1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud (at) inria.fr> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #ifndef EIGEN_SPARSEMATRIX_H 11 #define EIGEN_SPARSEMATRIX_H 12 13 namespace Eigen { 14 15 /** \ingroup SparseCore_Module 16 * 17 * \class SparseMatrix 18 * 19 * \brief A versatible sparse matrix representation 20 * 21 * This class implements a more versatile variants of the common \em compressed row/column storage format. 22 * Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index. 23 * All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra 24 * space inbetween the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero 25 * can be done with limited memory reallocation and copies. 26 * 27 * A call to the function makeCompressed() turns the matrix into the standard \em compressed format 28 * compatible with many library. 29 * 30 * More details on this storage sceheme are given in the \ref TutorialSparse "manual pages". 31 * 32 * \tparam _Scalar the scalar type, i.e. the type of the coefficients 33 * \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility 34 * is ColMajor or RowMajor. The default is 0 which means column-major. 35 * \tparam _Index the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int. 36 * 37 * This class can be extended with the help of the plugin mechanism described on the page 38 * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN. 39 */ 40 41 namespace internal { 42 template<typename _Scalar, int _Options, typename _Index> 43 struct traits<SparseMatrix<_Scalar, _Options, _Index> > 44 { 45 typedef _Scalar Scalar; 46 typedef _Index Index; 47 typedef Sparse StorageKind; 48 typedef MatrixXpr XprKind; 49 enum { 50 RowsAtCompileTime = Dynamic, 51 ColsAtCompileTime = Dynamic, 52 MaxRowsAtCompileTime = Dynamic, 53 MaxColsAtCompileTime = Dynamic, 54 Flags = _Options | NestByRefBit | LvalueBit, 55 CoeffReadCost = NumTraits<Scalar>::ReadCost, 56 SupportedAccessPatterns = InnerRandomAccessPattern 57 }; 58 }; 59 60 template<typename _Scalar, int _Options, typename _Index, int DiagIndex> 61 struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _Index>, DiagIndex> > 62 { 63 typedef SparseMatrix<_Scalar, _Options, _Index> MatrixType; 64 typedef typename nested<MatrixType>::type MatrixTypeNested; 65 typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested; 66 67 typedef _Scalar Scalar; 68 typedef Dense StorageKind; 69 typedef _Index Index; 70 typedef MatrixXpr XprKind; 71 72 enum { 73 RowsAtCompileTime = Dynamic, 74 ColsAtCompileTime = 1, 75 MaxRowsAtCompileTime = Dynamic, 76 MaxColsAtCompileTime = 1, 77 Flags = 0, 78 CoeffReadCost = _MatrixTypeNested::CoeffReadCost*10 79 }; 80 }; 81 82 } // end namespace internal 83 84 template<typename _Scalar, int _Options, typename _Index> 85 class SparseMatrix 86 : public SparseMatrixBase<SparseMatrix<_Scalar, _Options, _Index> > 87 { 88 public: 89 EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix) 90 EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, +=) 91 EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, -=) 92 93 typedef MappedSparseMatrix<Scalar,Flags> Map; 94 using Base::IsRowMajor; 95 typedef internal::CompressedStorage<Scalar,Index> Storage; 96 enum { 97 Options = _Options 98 }; 99 100 protected: 101 102 typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix; 103 104 Index m_outerSize; 105 Index m_innerSize; 106 Index* m_outerIndex; 107 Index* m_innerNonZeros; // optional, if null then the data is compressed 108 Storage m_data; 109 110 Eigen::Map<Matrix<Index,Dynamic,1> > innerNonZeros() { return Eigen::Map<Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); } 111 const Eigen::Map<const Matrix<Index,Dynamic,1> > innerNonZeros() const { return Eigen::Map<const Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); } 112 113 public: 114 115 /** \returns whether \c *this is in compressed form. */ 116 inline bool isCompressed() const { return m_innerNonZeros==0; } 117 118 /** \returns the number of rows of the matrix */ 119 inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; } 120 /** \returns the number of columns of the matrix */ 121 inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; } 122 123 /** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */ 124 inline Index innerSize() const { return m_innerSize; } 125 /** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) */ 126 inline Index outerSize() const { return m_outerSize; } 127 128 /** \returns a const pointer to the array of values. 129 * This function is aimed at interoperability with other libraries. 130 * \sa innerIndexPtr(), outerIndexPtr() */ 131 inline const Scalar* valuePtr() const { return &m_data.value(0); } 132 /** \returns a non-const pointer to the array of values. 133 * This function is aimed at interoperability with other libraries. 134 * \sa innerIndexPtr(), outerIndexPtr() */ 135 inline Scalar* valuePtr() { return &m_data.value(0); } 136 137 /** \returns a const pointer to the array of inner indices. 138 * This function is aimed at interoperability with other libraries. 139 * \sa valuePtr(), outerIndexPtr() */ 140 inline const Index* innerIndexPtr() const { return &m_data.index(0); } 141 /** \returns a non-const pointer to the array of inner indices. 