Home | History | Annotate | Download | only in Utils
      1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file promotes memory references to be register references.  It promotes
     11 // alloca instructions which only have loads and stores as uses.  An alloca is
     12 // transformed by using iterated dominator frontiers to place PHI nodes, then
     13 // traversing the function in depth-first order to rewrite loads and stores as
     14 // appropriate.
     15 //
     16 // The algorithm used here is based on:
     17 //
     18 //   Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
     19 //   In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
     20 //   Programming Languages
     21 //   POPL '95. ACM, New York, NY, 62-73.
     22 //
     23 // It has been modified to not explicitly use the DJ graph data structure and to
     24 // directly compute pruned SSA using per-variable liveness information.
     25 //
     26 //===----------------------------------------------------------------------===//
     27 
     28 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
     29 #include "llvm/ADT/ArrayRef.h"
     30 #include "llvm/ADT/DenseMap.h"
     31 #include "llvm/ADT/STLExtras.h"
     32 #include "llvm/ADT/SmallPtrSet.h"
     33 #include "llvm/ADT/SmallVector.h"
     34 #include "llvm/ADT/Statistic.h"
     35 #include "llvm/Analysis/AliasSetTracker.h"
     36 #include "llvm/Analysis/InstructionSimplify.h"
     37 #include "llvm/Analysis/ValueTracking.h"
     38 #include "llvm/IR/CFG.h"
     39 #include "llvm/IR/Constants.h"
     40 #include "llvm/IR/DIBuilder.h"
     41 #include "llvm/IR/DebugInfo.h"
     42 #include "llvm/IR/DerivedTypes.h"
     43 #include "llvm/IR/Dominators.h"
     44 #include "llvm/IR/Function.h"
     45 #include "llvm/IR/Instructions.h"
     46 #include "llvm/IR/IntrinsicInst.h"
     47 #include "llvm/IR/Metadata.h"
     48 #include "llvm/Transforms/Utils/Local.h"
     49 #include <algorithm>
     50 #include <queue>
     51 using namespace llvm;
     52 
     53 #define DEBUG_TYPE "mem2reg"
     54 
     55 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
     56 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
     57 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
     58 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
     59 
     60 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
     61   // FIXME: If the memory unit is of pointer or integer type, we can permit
     62   // assignments to subsections of the memory unit.
     63   unsigned AS = AI->getType()->getAddressSpace();
     64 
     65   // Only allow direct and non-volatile loads and stores...
     66   for (const User *U : AI->users()) {
     67     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
     68       // Note that atomic loads can be transformed; atomic semantics do
     69       // not have any meaning for a local alloca.
     70       if (LI->isVolatile())
     71         return false;
     72     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
     73       if (SI->getOperand(0) == AI)
     74         return false; // Don't allow a store OF the AI, only INTO the AI.
     75       // Note that atomic stores can be transformed; atomic semantics do
     76       // not have any meaning for a local alloca.
     77       if (SI->isVolatile())
     78         return false;
     79     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
     80       if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
     81           II->getIntrinsicID() != Intrinsic::lifetime_end)
     82         return false;
     83     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
     84       if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
     85         return false;
     86       if (!onlyUsedByLifetimeMarkers(BCI))
     87         return false;
     88     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
     89       if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
     90         return false;
     91       if (!GEPI->hasAllZeroIndices())
     92         return false;
     93       if (!onlyUsedByLifetimeMarkers(GEPI))
     94         return false;
     95     } else {
     96       return false;
     97     }
     98   }
     99 
    100   return true;
    101 }
    102 
    103 namespace {
    104 
    105 struct AllocaInfo {
    106   SmallVector<BasicBlock *, 32> DefiningBlocks;
    107   SmallVector<BasicBlock *, 32> UsingBlocks;
    108 
    109   StoreInst *OnlyStore;
    110   BasicBlock *OnlyBlock;
    111   bool OnlyUsedInOneBlock;
    112 
    113   Value *AllocaPointerVal;
    114   DbgDeclareInst *DbgDeclare;
    115 
    116   void clear() {
    117     DefiningBlocks.clear();
    118     UsingBlocks.clear();
    119     OnlyStore = nullptr;
    120     OnlyBlock = nullptr;
    121     OnlyUsedInOneBlock = true;
    122     AllocaPointerVal = nullptr;
    123     DbgDeclare = nullptr;
    124   }
    125 
    126   /// Scan the uses of the specified alloca, filling in the AllocaInfo used
    127   /// by the rest of the pass to reason about the uses of this alloca.
    128   void AnalyzeAlloca(AllocaInst *AI) {
    129     clear();
    130 
    131     // As we scan the uses of the alloca instruction, keep track of stores,
    132     // and decide whether all of the loads and stores to the alloca are within
    133     // the same basic block.
    134     for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
    135       Instruction *User = cast<Instruction>(*UI++);
    136 
    137       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
    138         // Remember the basic blocks which define new values for the alloca
    139         DefiningBlocks.push_back(SI->getParent());
    140         AllocaPointerVal = SI->getOperand(0);
    141         OnlyStore = SI;
    142       } else {
    143         LoadInst *LI = cast<LoadInst>(User);
    144         // Otherwise it must be a load instruction, keep track of variable
    145         // reads.
