307     mix_32_bytes(s + 32, h5, h6);
    308     std::swap(h2, h0);
    309   }
    310 
    311   /// \brief Compute the final 64-bit hash code value based on the current
    312   /// state and the length of bytes hashed.
    313   uint64_t finalize(size_t length) {
    314     return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
    315                          hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
    316   }
    317 };
    318 
    319 
    320 /// \brief A global, fixed seed-override variable.
    321 ///
    322 /// This variable can be set using the \see llvm::set_fixed_execution_seed
    323 /// function. See that function for details. Do not, under any circumstances,
    324 /// set or read this variable.
    325 extern size_t fixed_seed_override;
    326 
    327 inline size_t get_execution_seed() {
    328   // FIXME: This needs to be a per-execution seed. This is just a placeholder
    329   // implementation. Switching to a per-execution seed is likely to flush out
    330   // instability bugs and so will happen as its own commit.
    331   //
    332   // However, if there is a fixed seed override set the first time this is
    333   // called, return that instead of the per-execution seed.
    334   const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
    335   static size_t seed = fixed_seed_override ? fixed_seed_override
    336                                            : (size_t)seed_prime;
    337   return seed;
    338 }
    339 
    340 
    341 /// \brief Trait to indicate whether a type's bits can be hashed directly.
    342 ///
    343 /// A type trait which is true if we want to combine values for hashing by
    344 /// reading the underlying data. It is false if values of this type must
    345 /// first be passed to hash_value, and the resulting hash_codes combined.
    346 //
    347 // FIXME: We want to replace is_integral_or_enum and is_pointer here with
    348 // a predicate which asserts that comparing the underlying storage of two
    349 // values of the type for equality is equivalent to comparing the two values
    350 // for equality. For all the platforms we care about, this holds for integers
    351 // and pointers, but there are platforms where it doesn't and we would like to
    352 // support user-defined types which happen to satisfy this property.
    353 template <typename T> struct is_hashable_data
    354   : std::integral_constant<bool, ((is_integral_or_enum<T>::value ||
    355                                    std::is_pointer<T>::value) &&
    356                                   64 % sizeof(T) == 0)> {};
    357 
    358 // Special case std::pair to detect when both types are viable and when there
    359 // is no alignment-derived padding in the pair. This is a bit of a lie because
    360 // std::pair isn't truly POD, but it's close enough in all reasonable
    361 // implementations for our use case of hashing the underlying data.
    362 template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
    363   : std::integral_constant<bool, (is_hashable_data<T>::value &&
    364                                   is_hashable_data<U>::value &&
    365                                   (sizeof(T) + sizeof(U)) ==
    366                                    sizeof(std::pair<T, U>))> {};
    367 
    368 /// \brief Helper to get the hashable data representation for a type.
    369 /// This variant is enabled when the type itself can be used.
    370 template <typename T>
    371 typename std::enable_if<is_hashable_data<T>::value, T>::type
    372 get_hashable_data(const T &value) {
    373   return value;
    374 }
    375 /// \brief Helper to get the hashable data representation for a type.
    376 /// This variant is enabled when we must first call hash_value and use the
    377 /// result as our data.
    378 template <typename T>
    379 typename std::enable_if<!is_hashable_data<T>::value, size_t>::type
    380 get_hashable_data(const T &value) {
    381   using ::llvm::hash_value;
    382   return hash_value(value);
    383 }
    384 
    385 /// \brief Helper to store data from a value into a buffer and advance the
    386 /// pointer into that buffer.
    387 ///
    388 /// This routine first checks whether there is enough space in the provided
    389 /// buffer, and if not immediately returns false. If there is space, it
    390 /// copies the underlying bytes of value into the buffer, advances the
    391 /// buffer_ptr past the copied bytes, and returns true.
    392 template <typename T>
    393 bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
    394                        size_t offset = 0) {
    395   size_t store_size = sizeof(value) - offset;
    396   if (buffer_ptr + store_size > buffer_end)
    397     return false;
    398   const char *value_data = reinterpret_cast<const char *>(&value);
    399   memcpy(buffer_ptr, value_data + offset, store_size);
    400   buffer_ptr += store_size;
    401   return true;
    402 }
    403 
    404 /// \brief Implement the combining of integral values into a hash_code.
    405 ///
    406 /// This overload is selected when the value type of the iterator is
    407 /// integral. Rather than computing a hash_code for each object and then
    408 /// combining them, this (as an optimization) directly combines the integers.