142 * This function is aimed at interoperability with other libraries. 143 * \sa valuePtr(), outerIndexPtr() */ 144 inline Index* innerIndexPtr() { return &m_data.index(0); } 145 146 /** \returns a const pointer to the array of the starting positions of the inner vectors. 147 * This function is aimed at interoperability with other libraries. 148 * \sa valuePtr(), innerIndexPtr() */ 149 inline const Index* outerIndexPtr() const { return m_outerIndex; } 150 /** \returns a non-const pointer to the array of the starting positions of the inner vectors. 151 * This function is aimed at interoperability with other libraries. 152 * \sa valuePtr(), innerIndexPtr() */ 153 inline Index* outerIndexPtr() { return m_outerIndex; } 154 155 /** \returns a const pointer to the array of the number of non zeros of the inner vectors. 156 * This function is aimed at interoperability with other libraries. 157 * \warning it returns the null pointer 0 in compressed mode */ 158 inline const Index* innerNonZeroPtr() const { return m_innerNonZeros; } 159 /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors. 160 * This function is aimed at interoperability with other libraries. 161 * \warning it returns the null pointer 0 in compressed mode */ 162 inline Index* innerNonZeroPtr() { return m_innerNonZeros; } 163 164 /** \internal */ 165 inline Storage& data() { return m_data; } 166 /** \internal */ 167 inline const Storage& data() const { return m_data; } 168 169 /** \returns the value of the matrix at position \a i, \a j 170 * This function returns Scalar(0) if the element is an explicit \em zero */ 171 inline Scalar coeff(Index row, Index col) const 172 { 173 eigen_assert(row>=0 && row<rows() && col>=0 && col<cols()); 174 175 const Index outer = IsRowMajor ? row : col; 176 const Index inner = IsRowMajor ? col : row; 177 Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1]; 178 return m_data.atInRange(m_outerIndex[outer], end, inner); 179 } 180 181 /** \returns a non-const reference to the value of the matrix at position \a i, \a j 182 * 183 * If the element does not exist then it is inserted via the insert(Index,Index) function 184 * which itself turns the matrix into a non compressed form if that was not the case. 185 * 186 * This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index) 187 * function if the element does not already exist. 188 */ 189 inline Scalar& coeffRef(Index row, Index col) 190 { 191 eigen_assert(row>=0 && row<rows() && col>=0 && col<cols()); 192 193 const Index outer = IsRowMajor ? row : col; 194 const Index inner = IsRowMajor ? col : row; 195 196 Index start = m_outerIndex[outer]; 197 Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1]; 198 eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix"); 199 if(end<=start) 200 return insert(row,col); 201 const Index p = m_data.searchLowerIndex(start,end-1,inner); 202 if((p<end) && (m_data.index(p)==inner)) 203 return m_data.value(p); 204 else 205 return insert(row,col); 206 } 207 208 /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col. 209 * The non zero coefficient must \b not already exist. 210 * 211 * If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed 212 * mode while reserving room for 2 non zeros per inner vector. It is strongly recommended to first 213 * call reserve(const SizesType &) to reserve a more appropriate number of elements per 214 * inner vector that better match your scenario. 215 * 216 * This function performs a sorted insertion in O(1) if the elements of each inner vector are 217 * inserted in increasing inner index order, and in O(nnz_j) for a random insertion. 218 * 219 */ 220 Scalar& insert(Index row, Index col) 221 { 222 eigen_assert(row>=0 && row<rows() && col>=0 && col<cols()); 223 224 if(isCompressed()) 225 { 226 reserve(Matrix<Index,Dynamic,1>::Constant(outerSize(), 2)); 227 } 228 return insertUncompressed(row,col); 229 } 230 231 public: 232 233 class InnerIterator; 234 class ReverseInnerIterator; 235 236 /** Removes all non zeros but keep allocated memory */ 237 inline void setZero() 238 { 239 m_data.clear(); 240 memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index)); 241 if(m_innerNonZeros) 242 memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(Index)); 243 } 244 245 /** \returns the number of non zero coefficients */ 246 inline Index nonZeros() const 247 { 248 if(m_innerNonZeros) 249 return innerNonZeros().sum(); 250 return static_cast<Index>(m_data.size()); 251 } 252 253 /** Preallocates \a reserveSize non zeros. 