    146         UsingBlocks.push_back(LI->getParent());
    147         AllocaPointerVal = LI;
    148       }
    149 
    150       if (OnlyUsedInOneBlock) {
    151         if (!OnlyBlock)
    152           OnlyBlock = User->getParent();
    153         else if (OnlyBlock != User->getParent())
    154           OnlyUsedInOneBlock = false;
    155       }
    156     }
    157 
    158     DbgDeclare = FindAllocaDbgDeclare(AI);
    159   }
    160 };
    161 
    162 // Data package used by RenamePass()
    163 class RenamePassData {
    164 public:
    165   typedef std::vector<Value *> ValVector;
    166 
    167   RenamePassData() : BB(nullptr), Pred(nullptr), Values() {}
    168   RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V)
    169       : BB(B), Pred(P), Values(V) {}
    170   BasicBlock *BB;
    171   BasicBlock *Pred;
    172   ValVector Values;
    173 
    174   void swap(RenamePassData &RHS) {
    175     std::swap(BB, RHS.BB);
    176     std::swap(Pred, RHS.Pred);
    177     Values.swap(RHS.Values);
    178   }
    179 };
    180 
    181 /// \brief This assigns and keeps a per-bb relative ordering of load/store
    182 /// instructions in the block that directly load or store an alloca.
    183 ///
    184 /// This functionality is important because it avoids scanning large basic
    185 /// blocks multiple times when promoting many allocas in the same block.
    186 class LargeBlockInfo {
    187   /// \brief For each instruction that we track, keep the index of the
    188   /// instruction.
    189   ///
    190   /// The index starts out as the number of the instruction from the start of
    191   /// the block.
    192   DenseMap<const Instruction *, unsigned> InstNumbers;
    193 
    194 public:
    195 
    196   /// This code only looks at accesses to allocas.
    197   static bool isInterestingInstruction(const Instruction *I) {
    198     return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
    199            (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
    200   }
    201 
    202   /// Get or calculate the index of the specified instruction.
    203   unsigned getInstructionIndex(const Instruction *I) {
    204     assert(isInterestingInstruction(I) &&
    205            "Not a load/store to/from an alloca?");
    206 
    207     // If we already have this instruction number, return it.
    208     DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
    209     if (It != InstNumbers.end())
    210       return It->second;
    211 
    212     // Scan the whole block to get the instruction.  This accumulates
    213     // information for every interesting instruction in the block, in order to
    214     // avoid gratuitus rescans.
    215     const BasicBlock *BB = I->getParent();
    216     unsigned InstNo = 0;
    217     for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); BBI != E;
    218          ++BBI)
    219       if (isInterestingInstruction(BBI))
    220         InstNumbers[BBI] = InstNo++;
    221     It = InstNumbers.find(I);
    222 
    223     assert(It != InstNumbers.end() && "Didn't insert instruction?");
    224     return It->second;
    225   }
    226 
    227   void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
    228 
    229   void clear() { InstNumbers.clear(); }
    230 };
    231 
    232 struct PromoteMem2Reg {
    233   /// The alloca instructions being promoted.
    234   std::vector<AllocaInst *> Allocas;
    235   DominatorTree &DT;
    236   DIBuilder DIB;
    237 
    238   /// An AliasSetTracker object to update.  If null, don't update it.
    239   AliasSetTracker *AST;
    240 
    241   /// Reverse mapping of Allocas.
    242   DenseMap<AllocaInst *, unsigned> AllocaLookup;
    243 
    244   /// \brief The PhiNodes we're adding.
    245   ///
    246   /// That map is used to simplify some Phi nodes as we iterate over it, so
    247   /// it should have deterministic iterators.  We could use a MapVector, but
    248   /// since we already maintain a map from BasicBlock* to a stable numbering
    249   /// (BBNumbers), the DenseMap is more efficient (also supports removal).
    250   DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
    251 
    252   /// For each PHI node, keep track of which entry in Allocas it corresponds
    253   /// to.
    254   DenseMap<PHINode *, unsigned> PhiToAllocaMap;
    255 
    256   /// If we are updating an AliasSetTracker, then for each alloca that is of
    257   /// pointer type, we keep track of what to copyValue to the inserted PHI
    258   /// nodes here.
    259   std::vector<Value *> PointerAllocaValues;
    260 
    261   /// For each alloca, we keep track of the dbg.declare intrinsic that
    262   /// describes it, if any, so that we can convert it to a dbg.value
    263   /// intrinsic if the alloca gets promoted.
    264   SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares;
    265 
    266   /// The set of basic blocks the renamer has already visited.
    267   ///
    268   SmallPtrSet<BasicBlock *, 16> Visited;
    269 
    270   /// Contains a stable numbering of basic blocks to avoid non-determinstic
    271   /// behavior.
    272   DenseMap<BasicBlock *, unsigned> BBNumbers;
    273 
    274   /// Maps DomTreeNodes to their level in the dominator tree.