    409 template <typename InputIteratorT>
    410 hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
    411   const size_t seed = get_execution_seed();
    412   char buffer[64], *buffer_ptr = buffer;
    413   char *const buffer_end = std::end(buffer);
    414   while (first != last && store_and_advance(buffer_ptr, buffer_end,
    415                                             get_hashable_data(*first)))
    416     ++first;
    417   if (first == last)
    418     return hash_short(buffer, buffer_ptr - buffer, seed);
    419   assert(buffer_ptr == buffer_end);
    420 
    421   hash_state state = state.create(buffer, seed);
    422   size_t length = 64;
    423   while (first != last) {
    424     // Fill up the buffer. We don't clear it, which re-mixes the last round
    425     // when only a partial 64-byte chunk is left.
    426     buffer_ptr = buffer;
    427     while (first != last && store_and_advance(buffer_ptr, buffer_end,
    428                                               get_hashable_data(*first)))
    429       ++first;
    430 
    431     // Rotate the buffer if we did a partial fill in order to simulate doing
    432     // a mix of the last 64-bytes. That is how the algorithm works when we
    433     // have a contiguous byte sequence, and we want to emulate that here.
    434     std::rotate(buffer, buffer_ptr, buffer_end);
    435 
    436     // Mix this chunk into the current state.
    437     state.mix(buffer);
    438     length += buffer_ptr - buffer;
    439   };
    440 
    441   return state.finalize(length);
    442 }
    443 
    444 /// \brief Implement the combining of integral values into a hash_code.
    445 ///
    446 /// This overload is selected when the value type of the iterator is integral
    447 /// and when the input iterator is actually a pointer. Rather than computing
    448 /// a hash_code for each object and then combining them, this (as an
    449 /// optimization) directly combines the integers. Also, because the integers
    450 /// are stored in contiguous memory, this routine avoids copying each value
    451 /// and directly reads from the underlying memory.
    452 template <typename ValueT>
    453 typename std::enable_if<is_hashable_data<ValueT>::value, hash_code>::type
    454 hash_combine_range_impl(ValueT *first, ValueT *last) {
    455   const size_t seed = get_execution_seed();
    456   const char *s_begin = reinterpret_cast<const char *>(first);
    457   const char *s_end = reinterpret_cast<const char *>(last);
    458   const size_t length = std::distance(s_begin, s_end);
    459   if (length <= 64)
    460     return hash_short(s_begin, length, seed);
    461 
    462   const char *s_aligned_end = s_begin + (length & ~63);
    463   hash_state state = state.create(s_begin, seed);
    464   s_begin += 64;
    465   while (s_begin != s_aligned_end) {
    466     state.mix(s_begin);
    467     s_begin += 64;
    468   }
    469   if (length & 63)
    470     state.mix(s_end - 64);
    471 
    472   return state.finalize(length);
    473 }
    474 
    475 } // namespace detail
    476 } // namespace hashing
    477 
    478 
    479 /// \brief Compute a hash_code for a sequence of values.
    480 ///
    481 /// This hashes a sequence of values. It produces the same hash_code as
    482 /// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
    483 /// and is significantly faster given pointers and types which can be hashed as
    484 /// a sequence of bytes.
    485 template <typename InputIteratorT>
    486 hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
    487   return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
    488 }
    489 
    490 
    491 // Implementation details for hash_combine.
    492 namespace hashing {
    493 namespace detail {
    494 
    495 /// \brief Helper class to manage the recursive combining of hash_combine
    496 /// arguments.
    497 ///
    498 /// This class exists to manage the state and various calls involved in the
    499 /// recursive combining of arguments used in hash_combine. It is particularly
    500 /// useful at minimizing the code in the recursive calls to ease the pain
    501 /// caused by a lack of variadic functions.
    502 struct hash_combine_recursive_helper {
    503   char buffer[64];
    504   hash_state state;
    505   const size_t seed;
    506 
    507 public:
    508   /// \brief Construct a recursive hash combining helper.
    509   ///
    510   /// This sets up the state for a recursive hash combine, including getting
    511   /// the seed and buffer setup.
    512   hash_combine_recursive_helper()
    513     : seed(get_execution_seed()) {}
    514 
    515   /// \brief Combine one chunk of data into the current in-flight hash.
    516   ///
    517   /// This merges one chunk of data into the hash. First it tries to buffer
    518   /// the data. If the buffer is full, it hashes the buffer into its
    519   /// hash_state, empties it, and then merges the new chunk in. This also
    520   /// handles cases where the data straddles the end of the buffer.
    521   template <typename T>
    522   char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) {
    523     if (!store_and_advance(buffer_ptr, buffer_end, data)) {
    524       // Check for skew which prevents the buffer from being packed, and do
    525       // a partial store into the buffer to fill it. This is only a concern
    526       // with the variadic combine because that formation can have varying
    527       // argument types.