254 * 255 * Precondition: the matrix must be in compressed mode. */ 256 inline void reserve(Index reserveSize) 257 { 258 eigen_assert(isCompressed() && "This function does not make sense in non compressed mode."); 259 m_data.reserve(reserveSize); 260 } 261 262 #ifdef EIGEN_PARSED_BY_DOXYGEN 263 /** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j. 264 * 265 * This function turns the matrix in non-compressed mode */ 266 template<class SizesType> 267 inline void reserve(const SizesType& reserveSizes); 268 #else 269 template<class SizesType> 270 inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif = typename SizesType::value_type()) 271 { 272 EIGEN_UNUSED_VARIABLE(enableif); 273 reserveInnerVectors(reserveSizes); 274 } 275 template<class SizesType> 276 inline void reserve(const SizesType& reserveSizes, const typename SizesType::Scalar& enableif = 277 #if (!defined(_MSC_VER)) || (_MSC_VER>=1500) // MSVC 2005 fails to compile with this typename 278 typename 279 #endif 280 SizesType::Scalar()) 281 { 282 EIGEN_UNUSED_VARIABLE(enableif); 283 reserveInnerVectors(reserveSizes); 284 } 285 #endif // EIGEN_PARSED_BY_DOXYGEN 286 protected: 287 template<class SizesType> 288 inline void reserveInnerVectors(const SizesType& reserveSizes) 289 { 290 if(isCompressed()) 291 { 292 std::size_t totalReserveSize = 0; 293 // turn the matrix into non-compressed mode 294 m_innerNonZeros = static_cast<Index*>(std::malloc(m_outerSize * sizeof(Index))); 295 if (!m_innerNonZeros) internal::throw_std_bad_alloc(); 296 297 // temporarily use m_innerSizes to hold the new starting points. 298 Index* newOuterIndex = m_innerNonZeros; 299 300 Index count = 0; 301 for(Index j=0; j<m_outerSize; ++j) 302 { 303 newOuterIndex[j] = count; 304 count += reserveSizes[j] + (m_outerIndex[j+1]-m_outerIndex[j]); 305 totalReserveSize += reserveSizes[j]; 306 } 307 m_data.reserve(totalReserveSize); 308 Index previousOuterIndex = m_outerIndex[m_outerSize]; 309 for(Index j=m_outerSize-1; j>=0; --j) 310 { 311 Index innerNNZ = previousOuterIndex - m_outerIndex[j]; 312 for(Index i=innerNNZ-1; i>=0; --i) 313 { 314 m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i); 315 m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i); 316 } 317 previousOuterIndex = m_outerIndex[j]; 318 m_outerIndex[j] = newOuterIndex[j]; 319 m_innerNonZeros[j] = innerNNZ; 320 } 321 m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1]; 322 323 m_data.resize(m_outerIndex[m_outerSize]); 324 } 325 else 326 { 327 Index* newOuterIndex = static_cast<Index*>(std::malloc((m_outerSize+1)*sizeof(Index))); 328 if (!newOuterIndex) internal::throw_std_bad_alloc(); 329 330 Index count = 0; 331 for(Index j=0; j<m_outerSize; ++j) 332 { 333 newOuterIndex[j] = count; 334 Index alreadyReserved = (m_outerIndex[j+1]-m_outerIndex[j]) - m_innerNonZeros[j]; 335 Index toReserve = std::max<Index>(reserveSizes[j], alreadyReserved); 336 count += toReserve + m_innerNonZeros[j]; 337 } 338 newOuterIndex[m_outerSize] = count; 339 340 m_data.resize(count); 341 for(Index j=m_outerSize-1; j>=0; --j) 342 { 343 Index offset = newOuterIndex[j] - m_outerIndex[j]; 344 if(offset>0) 345 { 346 Index innerNNZ = m_innerNonZeros[j]; 347 for(Index i=innerNNZ-1; i>=0; --i) 348 { 349 m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i); 350 m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i); 351 } 352 } 353 } 354 355 std::swap(m_outerIndex, newOuterIndex); 356 std::free(newOuterIndex); 357 } 358 359 } 360 public: 361 362 //--- low level purely coherent filling --- 363 364 /** \internal 365 * \returns a reference to the non zero coefficient at position \a row, \a col assuming that: 366 * - the nonzero does not already exist 367 * - the new coefficient is the last one according to the storage order 368 * 369 * Before filling a given inner vector you must call the statVec(Index) function. 370 * 371 * After an insertion session, you should call the finalize() function. 372 * 373 * \sa insert, insertBackByOuterInner, startVec */ 374 inline Scalar& insertBack(Index row, Index col) 375 { 376 return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row); 377 } 378 379 /** \internal 380 * \sa insertBack, startVec */ 381 inline Scalar& insertBackByOuterInner(Index outer, Index inner) 382 { 383 eigen_assert(size_t(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)"); 384 eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)"); 385 Index p = m_outerIndex[outer+1]; 386 ++m_outerIndex[outer+1]; 387 m_data.append(0, inner); 388 return m_data.value(p); 389 } 390 391 /** \internal 392 * \warning use it only if you know what you are doing */ 393 inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner) 394 { 395 Index p = m_outerIndex[outer+1]; 396 ++m_outerIndex[outer+1]; 397 m_data.append(0, inner); 398 return m_data.value(p); 399 } 400 401 /** \internal 402 * \sa insertBack, insertBackByOuterInner */ 403 inline void startVec(Index outer) 404 { 405 eigen_assert(m_outerIndex[outer]==Index(m_data.size()) && "You must call startVec for each inner vector sequentially"); 406 eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially"); 407 m_outerIndex[outer+1] = m_outerIndex[outer]; 408 } 409 410 /** \internal 411 * Must be called after inserting a set of non zero entries using the low level compressed API. 412 */ 413 inline void finalize() 414 { 415 if(isCompressed()) 416 { 417 Index size = static_cast<Index>(m_data.size()); 418 Index i = m_outerSize; 419 // find the last filled column 420 while (i>=0 && m_outerIndex[i]==0) 421 --i; 422 ++i; 423 while (i<=m_outerSize) 424 { 425 m_outerIndex[i] = size; 426 ++i; 427 } 428 } 429 } 430 431 //--- 432 433 template<typename InputIterators> 434 void setFromTriplets(const InputIterators& begin, const InputIterators& end); 435 436 void sumupDuplicates(); 437 438 //--- 439 440 /** \internal 441 * same as insert(Index,Index) except that the indices are given relative to the storage order */ 442 Scalar& insertByOuterInner(Index j, Index i) 443 { 444 return insert(IsRowMajor ? j : i, IsRowMajor ? i : j); 445 } 446 447 /** Turns the matrix into the \em compressed format. 