    275   DenseMap<DomTreeNode *, unsigned> DomLevels;
    276 
    277   /// Lazily compute the number of predecessors a block has.
    278   DenseMap<const BasicBlock *, unsigned> BBNumPreds;
    279 
    280 public:
    281   PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
    282                  AliasSetTracker *AST)
    283       : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
    284         DIB(*DT.getRoot()->getParent()->getParent()), AST(AST) {}
    285 
    286   void run();
    287 
    288 private:
    289   void RemoveFromAllocasList(unsigned &AllocaIdx) {
    290     Allocas[AllocaIdx] = Allocas.back();
    291     Allocas.pop_back();
    292     --AllocaIdx;
    293   }
    294 
    295   unsigned getNumPreds(const BasicBlock *BB) {
    296     unsigned &NP = BBNumPreds[BB];
    297     if (NP == 0)
    298       NP = std::distance(pred_begin(BB), pred_end(BB)) + 1;
    299     return NP - 1;
    300   }
    301 
    302   void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
    303                                AllocaInfo &Info);
    304   void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
    305                            const SmallPtrSet<BasicBlock *, 32> &DefBlocks,
    306                            SmallPtrSet<BasicBlock *, 32> &LiveInBlocks);
    307   void RenamePass(BasicBlock *BB, BasicBlock *Pred,
    308                   RenamePassData::ValVector &IncVals,
    309                   std::vector<RenamePassData> &Worklist);
    310   bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
    311 };
    312 
    313 } // end of anonymous namespace
    314 
    315 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
    316   // Knowing that this alloca is promotable, we know that it's safe to kill all
    317   // instructions except for load and store.
    318 
    319   for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) {
    320     Instruction *I = cast<Instruction>(*UI);
    321     ++UI;
    322     if (isa<LoadInst>(I) || isa<StoreInst>(I))
    323       continue;
    324 
    325     if (!I->getType()->isVoidTy()) {
    326       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
    327       // Follow the use/def chain to erase them now instead of leaving it for
    328       // dead code elimination later.
    329       for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) {
    330         Instruction *Inst = cast<Instruction>(*UUI);
    331         ++UUI;
    332         Inst->eraseFromParent();
    333       }
    334     }
    335     I->eraseFromParent();
    336   }
    337 }
    338 
    339 /// \brief Rewrite as many loads as possible given a single store.
    340 ///
    341 /// When there is only a single store, we can use the domtree to trivially
    342 /// replace all of the dominated loads with the stored value. Do so, and return
    343 /// true if this has successfully promoted the alloca entirely. If this returns
    344 /// false there were some loads which were not dominated by the single store
    345 /// and thus must be phi-ed with undef. We fall back to the standard alloca
    346 /// promotion algorithm in that case.
    347 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
    348                                      LargeBlockInfo &LBI,
    349                                      DominatorTree &DT,
    350                                      AliasSetTracker *AST) {
    351   StoreInst *OnlyStore = Info.OnlyStore;
    352   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
    353   BasicBlock *StoreBB = OnlyStore->getParent();
    354   int StoreIndex = -1;
    355 
    356   // Clear out UsingBlocks.  We will reconstruct it here if needed.
    357   Info.UsingBlocks.clear();
    358 
    359   for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
    360     Instruction *UserInst = cast<Instruction>(*UI++);
    361     if (!isa<LoadInst>(UserInst)) {
    362       assert(UserInst == OnlyStore && "Should only have load/stores");
    363       continue;
    364     }
    365     LoadInst *LI = cast<LoadInst>(UserInst);
    366 
    367     // Okay, if we have a load from the alloca, we want to replace it with the
    368     // only value stored to the alloca.  We can do this if the value is
    369     // dominated by the store.  If not, we use the rest of the mem2reg machinery
    370     // to insert the phi nodes as needed.
    371     if (!StoringGlobalVal) { // Non-instructions are always dominated.
    372       if (LI->getParent() == StoreBB) {
    373         // If we have a use that is in the same block as the store, compare the
    374         // indices of the two instructions to see which one came first.  If the
    375         // load came before the store, we can't handle it.
    376         if (StoreIndex == -1)
    377           StoreIndex = LBI.getInstructionIndex(OnlyStore);
    378 
    379         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
    380           // Can't handle this load, bail out.
    381           Info.UsingBlocks.push_back(StoreBB);
    382           continue;
    383         }
    384 
    385       } else if (LI->getParent() != StoreBB &&
    386                  !DT.dominates(StoreBB, LI->getParent())) {
    387         // If the load and store are in different blocks, use BB dominance to
    388         // check their relationships.  If the store doesn't dom the use, bail
    389         // out.
    390         Info.UsingBlocks.push_back(LI->getParent());
    391         continue;
    392       }
    393     }
    394 
    395     // Otherwise, we *can* safely rewrite this load.
    396     Value *ReplVal = OnlyStore->getOperand(0);
    397     // If the replacement value is the load, this must occur in unreachable
    398     // code.