    528       size_t partial_store_size = buffer_end - buffer_ptr;
    529       memcpy(buffer_ptr, &data, partial_store_size);
    530 
    531       // If the store fails, our buffer is full and ready to hash. We have to
    532       // either initialize the hash state (on the first full buffer) or mix
    533       // this buffer into the existing hash state. Length tracks the *hashed*
    534       // length, not the buffered length.
    535       if (length == 0) {
    536         state = state.create(buffer, seed);
    537         length = 64;
    538       } else {
    539         // Mix this chunk into the current state and bump length up by 64.
    540         state.mix(buffer);
    541         length += 64;
    542       }
    543       // Reset the buffer_ptr to the head of the buffer for the next chunk of
    544       // data.
    545       buffer_ptr = buffer;
    546 
    547       // Try again to store into the buffer -- this cannot fail as we only
    548       // store types smaller than the buffer.
    549       if (!store_and_advance(buffer_ptr, buffer_end, data,
    550                              partial_store_size))
    551         abort();
    552     }
    553     return buffer_ptr;
    554   }
    555 
    556 #if defined(__has_feature) && __has_feature(__cxx_variadic_templates__)
    557 
    558   /// \brief Recursive, variadic combining method.
    559   ///
    560   /// This function recurses through each argument, combining that argument
    561   /// into a single hash.
    562   template <typename T, typename ...Ts>
    563   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
    564                     const T &arg, const Ts &...args) {
    565     buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg));
    566 
    567     // Recurse to the next argument.
    568     return combine(length, buffer_ptr, buffer_end, args...);
    569   }
    570 
    571 #else
    572   // Manually expanded recursive combining methods. See variadic above for
    573   // documentation.
    574 
    575   template <typename T1, typename T2, typename T3, typename T4, typename T5,
    576             typename T6>
    577   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
    578                     const T1 &arg1, const T2 &arg2, const T3 &arg3,
    579                     const T4 &arg4, const T5 &arg5, const T6 &arg6) {
    580     buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
    581     return combine(length, buffer_ptr, buffer_end, arg2, arg3, arg4, arg5, arg6);
    582   }
    583   template <typename T1, typename T2, typename T3, typename T4, typename T5>
    584   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
    585                     const T1 &arg1, const T2 &arg2, const T3 &arg3,
    586                     const T4 &arg4, const T5 &arg5) {
    587     buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
    588     return combine(length, buffer_ptr, buffer_end, arg2, arg3, arg4, arg5);
    589   }
    590   template <typename T1, typename T2, typename T3, typename T4>
    591   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
    592                     const T1 &arg1, const T2 &arg2, const T3 &arg3,
    593                     const T4 &arg4) {
    594     buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
    595     return combine(length, buffer_ptr, buffer_end, arg2, arg3, arg4);
    596   }
    597   template <typename T1, typename T2, typename T3>
    598   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
    599                     const T1 &arg1, const T2 &arg2, const T3 &arg3) {
    600     buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
    601     return combine(length, buffer_ptr, buffer_end, arg2, arg3);
    602   }
    603   template <typename T1, typename T2>
    604   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
    605                     const T1 &arg1, const T2 &arg2) {
    606     buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
    607     return combine(length, buffer_ptr, buffer_end, arg2);
    608   }
    609   template <typename T1>
    610   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
    611                     const T1 &arg1) {
    612     buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
    613     return combine(length, buffer_ptr, buffer_end);
    614   }
    615 
    616 #endif
    617 
    618   /// \brief Base case for recursive, variadic combining.
    619   ///
    620   /// The base case when combining arguments recursively is reached when all
    621   /// arguments have been handled. It flushes the remaining buffer and
    622   /// constructs a hash_code.
    623   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) {
    624     // Check whether the entire set of values fit in the buffer. If so, we'll
    625     // use the optimized short hashing routine and skip state entirely.
    626     if (length == 0)
    627       return hash_short(buffer, buffer_ptr - buffer, seed);
    628 
    629     // Mix the final buffer, rotating it if we did a partial fill in order to
    630     // simulate doing a mix of the last 64-bytes. That is how the algorithm
    631     // works when we have a contiguous byte sequence, and we want to emulate
    632     // that here.
    633     std::rotate(buffer, buffer_ptr, buffer_end);
    634 
    635     // Mix this chunk into the current state.
    636     state.mix(buffer);
    637     length += buffer_ptr - buffer;
    638 
    639     return state.finalize(length);
    640   }
    641 };
    642 
    643 } // namespace detail
    644 } // namespace hashing
    645 
    646 
    647 #if __has_feature(__cxx_variadic_templates__)
    648 
    649 /// \brief Combine values into a single hash_code.