448 */ 449 void makeCompressed() 450 { 451 if(isCompressed()) 452 return; 453 454 Index oldStart = m_outerIndex[1]; 455 m_outerIndex[1] = m_innerNonZeros[0]; 456 for(Index j=1; j<m_outerSize; ++j) 457 { 458 Index nextOldStart = m_outerIndex[j+1]; 459 Index offset = oldStart - m_outerIndex[j]; 460 if(offset>0) 461 { 462 for(Index k=0; k<m_innerNonZeros[j]; ++k) 463 { 464 m_data.index(m_outerIndex[j]+k) = m_data.index(oldStart+k); 465 m_data.value(m_outerIndex[j]+k) = m_data.value(oldStart+k); 466 } 467 } 468 m_outerIndex[j+1] = m_outerIndex[j] + m_innerNonZeros[j]; 469 oldStart = nextOldStart; 470 } 471 std::free(m_innerNonZeros); 472 m_innerNonZeros = 0; 473 m_data.resize(m_outerIndex[m_outerSize]); 474 m_data.squeeze(); 475 } 476 477 /** Turns the matrix into the uncompressed mode */ 478 void uncompress() 479 { 480 if(m_innerNonZeros != 0) 481 return; 482 m_innerNonZeros = static_cast<Index*>(std::malloc(m_outerSize * sizeof(Index))); 483 for (Index i = 0; i < m_outerSize; i++) 484 { 485 m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i]; 486 } 487 } 488 489 /** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */ 490 void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision()) 491 { 492 prune(default_prunning_func(reference,epsilon)); 493 } 494 495 /** Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate \a keep. 496 * The functor type \a KeepFunc must implement the following function: 497 * \code 498 * bool operator() (const Index& row, const Index& col, const Scalar& value) const; 499 * \endcode 500 * \sa prune(Scalar,RealScalar) 501 */ 502 template<typename KeepFunc> 503 void prune(const KeepFunc& keep = KeepFunc()) 504 { 505 // TODO optimize the uncompressed mode to avoid moving and allocating the data twice 506 // TODO also implement a unit test 507 makeCompressed(); 508 509 Index k = 0; 510 for(Index j=0; j<m_outerSize; ++j) 511 { 512 Index previousStart = m_outerIndex[j]; 513 m_outerIndex[j] = k; 514 Index end = m_outerIndex[j+1]; 515 for(Index i=previousStart; i<end; ++i) 516 { 517 if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i))) 518 { 519 m_data.value(k) = m_data.value(i); 520 m_data.index(k) = m_data.index(i); 521 ++k; 522 } 523 } 524 } 525 m_outerIndex[m_outerSize] = k; 526 m_data.resize(k,0); 527 } 528 529 /** Resizes the matrix to a \a rows x \a cols matrix leaving old values untouched. 530 * \sa resizeNonZeros(Index), reserve(), setZero() 531 */ 532 void conservativeResize(Index rows, Index cols) 533 { 534 // No change 535 if (this->rows() == rows && this->cols() == cols) return; 536 537 // If one dimension is null, then there is nothing to be preserved 538 if(rows==0 || cols==0) return resize(rows,cols); 539 540 Index innerChange = IsRowMajor ? cols - this->cols() : rows - this->rows(); 541 Index outerChange = IsRowMajor ? rows - this->rows() : cols - this->cols(); 542 Index newInnerSize = IsRowMajor ? cols : rows; 543 544 // Deals with inner non zeros 545 if (m_innerNonZeros) 546 { 547 // Resize m_innerNonZeros 548 Index *newInnerNonZeros = static_cast<Index*>(std::realloc(m_innerNonZeros, (m_outerSize + outerChange) * sizeof(Index))); 549 if (!newInnerNonZeros) internal::throw_std_bad_alloc(); 550 m_innerNonZeros = newInnerNonZeros; 551 552 for(Index i=m_outerSize; i<m_outerSize+outerChange; i++) 553 m_innerNonZeros[i] = 0; 554 } 555 else if (innerChange < 0) 556 { 557 // Inner size decreased: allocate a new m_innerNonZeros 558 m_innerNonZeros = static_cast<Index*>(std::malloc((m_outerSize+outerChange+1) * sizeof(Index))); 559 if (!m_innerNonZeros) internal::throw_std_bad_alloc(); 560 for(Index i = 0; i < m_outerSize; i++) 561 m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i]; 562 } 563 564 // Change the m_innerNonZeros in case of a decrease of inner size 565 if (m_innerNonZeros && innerChange < 0) 566 { 567 for(Index i = 0; i < m_outerSize + (std::min)(outerChange, Index(0)); i++) 568 { 569 Index &n = m_innerNonZeros[i]; 570 Index start = m_outerIndex[i]; 571 while (n > 0 && m_data.index(start+n-1) >= newInnerSize) --n; 572 } 573 } 574 575 m_innerSize = newInnerSize; 576 577 // Re-allocate outer index structure if necessary 578 if (outerChange == 0) 579 return; 580 581 Index *newOuterIndex = static_cast<Index*>(std::realloc(m_outerIndex, (m_outerSize + outerChange + 1) * sizeof(Index))); 582 if (!newOuterIndex) internal::throw_std_bad_alloc(); 583 m_outerIndex = newOuterIndex; 584 if (outerChange > 0) 585 { 586 Index last = m_outerSize == 0 ? 