    399     if (ReplVal == LI)
    400       ReplVal = UndefValue::get(LI->getType());
    401     LI->replaceAllUsesWith(ReplVal);
    402     if (AST && LI->getType()->isPointerTy())
    403       AST->deleteValue(LI);
    404     LI->eraseFromParent();
    405     LBI.deleteValue(LI);
    406   }
    407 
    408   // Finally, after the scan, check to see if the store is all that is left.
    409   if (!Info.UsingBlocks.empty())
    410     return false; // If not, we'll have to fall back for the remainder.
    411 
    412   // Record debuginfo for the store and remove the declaration's
    413   // debuginfo.
    414   if (DbgDeclareInst *DDI = Info.DbgDeclare) {
    415     DIBuilder DIB(*AI->getParent()->getParent()->getParent());
    416     ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB);
    417     DDI->eraseFromParent();
    418     LBI.deleteValue(DDI);
    419   }
    420   // Remove the (now dead) store and alloca.
    421   Info.OnlyStore->eraseFromParent();
    422   LBI.deleteValue(Info.OnlyStore);
    423 
    424   if (AST)
    425     AST->deleteValue(AI);
    426   AI->eraseFromParent();
    427   LBI.deleteValue(AI);
    428   return true;
    429 }
    430 
    431 /// Many allocas are only used within a single basic block.  If this is the
    432 /// case, avoid traversing the CFG and inserting a lot of potentially useless
    433 /// PHI nodes by just performing a single linear pass over the basic block
    434 /// using the Alloca.
    435 ///
    436 /// If we cannot promote this alloca (because it is read before it is written),
    437 /// return true.  This is necessary in cases where, due to control flow, the
    438 /// alloca is potentially undefined on some control flow paths.  e.g. code like
    439 /// this is potentially correct:
    440 ///
    441 ///   for (...) { if (c) { A = undef; undef = B; } }
    442 ///
    443 /// ... so long as A is not used before undef is set.
    444 static void promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
    445                                      LargeBlockInfo &LBI,
    446                                      AliasSetTracker *AST) {
    447   // The trickiest case to handle is when we have large blocks. Because of this,
    448   // this code is optimized assuming that large blocks happen.  This does not
    449   // significantly pessimize the small block case.  This uses LargeBlockInfo to
    450   // make it efficient to get the index of various operations in the block.
    451 
    452   // Walk the use-def list of the alloca, getting the locations of all stores.
    453   typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy;
    454   StoresByIndexTy StoresByIndex;
    455 
    456   for (User *U : AI->users())
    457     if (StoreInst *SI = dyn_cast<StoreInst>(U))
    458       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
    459 
    460   // Sort the stores by their index, making it efficient to do a lookup with a
    461   // binary search.
    462   std::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first());
    463 
    464   // Walk all of the loads from this alloca, replacing them with the nearest
    465   // store above them, if any.
    466   for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
    467     LoadInst *LI = dyn_cast<LoadInst>(*UI++);
    468     if (!LI)
    469       continue;
    470 
    471     unsigned LoadIdx = LBI.getInstructionIndex(LI);
    472 
    473     // Find the nearest store that has a lower index than this load.
    474     StoresByIndexTy::iterator I =
    475         std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
    476                          std::make_pair(LoadIdx,
    477                                         static_cast<StoreInst *>(nullptr)),
    478                          less_first());
    479 
    480     if (I == StoresByIndex.begin())
    481       // If there is no store before this load, the load takes the undef value.
    482       LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
    483     else
    484       // Otherwise, there was a store before this load, the load takes its value.
    485       LI->replaceAllUsesWith(std::prev(I)->second->getOperand(0));
    486 
    487     if (AST && LI->getType()->isPointerTy())
    488       AST->deleteValue(LI);
    489     LI->eraseFromParent();
    490     LBI.deleteValue(LI);
    491   }
    492 
    493   // Remove the (now dead) stores and alloca.
    494   while (!AI->use_empty()) {
    495     StoreInst *SI = cast<StoreInst>(AI->user_back());
    496     // Record debuginfo for the store before removing it.
    497     if (DbgDeclareInst *DDI = Info.DbgDeclare) {
    498       DIBuilder DIB(*AI->getParent()->getParent()->getParent());
    499       ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
    500     }
    501     SI->eraseFromParent();
    502     LBI.deleteValue(SI);
    503   }
    504 
    505   if (AST)
    506     AST->deleteValue(AI);
    507   AI->eraseFromParent();
    508   LBI.deleteValue(AI);
    509 
    510   // The alloca's debuginfo can be removed as well.
    511   if (DbgDeclareInst *DDI = Info.DbgDeclare) {
    512     DDI->eraseFromParent();
    513     LBI.deleteValue(DDI);
    514   }
    515 
    516   ++NumLocalPromoted;
    517 }
    518 
    519 void PromoteMem2Reg::run() {
    520   Function &F = *DT.getRoot()->getParent();
    521 
    522   if (AST)
    523     PointerAllocaValues.resize(Allocas.size());
    524   AllocaDbgDeclares.resize(Allocas.size());
    525 
    526   AllocaInfo Info;
    527   LargeBlockInfo LBI;
    528 
    529   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
    530     AllocaInst *AI = Allocas[AllocaNum];
    531 
    532     assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
    533     assert(AI->getParent()->getParent() == &F &&
    534            "All allocas should be in the same function, which is same as DF!");
    535 
    536     removeLifetimeIntrinsicUsers(AI);
    537 
    538     if (AI->use_empty()) {
    539       // If there are no uses of the alloca, just delete it now.