    650 ///
    651 /// This routine accepts a varying number of arguments of any type. It will
    652 /// attempt to combine them into a single hash_code. For user-defined types it
    653 /// attempts to call a \see hash_value overload (via ADL) for the type. For
    654 /// integer and pointer types it directly combines their data into the
    655 /// resulting hash_code.
    656 ///
    657 /// The result is suitable for returning from a user's hash_value
    658 /// *implementation* for their user-defined type. Consumers of a type should
    659 /// *not* call this routine, they should instead call 'hash_value'.
    660 template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
    661   // Recursively hash each argument using a helper class.
    662   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
    663   return helper.combine(0, helper.buffer, helper.buffer + 64, args...);
    664 }
    665 
    666 #else
    667 
    668 // What follows are manually exploded overloads for each argument width. See
    669 // the above variadic definition for documentation and specification.
    670 
    671 template <typename T1, typename T2, typename T3, typename T4, typename T5,
    672           typename T6>
    673 hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
    674                        const T4 &arg4, const T5 &arg5, const T6 &arg6) {
    675   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
    676   return helper.combine(0, helper.buffer, helper.buffer + 64,
    677                         arg1, arg2, arg3, arg4, arg5, arg6);
    678 }
    679 template <typename T1, typename T2, typename T3, typename T4, typename T5>
    680 hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
    681                        const T4 &arg4, const T5 &arg5) {
    682   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
    683   return helper.combine(0, helper.buffer, helper.buffer + 64,
    684                         arg1, arg2, arg3, arg4, arg5);
    685 }
    686 template <typename T1, typename T2, typename T3, typename T4>
    687 hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
    688                        const T4 &arg4) {
    689   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
    690   return helper.combine(0, helper.buffer, helper.buffer + 64,
    691                         arg1, arg2, arg3, arg4);
    692 }
    693 template <typename T1, typename T2, typename T3>
    694 hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3) {
    695   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
    696   return helper.combine(0, helper.buffer, helper.buffer + 64, arg1, arg2, arg3);
    697 }
    698 template <typename T1, typename T2>
    699 hash_code hash_combine(const T1 &arg1, const T2 &arg2) {
    700   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
    701   return helper.combine(0, helper.buffer, helper.buffer + 64, arg1, arg2);
    702 }
    703 template <typename T1>
    704 hash_code hash_combine(const T1 &arg1) {
    705   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
    706   return helper.combine(0, helper.buffer, helper.buffer + 64, arg1);
    707 }
    708 
    709 #endif
    710 
    711 
    712 // Implementation details for implementations of hash_value overloads provided
    713 // here.
    714 namespace hashing {
    715 namespace detail {
    716 
    717 /// \brief Helper to hash the value of a single integer.
    718 ///
    719 /// Overloads for smaller integer types are not provided to ensure consistent
    720 /// behavior in the presence of integral promotions. Essentially,
    721 /// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
    722 inline hash_code hash_integer_value(uint64_t value) {
    723   // Similar to hash_4to8_bytes but using a seed instead of length.
    724   const uint64_t seed = get_execution_seed();
    725   const char *s = reinterpret_cast<const char *>(&value);
    726   const uint64_t a = fetch32(s);
    727   return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
    728 }
    729 
    730 } // namespace detail
    731 } // namespace hashing
    732 
    733 // Declared and documented above, but defined here so that any of the hashing
    734 // infrastructure is available.
    735 template <typename T>
    736 typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
    737 hash_value(T value) {
    738   return ::llvm::hashing::detail::hash_integer_value(value);
    739 }
    740 
    741 // Declared and documented above, but defined here so that any of the hashing
    742 // infrastructure is available.
    743 template <typename T> hash_code hash_value(const T *ptr) {
    744   return ::llvm::hashing::detail::hash_integer_value(
    745     reinterpret_cast<uintptr_t>(ptr));
    746 }
    747 
    748 // Declared and documented above, but defined here so that any of the hashing
    749 // infrastructure is available.
    750 template <typename T, typename U>
    751 hash_code hash_value(const std::pair<T, U> &arg) {
    752   return hash_combine(arg.first, arg.second);
    753 }
    754 
    755 // Declared and documented above, but defined here so that any of the hashing
    756 // infrastructure is available.
    757 template <typename T>
    758 hash_code hash_value(const std::basic_string<T> &arg) {
    759   return hash_combine_range(arg.begin(), arg.end());
    760 }
    761 
    762 } // namespace llvm
    763 
    764 #endif
    765