0 : m_outerIndex[m_outerSize]; 587 for(Index i=m_outerSize; i<m_outerSize+outerChange+1; i++) 588 m_outerIndex[i] = last; 589 } 590 m_outerSize += outerChange; 591 } 592 593 /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero. 594 * \sa resizeNonZeros(Index), reserve(), setZero() 595 */ 596 void resize(Index rows, Index cols) 597 { 598 const Index outerSize = IsRowMajor ? rows : cols; 599 m_innerSize = IsRowMajor ? cols : rows; 600 m_data.clear(); 601 if (m_outerSize != outerSize || m_outerSize==0) 602 { 603 std::free(m_outerIndex); 604 m_outerIndex = static_cast<Index*>(std::malloc((outerSize + 1) * sizeof(Index))); 605 if (!m_outerIndex) internal::throw_std_bad_alloc(); 606 607 m_outerSize = outerSize; 608 } 609 if(m_innerNonZeros) 610 { 611 std::free(m_innerNonZeros); 612 m_innerNonZeros = 0; 613 } 614 memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index)); 615 } 616 617 /** \internal 618 * Resize the nonzero vector to \a size */ 619 void resizeNonZeros(Index size) 620 { 621 // TODO remove this function 622 m_data.resize(size); 623 } 624 625 /** \returns a const expression of the diagonal coefficients */ 626 const Diagonal<const SparseMatrix> diagonal() const { return *this; } 627 628 /** Default constructor yielding an empty \c 0 \c x \c 0 matrix */ 629 inline SparseMatrix() 630 : m_outerSize(-1), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) 631 { 632 check_template_parameters(); 633 resize(0, 0); 634 } 635 636 /** Constructs a \a rows \c x \a cols empty matrix */ 637 inline SparseMatrix(Index rows, Index cols) 638 : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) 639 { 640 check_template_parameters(); 641 resize(rows, cols); 642 } 643 644 /** Constructs a sparse matrix from the sparse expression \a other */ 645 template<typename OtherDerived> 646 inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other) 647 : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) 648 { 649 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value), 650 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) 651 check_template_parameters(); 652 *this = other.derived(); 653 } 654 655 /** Constructs a sparse matrix from the sparse selfadjoint view \a other */ 656 template<typename OtherDerived, unsigned int UpLo> 657 inline SparseMatrix(const SparseSelfAdjointView<OtherDerived, UpLo>& other) 658 : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) 659 { 660 check_template_parameters(); 661 *this = other; 662 } 663 664 /** Copy constructor (it performs a deep copy) */ 665 inline SparseMatrix(const SparseMatrix& other) 666 : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) 667 { 668 check_template_parameters(); 669 *this = other.derived(); 670 } 671 672 /** \brief Copy constructor with in-place evaluation */ 673 template<typename OtherDerived> 674 SparseMatrix(const ReturnByValue<OtherDerived>& other) 675 : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) 676 { 677 check_template_parameters(); 678 initAssignment(other); 679 other.evalTo(*this); 680 } 681 682 /** Swaps the content of two sparse matrices of the same type. 683 * This is a fast operation that simply swaps the underlying pointers and parameters. */ 684 inline void swap(SparseMatrix& other) 685 { 686 //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n"); 687 std::swap(m_outerIndex, other.m_outerIndex); 688 std::swap(m_innerSize, other.m_innerSize); 689 std::swap(m_outerSize, other.m_outerSize); 690 std::swap(m_innerNonZeros, other.m_innerNonZeros); 691 m_data.swap(other.m_data); 692 } 693 694 /** Sets *this to the identity matrix */ 695 inline void setIdentity() 696 { 697 eigen_assert(rows() == cols() && "ONLY FOR SQUARED MATRICES"); 698 this->m_data.resize(rows()); 699 Eigen::Map<Matrix<Index, Dynamic, 1> >(&this->m_data.index(0), rows()).setLinSpaced(0, rows()-1); 700 Eigen::Map<Matrix<Scalar, Dynamic, 1> >(&this->m_data.value(0), rows()).setOnes(); 701 Eigen::Map<Matrix<Index, Dynamic, 1> >(this->m_outerIndex, rows()+1).setLinSpaced(0, rows()); 702 } 703 inline SparseMatrix& operator=(const SparseMatrix& other) 704 { 705 if (other.isRValue()) 706 { 707 swap(other.const_cast_derived()); 708 } 709 else if(this!=&other) 710 { 711 initAssignment(other); 712 if(other.isCompressed()) 713 { 714 memcpy(m_outerIndex, other.m_outerIndex, (m_outerSize+1)*sizeof(Index)); 715 m_data = other.m_data; 716 } 717 else 718 { 719 Base::operator=(other); 720 } 721 } 722 return *this; 723 } 724 725 #ifndef EIGEN_PARSED_BY_DOXYGEN 726 template<typename Lhs, typename Rhs> 727 inline SparseMatrix& operator=(const SparseSparseProduct<Lhs,Rhs>& product) 728 { return Base::operator=(product); } 729 730 template<typename OtherDerived> 731 inline SparseMatrix& operator=(const ReturnByValue<OtherDerived>& other) 732 { 733 initAssignment(other); 734 return Base::operator=(other.derived()); 735 } 736 737 template<typename OtherDerived> 738 inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other) 739 { return Base::operator=(other.derived()); } 740 #endif 741 742 template<typename OtherDerived> 743 EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other); 744 745 friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m) 746 { 747 EIGEN_DBG_SPARSE( 748 s << "Nonzero entries:\n"; 749 if(m.isCompressed()) 750 for (Index i=0; i<m.nonZeros(); ++i) 751 s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") "; 752 else 753 for (Index i=0; i<m.outerSize(); ++i) 754 { 755 Index p = m.m_outerIndex[i]; 756 Index pe = m.m_outerIndex[i]+m.m_innerNonZeros[i]; 757 Index k=p; 758 for (; k<pe; ++k) 759 s << "(" << m.m_data.value(k) << "," << m.m_data.index(k) << ") "; 760 for (; k<m.m_outerIndex[i+1]; ++k) 761 s << "(_,_) "; 762 } 763 s << std::endl; 764 s << std::endl; 765 s << "Outer pointers:\n"; 766 for (Index i=0; i<m.outerSize(); ++i) 767 s << m.m_outerIndex[i] << " "; 768 s << " $" << std::endl; 769 if(!m.isCompressed()) 770 { 771 s << "Inner non