    540       if (AST)
    541         AST->deleteValue(AI);
    542       AI->eraseFromParent();
    543 
    544       // Remove the alloca from the Allocas list, since it has been processed
    545       RemoveFromAllocasList(AllocaNum);
    546       ++NumDeadAlloca;
    547       continue;
    548     }
    549 
    550     // Calculate the set of read and write-locations for each alloca.  This is
    551     // analogous to finding the 'uses' and 'definitions' of each variable.
    552     Info.AnalyzeAlloca(AI);
    553 
    554     // If there is only a single store to this value, replace any loads of
    555     // it that are directly dominated by the definition with the value stored.
    556     if (Info.DefiningBlocks.size() == 1) {
    557       if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST)) {
    558         // The alloca has been processed, move on.
    559         RemoveFromAllocasList(AllocaNum);
    560         ++NumSingleStore;
    561         continue;
    562       }
    563     }
    564 
    565     // If the alloca is only read and written in one basic block, just perform a
    566     // linear sweep over the block to eliminate it.
    567     if (Info.OnlyUsedInOneBlock) {
    568       promoteSingleBlockAlloca(AI, Info, LBI, AST);
    569 
    570       // The alloca has been processed, move on.
    571       RemoveFromAllocasList(AllocaNum);
    572       continue;
    573     }
    574 
    575     // If we haven't computed dominator tree levels, do so now.
    576     if (DomLevels.empty()) {
    577       SmallVector<DomTreeNode *, 32> Worklist;
    578 
    579       DomTreeNode *Root = DT.getRootNode();
    580       DomLevels[Root] = 0;
    581       Worklist.push_back(Root);
    582 
    583       while (!Worklist.empty()) {
    584         DomTreeNode *Node = Worklist.pop_back_val();
    585         unsigned ChildLevel = DomLevels[Node] + 1;
    586         for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
    587              CI != CE; ++CI) {
    588           DomLevels[*CI] = ChildLevel;
    589           Worklist.push_back(*CI);
    590         }
    591       }
    592     }
    593 
    594     // If we haven't computed a numbering for the BB's in the function, do so
    595     // now.
    596     if (BBNumbers.empty()) {
    597       unsigned ID = 0;
    598       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
    599         BBNumbers[I] = ID++;
    600     }
    601 
    602     // If we have an AST to keep updated, remember some pointer value that is
    603     // stored into the alloca.
    604     if (AST)
    605       PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
    606 
    607     // Remember the dbg.declare intrinsic describing this alloca, if any.
    608     if (Info.DbgDeclare)
    609       AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
    610 
    611     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
    612     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
    613 
    614     // At this point, we're committed to promoting the alloca using IDF's, and
    615     // the standard SSA construction algorithm.  Determine which blocks need PHI
    616     // nodes and see if we can optimize out some work by avoiding insertion of
    617     // dead phi nodes.
    618     DetermineInsertionPoint(AI, AllocaNum, Info);
    619   }
    620 
    621   if (Allocas.empty())
    622     return; // All of the allocas must have been trivial!
    623 
    624   LBI.clear();
    625 
    626   // Set the incoming values for the basic block to be null values for all of
    627   // the alloca's.  We do this in case there is a load of a value that has not
    628   // been stored yet.  In this case, it will get this null value.
    629   //
    630   RenamePassData::ValVector Values(Allocas.size());
    631   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
    632     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
    633 
    634   // Walks all basic blocks in the function performing the SSA rename algorithm
    635   // and inserting the phi nodes we marked as necessary
    636   //
    637   std::vector<RenamePassData> RenamePassWorkList;
    638   RenamePassWorkList.push_back(RenamePassData(F.begin(), nullptr, Values));
    639   do {
    640     RenamePassData RPD;
    641     RPD.swap(RenamePassWorkList.back());
    642     RenamePassWorkList.pop_back();
    643     // RenamePass may add new worklist entries.
    644     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
    645   } while (!RenamePassWorkList.empty());
    646 
    647   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
    648   Visited.clear();
    649 
    650   // Remove the allocas themselves from the function.
    651   for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
    652     Instruction *A = Allocas[i];
    653 
    654     // If there are any uses of the alloca instructions left, they must be in
    655     // unreachable basic blocks that were not processed by walking the dominator
    656     // tree. Just delete the users now.
    657     if (!A->use_empty())
    658       A->replaceAllUsesWith(UndefValue::get(A->getType()));
    659     if (AST)
    660       AST->deleteValue(A);
    661     A->eraseFromParent();
    662   }
    663 
    664   // Remove alloca's dbg.declare instrinsics from the function.
    665   for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
    666     if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
    667       DDI->eraseFromParent();
    668 
    669   // Loop over all of the PHI nodes and see if there are any that we can get
    670   // rid of because they merge all of the same incoming values.  This can
    671   // happen due to undef values coming into the PHI nodes.  This process is
    672   // iterative, because eliminating one PHI node can cause others to be removed.
    673   bool EliminatedAPHI = true;
    674   while (EliminatedAPHI) {
    675     EliminatedAPHI = false;
    676 
    677     // Iterating over NewPhiNodes is deterministic, so it is safe to try to
    678     // simplify and RAUW them as we go.  If it was not, we could add uses to
    679     // the values we replace with in a non-deterministic order, thus creating
    680     // non-deterministic def->use chains.
    681     for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
    682              I = NewPhiNodes.begin(),
    683              E = NewPhiNodes.end();
    684          I != E;) {
    685       PHINode *PN = I->second;
    686 
    687       // If this PHI node merges one value and/or undefs, get the value.
    688       if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, &DT)) {
    689         if (AST && PN->getType()->isPointerTy())
    690           AST->deleteValue(PN);
    691         PN->replaceAllUsesWith(V);
    692         PN->eraseFromParent();
    693         NewPhiNodes.erase(I++);
    694         EliminatedAPHI = true;
    695         continue;
    696       }
    697       ++I;
    698     }
    699   }
    700 
    701   // At this point, the renamer has added entries to PHI nodes for all reachable
    702   // code.  Unfortunately, there may be unreachable blocks which the renamer
    703   // hasn't traversed.  If this is the case, the PHI nodes may not
    704   // have incoming values for all predecessors.  Loop over all PHI nodes we have
    705   // created, inserting undef values if they are missing any incoming values.
    706   //
    707   for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
    708            I = NewPhiNodes.begin(),
    709            E = NewPhiNodes.end();
    710        I != E; ++I) {
    711     // We want to do this once per basic block.  As such, only process a block
    712     // when we find the PHI that is the first entry in the block.
    713     PHINode *SomePHI = I->second;
    714     BasicBlock *BB = SomePHI->getParent();
    715     if (&BB->front() != SomePHI)
    716       continue;
    717 
    718     // Only do work here if there the PHI nodes are missing incoming values.  We
    719     // know that all PHI nodes that were inserted in a block will have the same
    720     // number of incoming values, so we can just check any of them.
    721     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
    722       continue;
    723 
    724     // Get the preds for BB.
    725     SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
    726 
    727     // Ok, now we know that all of the PHI nodes are missing entries for some
    728     // basic blocks.  Start by sorting the incoming predecessors for efficient
    729     // access.
    730     std::sort(Preds.begin(), Preds.end());
    731 
    732     // Now we loop through all BB's which have entries in SomePHI and remove
    733     // them from the Preds list.
    734     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
    735       // Do a log(n) search of the Preds list for the entry we want.
    736       SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound(
    737           Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i));
    738       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
    739              "PHI node has entry for a block which is not a predecessor!");
    740 
    741       // Remove the entry
    742       Preds.erase(EntIt);
    743     }
    744 
    745     // At this point, the blocks left in the preds list must have dummy
    746     // entries inserted into every PHI nodes for the block.  Update all the phi
    747     // nodes in this block that we are inserting (there could be phis before
    748     // mem2reg runs).
    749     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
    750     BasicBlock::iterator BBI = BB->begin();
    751     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
    752            SomePHI->getNumIncomingValues() == NumBadPreds) {
    753       Value *UndefVal = UndefValue::get(SomePHI->getType());
    754       for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
    755         SomePHI->addIncoming(UndefVal, Preds[pred]);
    756     }
    757   }
    758 
    759   NewPhiNodes.clear();
    760 }
    761 
    762 /// \brief Determine which blocks the value is live in.
    763 ///
    764 /// These are blocks which lead to uses.  Knowing this allows us to avoid
    765 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
    766 /// inserted phi nodes would be dead).
    767 void PromoteMem2Reg::ComputeLiveInBlocks(
    768     AllocaInst *AI, AllocaInfo &Info,
    769     const SmallPtrSet<BasicBlock *, 32> &DefBlocks,
    770     SmallPtrSet<BasicBlock *, 32> &LiveInBlocks) {
    771 
    772   // To determine liveness, we must iterate through the predecessors of blocks
    773   // where the def is live.  Blocks are added to the worklist if we need to
    774   // check their predecessors.  Start with all the using blocks.
    775   SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
    776                                                     Info.UsingBlocks.end());
    777 
    778   // If any of the using blocks is also a definition block, check to see if the
    779   // definition occurs before or after the use.  If it happens before the use,
    780   // the value isn't really live-in.
    781   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
    782     BasicBlock *BB = LiveInBlockWorklist[i];
    783     if (!DefBlocks.count(BB))
    784       continue;
    785 
    786     // Okay, this is a block that both uses and defines the value.  If the first
    787     // reference to the alloca is a def (store), then we know it isn't live-in.
    788     for (BasicBlock::iterator I = BB->begin();; ++I) {
    789       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    790         if (SI->getOperand(1) != AI)
    791           continue;
    792 
    793         // We found a store to the alloca before a load.  The alloca is not
    794         // actually live-in here.