zeros:\n"; 772 for (Index i=0; i<m.outerSize(); ++i) 773 s << m.m_innerNonZeros[i] << " "; 774 s << " $" << std::endl; 775 } 776 s << std::endl; 777 ); 778 s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m); 779 return s; 780 } 781 782 /** Destructor */ 783 inline ~SparseMatrix() 784 { 785 std::free(m_outerIndex); 786 std::free(m_innerNonZeros); 787 } 788 789 #ifndef EIGEN_PARSED_BY_DOXYGEN 790 /** Overloaded for performance */ 791 Scalar sum() const; 792 #endif 793 794 # ifdef EIGEN_SPARSEMATRIX_PLUGIN 795 # include EIGEN_SPARSEMATRIX_PLUGIN 796 # endif 797 798 protected: 799 800 template<typename Other> 801 void initAssignment(const Other& other) 802 { 803 resize(other.rows(), other.cols()); 804 if(m_innerNonZeros) 805 { 806 std::free(m_innerNonZeros); 807 m_innerNonZeros = 0; 808 } 809 } 810 811 /** \internal 812 * \sa insert(Index,Index) */ 813 EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col); 814 815 /** \internal 816 * A vector object that is equal to 0 everywhere but v at the position i */ 817 class SingletonVector 818 { 819 Index m_index; 820 Index m_value; 821 public: 822 typedef Index value_type; 823 SingletonVector(Index i, Index v) 824 : m_index(i), m_value(v) 825 {} 826 827 Index operator[](Index i) const { return i==m_index ? m_value : 0; } 828 }; 829 830 /** \internal 831 * \sa insert(Index,Index) */ 832 EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col); 833 834 public: 835 /** \internal 836 * \sa insert(Index,Index) */ 837 EIGEN_STRONG_INLINE Scalar& insertBackUncompressed(Index row, Index col) 838 { 839 const Index outer = IsRowMajor ? row : col; 840 const Index inner = IsRowMajor ? col : row; 841 842 eigen_assert(!isCompressed()); 843 eigen_assert(m_innerNonZeros[outer]<=(m_outerIndex[outer+1] - m_outerIndex[outer])); 844 845 Index p = m_outerIndex[outer] + m_innerNonZeros[outer]++; 846 m_data.index(p) = inner; 847 return (m_data.value(p) = 0); 848 } 849 850 private: 851 static void check_template_parameters() 852 { 853 EIGEN_STATIC_ASSERT(NumTraits<Index>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE); 854 EIGEN_STATIC_ASSERT((Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS); 855 } 856 857 struct default_prunning_func { 858 default_prunning_func(const Scalar& ref, const RealScalar& eps) : reference(ref), epsilon(eps) {} 859 inline bool operator() (const Index&, const Index&, const Scalar& value) const 860 { 861 return !internal::isMuchSmallerThan(value, reference, epsilon); 862 } 863 Scalar reference; 864 RealScalar epsilon; 865 }; 866 }; 867 868 template<typename Scalar, int _Options, typename _Index> 869 class SparseMatrix<Scalar,_Options,_Index>::InnerIterator 870 { 871 public: 872 InnerIterator(const SparseMatrix& mat, Index outer) 873 : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer), m_id(mat.m_outerIndex[outer]) 874 { 875 if(mat.isCompressed()) 876 m_end = mat.m_outerIndex[outer+1]; 877 else 878 m_end = m_id + mat.m_innerNonZeros[outer]; 879 } 880 881 inline InnerIterator& operator++() { m_id++; return *this; } 882 883 inline const Scalar& value() const { return m_values[m_id]; } 884 inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id]); } 885 886 inline Index index() const { return m_indices[m_id]; } 887 inline Index outer() const { return m_outer; } 888 inline Index row() const { return IsRowMajor ? m_outer : index(); } 889 inline Index col() const { return IsRowMajor ? index() : m_outer; } 890 891 inline operator bool() const { return (m_id < m_end); } 892 893 protected: 894 const Scalar* m_values; 895 const Index* m_indices; 896 const Index m_outer; 897 Index m_id; 898 Index m_end; 899 }; 900 901 template<typename Scalar, int _Options, typename _Index> 902 class SparseMatrix<Scalar,_Options,_Index>::ReverseInnerIterator 903 { 904 public: 905 ReverseInnerIterator(const SparseMatrix& mat, Index outer) 906 : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer), m_start(mat.m_outerIndex[outer]) 907 { 908 if(mat.isCompressed()) 909 m_id = mat.m_outerIndex[outer+1]; 910 else 911 m_id = m_start + mat.m_innerNonZeros[outer]; 912 } 913 914 inline ReverseInnerIterator& operator--() { --m_id; return *this; } 915 916 inline const Scalar& value() const { return m_values[m_id-1]; } 917 inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id-1]); } 918 919 inline Index index() const { return m_indices[m_id-1]; } 920 inline Index outer() const { return m_outer; } 921 inline Index row() const { return IsRowMajor ? m_outer : index(); } 922 inline Index col() const { return IsRowMajor ? index() : m_outer; } 923 924 inline operator bool() const { return (m_id > m_start); } 925 926 protected: 927 const Scalar* m_values; 928 const Index* m_indices; 929 const Index m_outer; 930 Index m_id; 931 const Index m_start; 932 }; 933 934 namespace internal { 935 936 template<typename InputIterator, typename SparseMatrixType> 937 void set_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, int Options = 0) 938 { 939 EIGEN_UNUSED_VARIABLE(Options); 940 enum { IsRowMajor = SparseMatrixType::IsRowMajor }; 941 typedef typename SparseMatrixType::Scalar Scalar; 942 typedef typename SparseMatrixType::Index Index; 943 SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor,Index> trMat(mat.rows(),mat.cols()); 944 945 if(begin!