    795         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
    796         LiveInBlockWorklist.pop_back();
    797         --i, --e;
    798         break;
    799       }
    800 
    801       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    802         if (LI->getOperand(0) != AI)
    803           continue;
    804 
    805         // Okay, we found a load before a store to the alloca.  It is actually
    806         // live into this block.
    807         break;
    808       }
    809     }
    810   }
    811 
    812   // Now that we have a set of blocks where the phi is live-in, recursively add
    813   // their predecessors until we find the full region the value is live.
    814   while (!LiveInBlockWorklist.empty()) {
    815     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
    816 
    817     // The block really is live in here, insert it into the set.  If already in
    818     // the set, then it has already been processed.
    819     if (!LiveInBlocks.insert(BB))
    820       continue;
    821 
    822     // Since the value is live into BB, it is either defined in a predecessor or
    823     // live into it to.  Add the preds to the worklist unless they are a
    824     // defining block.
    825     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    826       BasicBlock *P = *PI;
    827 
    828       // The value is not live into a predecessor if it defines the value.
    829       if (DefBlocks.count(P))
    830         continue;
    831 
    832       // Otherwise it is, add to the worklist.
    833       LiveInBlockWorklist.push_back(P);
    834     }
    835   }
    836 }
    837 
    838 /// At this point, we're committed to promoting the alloca using IDF's, and the
    839 /// standard SSA construction algorithm.  Determine which blocks need phi nodes
    840 /// and see if we can optimize out some work by avoiding insertion of dead phi
    841 /// nodes.
    842 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
    843                                              AllocaInfo &Info) {
    844   // Unique the set of defining blocks for efficient lookup.
    845   SmallPtrSet<BasicBlock *, 32> DefBlocks;
    846   DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
    847 
    848   // Determine which blocks the value is live in.  These are blocks which lead
    849   // to uses.
    850   SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
    851   ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
    852 
    853   // Use a priority queue keyed on dominator tree level so that inserted nodes
    854   // are handled from the bottom of the dominator tree upwards.
    855   typedef std::pair<DomTreeNode *, unsigned> DomTreeNodePair;
    856   typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
    857                               less_second> IDFPriorityQueue;
    858   IDFPriorityQueue PQ;
    859 
    860   for (SmallPtrSet<BasicBlock *, 32>::const_iterator I = DefBlocks.begin(),
    861                                                      E = DefBlocks.end();
    862        I != E; ++I) {
    863     if (DomTreeNode *Node = DT.getNode(*I))
    864       PQ.push(std::make_pair(Node, DomLevels[Node]));
    865   }
    866 
    867   SmallVector<std::pair<unsigned, BasicBlock *>, 32> DFBlocks;
    868   SmallPtrSet<DomTreeNode *, 32> Visited;
    869   SmallVector<DomTreeNode *, 32> Worklist;
    870   while (!PQ.empty()) {
    871     DomTreeNodePair RootPair = PQ.top();
    872     PQ.pop();
    873     DomTreeNode *Root = RootPair.first;
    874     unsigned RootLevel = RootPair.second;
    875 
    876     // Walk all dominator tree children of Root, inspecting their CFG edges with
    877     // targets elsewhere on the dominator tree. Only targets whose level is at
    878     // most Root's level are added to the iterated dominance frontier of the
    879     // definition set.
    880 
    881     Worklist.clear();
    882     Worklist.push_back(Root);
    883 
    884     while (!Worklist.empty()) {
    885       DomTreeNode *Node = Worklist.pop_back_val();
    886       BasicBlock *BB = Node->getBlock();
    887 
    888       for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
    889            ++SI) {
    890         DomTreeNode *SuccNode = DT.getNode(*SI);
    891 
    892         // Quickly skip all CFG edges that are also dominator tree edges instead
    893         // of catching them below.
    894         if (SuccNode->getIDom() == Node)
    895           continue;
    896 
    897         unsigned SuccLevel = DomLevels[SuccNode];
    898         if (SuccLevel > RootLevel)
    899           continue;
    900 
    901         if (!Visited.insert(SuccNode))
    902           continue;
    903 
    904         BasicBlock *SuccBB = SuccNode->getBlock();
    905         if (!LiveInBlocks.count(SuccBB))
    906           continue;
    907 
    908         DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
    909         if (!DefBlocks.count(SuccBB))
    910           PQ.push(std::make_pair(SuccNode, SuccLevel));
    911       }
    912 
    913       for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
    914            ++CI) {
    915         if (!Visited.count(*CI))
    916           Worklist.push_back(*CI);
    917       }
    918     }
    919   }
    920 
    921   if (DFBlocks.size() > 1)
    922     std::sort(DFBlocks.begin(), DFBlocks.end());
    923 
    924   unsigned CurrentVersion = 0;
    925   for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
    926     QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
    927 }
    928 
    929 /// \brief Queue a phi-node to be added to a basic-block for a specific Alloca.