=end) 946 { 947 // pass 1: count the nnz per inner-vector 948 Matrix<Index,Dynamic,1> wi(trMat.outerSize()); 949 wi.setZero(); 950 for(InputIterator it(begin); it!=end; ++it) 951 { 952 eigen_assert(it->row()>=0 && it->row()<mat.rows() && it->col()>=0 && it->col()<mat.cols()); 953 wi(IsRowMajor ? it->col() : it->row())++; 954 } 955 956 // pass 2: insert all the elements into trMat 957 trMat.reserve(wi); 958 for(InputIterator it(begin); it!=end; ++it) 959 trMat.insertBackUncompressed(it->row(),it->col()) = it->value(); 960 961 // pass 3: 962 trMat.sumupDuplicates(); 963 } 964 965 // pass 4: transposed copy -> implicit sorting 966 mat = trMat; 967 } 968 969 } 970 971 972 /** Fill the matrix \c *this with the list of \em triplets defined by the iterator range \a begin - \a end. 973 * 974 * A \em triplet is a tuple (i,j,value) defining a non-zero element. 975 * The input list of triplets does not have to be sorted, and can contains duplicated elements. 976 * In any case, the result is a \b sorted and \b compressed sparse matrix where the duplicates have been summed up. 977 * This is a \em O(n) operation, with \em n the number of triplet elements. 978 * The initial contents of \c *this is destroyed. 979 * The matrix \c *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor, 980 * or the resize(Index,Index) method. The sizes are not extracted from the triplet list. 981 * 982 * The \a InputIterators value_type must provide the following interface: 983 * \code 984 * Scalar value() const; // the value 985 * Scalar row() const; // the row index i 986 * Scalar col() const; // the column index j 987 * \endcode 988 * See for instance the Eigen::Triplet template class. 989 * 990 * Here is a typical usage example: 991 * \code 992 typedef Triplet<double> T; 993 std::vector<T> tripletList; 994 triplets.reserve(estimation_of_entries); 995 for(...) 996 { 997 // ... 998 tripletList.push_back(T(i,j,v_ij)); 999 } 1000 SparseMatrixType m(rows,cols); 1001 m.setFromTriplets(tripletList.begin(), tripletList.end()); 1002 // m is ready to go! 1003 * \endcode 1004 * 1005 * \warning The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define 1006 * an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather 1007 * be explicitely stored into a std::vector for instance. 1008 */ 1009 template<typename Scalar, int _Options, typename _Index> 1010 template<typename InputIterators> 1011 void SparseMatrix<Scalar,_Options,_Index>::setFromTriplets(const InputIterators& begin, const InputIterators& end) 1012 { 1013 internal::set_from_triplets(begin, end, *this); 1014 } 1015 1016 /** \internal */ 1017 template<typename Scalar, int _Options, typename _Index> 1018 void SparseMatrix<Scalar,_Options,_Index>::sumupDuplicates() 1019 { 1020 eigen_assert(!isCompressed()); 1021 // TODO, in practice we should be able to use m_innerNonZeros for that task 1022 Matrix<Index,Dynamic,1> wi(innerSize()); 1023 wi.fill(-1); 1024 Index count = 0; 1025 // for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers 1026 for(Index j=0; j<outerSize(); ++j) 1027 { 1028 Index start = count; 1029 Index oldEnd = m_outerIndex[j]+m_innerNonZeros[j]; 1030 for(Index k=m_outerIndex[j]; k<oldEnd; ++k) 1031 { 1032 Index i = m_data.index(k); 1033 if(wi(i)>=start) 1034 { 1035 // we already meet this entry => accumulate it 1036 m_data.value(wi(i)) += m_data.value(k); 1037 } 1038 else 1039 { 1040 m_data.value(count) = m_data.value(k); 1041 m_data.index(count) = m_data.index(k); 1042 wi(i) = count; 1043 ++count; 1044 } 1045 } 1046 m_outerIndex[j] = start; 1047 } 1048 m_outerIndex[m_outerSize] = count; 1049 1050 // turn the matrix into compressed form 1051 std::free(m_innerNonZeros); 1052 m_innerNonZeros = 0; 1053 m_data.resize(m_outerIndex[m_outerSize]); 1054 } 1055 1056 template<typename Scalar, int _Options, typename _Index> 1057 template<typename OtherDerived> 1058 EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_Index>& SparseMatrix<Scalar,_Options,_Index>::operator=(const SparseMatrixBase<OtherDerived>& other) 1059 { 1060 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value), 1061 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) 1062 1063 const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit); 1064 if (needToTranspose) 1065 { 1066 // two passes algorithm: 1067 // 1 - compute the number of coeffs per dest inner vector 1068 // 2 - do the actual copy/eval 1069 // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed 1070 typedef typename internal::nested<OtherDerived,2>::type OtherCopy; 1071 typedef typename internal::remove_all<OtherCopy>::type _OtherCopy; 1072 OtherCopy otherCopy(other.derived()); 1073 1074 SparseMatrix dest(other.rows(),other.cols()); 1075 Eigen::Map<Matrix<Index, Dynamic, 1> > (dest.m_outerIndex,dest.outerSize()).setZero(); 1076 1077 // pass 1 1078 // FIXME the above copy could be merged with that pass 1079 for (Index j=0; j<otherCopy.outerSize(); ++j) 1080 for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it) 1081 ++dest.m_outerIndex[it.index()]; 1082 1083 // prefix sum 1084 Index count = 0; 1085 Matrix<Index,Dynamic,1> positions(dest.outerSize()); 1086 for (Index j=0; j<dest.outerSize(); ++j) 1087 { 1088 Index tmp = dest.m_outerIndex[j]; 1089 