    930 ///
    931 /// Returns true if there wasn't already a phi-node for that variable
    932 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
    933                                   unsigned &Version) {
    934   // Look up the basic-block in question.
    935   PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
    936 
    937   // If the BB already has a phi node added for the i'th alloca then we're done!
    938   if (PN)
    939     return false;
    940 
    941   // Create a PhiNode using the dereferenced type... and add the phi-node to the
    942   // BasicBlock.
    943   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
    944                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
    945                        BB->begin());
    946   ++NumPHIInsert;
    947   PhiToAllocaMap[PN] = AllocaNo;
    948 
    949   if (AST && PN->getType()->isPointerTy())
    950     AST->copyValue(PointerAllocaValues[AllocaNo], PN);
    951 
    952   return true;
    953 }
    954 
    955 /// \brief Recursively traverse the CFG of the function, renaming loads and
    956 /// stores to the allocas which we are promoting.
    957 ///
    958 /// IncomingVals indicates what value each Alloca contains on exit from the
    959 /// predecessor block Pred.
    960 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
    961                                 RenamePassData::ValVector &IncomingVals,
    962                                 std::vector<RenamePassData> &Worklist) {
    963 NextIteration:
    964   // If we are inserting any phi nodes into this BB, they will already be in the
    965   // block.
    966   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
    967     // If we have PHI nodes to update, compute the number of edges from Pred to
    968     // BB.
    969     if (PhiToAllocaMap.count(APN)) {
    970       // We want to be able to distinguish between PHI nodes being inserted by
    971       // this invocation of mem2reg from those phi nodes that already existed in
    972       // the IR before mem2reg was run.  We determine that APN is being inserted
    973       // because it is missing incoming edges.  All other PHI nodes being
    974       // inserted by this pass of mem2reg will have the same number of incoming
    975       // operands so far.  Remember this count.
    976       unsigned NewPHINumOperands = APN->getNumOperands();
    977 
    978       unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
    979       assert(NumEdges && "Must be at least one edge from Pred to BB!");
    980 
    981       // Add entries for all the phis.
    982       BasicBlock::iterator PNI = BB->begin();
    983       do {
    984         unsigned AllocaNo = PhiToAllocaMap[APN];
    985 
    986         // Add N incoming values to the PHI node.
    987         for (unsigned i = 0; i != NumEdges; ++i)
    988           APN->addIncoming(IncomingVals[AllocaNo], Pred);
    989 
    990         // The currently active variable for this block is now the PHI.
    991         IncomingVals[AllocaNo] = APN;
    992 
    993         // Get the next phi node.
    994         ++PNI;
    995         APN = dyn_cast<PHINode>(PNI);
    996         if (!APN)
    997           break;
    998 
    999         // Verify that it is missing entries.  If not, it is not being inserted
   1000         // by this mem2reg invocation so we want to ignore it.
   1001       } while (APN->getNumOperands() == NewPHINumOperands);
   1002     }
   1003   }
   1004 
   1005   // Don't revisit blocks.
   1006   if (!Visited.insert(BB))
   1007     return;
   1008 
   1009   for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) {
   1010     Instruction *I = II++; // get the instruction, increment iterator
   1011 
   1012     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   1013       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
   1014       if (!Src)
   1015         continue;
   1016 
   1017       DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
   1018       if (AI == AllocaLookup.end())
   1019         continue;
   1020 
   1021       Value *V = IncomingVals[AI->second];
   1022 
   1023       // Anything using the load now uses the current value.
   1024       LI->replaceAllUsesWith(V);
   1025       if (AST && LI->getType()->isPointerTy())
   1026         AST->deleteValue(LI);
   1027       BB->getInstList().erase(LI);
   1028     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
   1029       // Delete this instruction and mark the name as the current holder of the
   1030       // value
   1031       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
   1032       if (!Dest)
   1033         continue;
   1034 
   1035       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
   1036       if (ai == AllocaLookup.end())
   1037         continue;
   1038 
   1039       // what value were we writing?
   1040       IncomingVals[ai->second] = SI->getOperand(0);
   1041       // Record debuginfo for the store before removing it.
   1042       if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second])
   1043         ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
   1044       BB->getInstList().erase(SI);
   1045     }
   1046   }
   1047 
   1048   // 'Recurse' to our successors.
   1049   succ_iterator I = succ_begin(BB), E = succ_end(BB);
   1050   if (I == E)
   1051     return;
   1052 
   1053   // Keep track of the successors so we don't visit the same successor twice
   1054   SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
   1055 
   1056   // Handle the first successor without using the worklist.
   1057   VisitedSuccs.insert(*I);
   1058   Pred = BB;
   1059   BB = *I;
   1060   ++I;
   1061 
   1062   for (; I != E; ++I)
   1063     if (VisitedSuccs.insert(*I))
   1064       Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
   1065 
   1066   goto NextIteration;
   1067 }
   1068 
   1069 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
   1070                            AliasSetTracker *AST) {
   1071   // If there is nothing to do, bail out...
   1072   if (Allocas.empty())
   1073     return;
   1074 
   1075   PromoteMem2Reg(Allocas, DT, AST).run();
   1076 }
   1077