dest.m_outerIndex[j] = count; 1090 positions[j] = count; 1091 count += tmp; 1092 } 1093 dest.m_outerIndex[dest.outerSize()] = count; 1094 // alloc 1095 dest.m_data.resize(count); 1096 // pass 2 1097 for (Index j=0; j<otherCopy.outerSize(); ++j) 1098 { 1099 for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it) 1100 { 1101 Index pos = positions[it.index()]++; 1102 dest.m_data.index(pos) = j; 1103 dest.m_data.value(pos) = it.value(); 1104 } 1105 } 1106 this->swap(dest); 1107 return *this; 1108 } 1109 else 1110 { 1111 if(other.isRValue()) 1112 initAssignment(other.derived()); 1113 // there is no special optimization 1114 return Base::operator=(other.derived()); 1115 } 1116 } 1117 1118 template<typename _Scalar, int _Options, typename _Index> 1119 EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& SparseMatrix<_Scalar,_Options,_Index>::insertUncompressed(Index row, Index col) 1120 { 1121 eigen_assert(!isCompressed()); 1122 1123 const Index outer = IsRowMajor ? row : col; 1124 const Index inner = IsRowMajor ? col : row; 1125 1126 Index room = m_outerIndex[outer+1] - m_outerIndex[outer]; 1127 Index innerNNZ = m_innerNonZeros[outer]; 1128 if(innerNNZ>=room) 1129 { 1130 // this inner vector is full, we need to reallocate the whole buffer :( 1131 reserve(SingletonVector(outer,std::max<Index>(2,innerNNZ))); 1132 } 1133 1134 Index startId = m_outerIndex[outer]; 1135 Index p = startId + m_innerNonZeros[outer]; 1136 while ( (p > startId) && (m_data.index(p-1) > inner) ) 1137 { 1138 m_data.index(p) = m_data.index(p-1); 1139 m_data.value(p) = m_data.value(p-1); 1140 --p; 1141 } 1142 eigen_assert((p<=startId || m_data.index(p-1)!=inner) && "you cannot insert an element that already exist, you must call coeffRef to this end"); 1143 1144 m_innerNonZeros[outer]++; 1145 1146 m_data.index(p) = inner; 1147 return (m_data.value(p) = 0); 1148 } 1149 1150 template<typename _Scalar, int _Options, typename _Index> 1151 EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& SparseMatrix<_Scalar,_Options,_Index>::insertCompressed(Index row, Index col) 1152 { 1153 eigen_assert(isCompressed()); 1154 1155 const Index outer = IsRowMajor ? row : col; 1156 const Index inner = IsRowMajor ? col : row; 1157 1158 Index previousOuter = outer; 1159 if (m_outerIndex[outer+1]==0) 1160 { 1161 // we start a new inner vector 1162 while (previousOuter>=0 && m_outerIndex[previousOuter]==0) 1163 { 1164 m_outerIndex[previousOuter] = static_cast<Index>(m_data.size()); 1165 --previousOuter; 1166 } 1167 m_outerIndex[outer+1] = m_outerIndex[outer]; 1168 } 1169 1170 // here we have to handle the tricky case where the outerIndex array 1171 // starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g., 1172 // the 2nd inner vector... 1173 bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0)) 1174 && (size_t(m_outerIndex[outer+1]) == m_data.size()); 1175 1176 size_t startId = m_outerIndex[outer]; 1177 // FIXME let's make sure sizeof(long int) == sizeof(size_t) 1178 size_t p = m_outerIndex[outer+1]; 1179 ++m_outerIndex[outer+1]; 1180 1181 double reallocRatio = 1; 1182 if (m_data.allocatedSize()<=m_data.size()) 1183 { 1184 // if there is no preallocated memory, let's reserve a minimum of 32 elements 1185 if (m_data.size()==0) 1186 { 1187 m_data.reserve(32); 1188 } 1189 else 1190 { 1191 // we need to reallocate the data, to reduce multiple reallocations 1192 // we use a smart resize algorithm based on the current filling ratio 1193 // in addition, we use double to avoid integers overflows 1194 double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1); 1195 reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size()); 1196 // furthermore we bound the realloc ratio to: 1197 // 1) reduce multiple minor realloc when the matrix is almost filled 1198 // 2) avoid to allocate too much memory when the matrix is almost empty 1199 reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.); 1200 } 1201 } 1202 m_data.resize(m_data.size()+1,reallocRatio); 1203 1204 if (!isLastVec) 1205 { 1206 if (previousOuter==-1) 1207 { 1208 // oops wrong guess. 1209 // let's correct the outer offsets 1210 for (Index k=0; k<=(outer+1); ++k) 1211 m_outerIndex[k] = 0; 1212 Index k=outer+1; 1213 while(m_outerIndex[k]==0) 1214 m_outerIndex[k++] = 1; 1215 while (k<=m_outerSize && m_outerIndex[k]!=0) 1216 m_outerIndex[k++]++; 1217 p = 0; 1218 --k; 1219 k = m_outerIndex[k]-1; 1220 while (k>0) 1221 { 1222 m_data.index(k) = m_data.index(k-1); 1223 m_data.value(k) = m_data.value(k-1); 1224 k--; 1225 } 1226 } 1227 else 1228 { 1229 // we are not inserting into the last inner vec 1230 // update outer indices: 1231 Index j = outer+2; 1232 while (j<=m_outerSize && m_outerIndex[j]!=0) 1233 m_outerIndex[j++]++; 1234 --j; 1235 // shift data of last vecs: 1236 Index k = m_outerIndex[j]-1; 1237 while (k>=Index(p)) 1238 { 1239 m_data.index(k) = m_data.index(k-1); 1240 m_data.value(k) = m_data.value(k-1); 1241 k--; 1242 } 1243 } 1244 } 1245 1246 while ( (p > startId) && (m_data.index(p-1) > inner) ) 1247 { 1248 m_data.index(p) = m_data.index(p-1); 1249 m_data.value(p) = m_data.value(p-1); 1250 --p; 1251 } 1252 1253 m_data.index(p) = inner; 1254 return (m_data.value(p) = 0); 1255 } 1256 1257 } // end namespace Eigen 1258 1259 #endif // EIGEN_SPARSEMATRIX_H 1260