Home | History | Annotate | Download | only in ADT
      1 //===-- Twine.h - Fast Temporary String Concatenation -----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #ifndef LLVM_ADT_TWINE_H
     11 #define LLVM_ADT_TWINE_H
     12 
     13 #include "llvm/ADT/StringRef.h"
     14 #include "llvm/Support/DataTypes.h"
     15 #include "llvm/Support/ErrorHandling.h"
     16 #include <cassert>
     17 #include <string>
     18 
     19 namespace llvm {
     20   template <typename T>
     21   class SmallVectorImpl;
     22   class StringRef;
     23   class raw_ostream;
     24 
     25   /// Twine - A lightweight data structure for efficiently representing the
     26   /// concatenation of temporary values as strings.
     27   ///
     28   /// A Twine is a kind of rope, it represents a concatenated string using a
     29   /// binary-tree, where the string is the preorder of the nodes. Since the
     30   /// Twine can be efficiently rendered into a buffer when its result is used,
     31   /// it avoids the cost of generating temporary values for intermediate string
     32   /// results -- particularly in cases when the Twine result is never
     33   /// required. By explicitly tracking the type of leaf nodes, we can also avoid
     34   /// the creation of temporary strings for conversions operations (such as
     35   /// appending an integer to a string).
     36   ///
     37   /// A Twine is not intended for use directly and should not be stored, its
     38   /// implementation relies on the ability to store pointers to temporary stack
     39   /// objects which may be deallocated at the end of a statement. Twines should
     40   /// only be used accepted as const references in arguments, when an API wishes
     41   /// to accept possibly-concatenated strings.
     42   ///
     43   /// Twines support a special 'null' value, which always concatenates to form
     44   /// itself, and renders as an empty string. This can be returned from APIs to
     45   /// effectively nullify any concatenations performed on the result.
     46   ///
     47   /// \b Implementation
     48   ///
     49   /// Given the nature of a Twine, it is not possible for the Twine's
     50   /// concatenation method to construct interior nodes; the result must be
     51   /// represented inside the returned value. For this reason a Twine object
     52   /// actually holds two values, the left- and right-hand sides of a
     53   /// concatenation. We also have nullary Twine objects, which are effectively
     54   /// sentinel values that represent empty strings.
     55   ///
     56   /// Thus, a Twine can effectively have zero, one, or two children. The \see
     57   /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
     58   /// testing the number of children.
     59   ///
     60   /// We maintain a number of invariants on Twine objects (FIXME: Why):
     61   ///  - Nullary twines are always represented with their Kind on the left-hand
     62   ///    side, and the Empty kind on the right-hand side.
     63   ///  - Unary twines are always represented with the value on the left-hand
     64   ///    side, and the Empty kind on the right-hand side.
     65   ///  - If a Twine has another Twine as a child, that child should always be
     66   ///    binary (otherwise it could have been folded into the parent).
     67   ///
     68   /// These invariants are check by \see isValid().
     69   ///
     70   /// \b Efficiency Considerations
     71   ///
     72   /// The Twine is designed to yield efficient and small code for common
     73   /// situations. For this reason, the concat() method is inlined so that
     74   /// concatenations of leaf nodes can be optimized into stores directly into a
     75   /// single stack allocated object.
     76   ///
     77   /// In practice, not all compilers can be trusted to optimize concat() fully,
     78   /// so we provide two additional methods (and accompanying operator+
     79   /// overloads) to guarantee that particularly important cases (cstring plus
     80   /// StringRef) codegen as desired.
     81   class Twine {
     82     /// NodeKind - Represent the type of an argument.
     83     enum NodeKind {
     84       /// An empty string; the result of concatenating anything with it is also
     85       /// empty.
     86       NullKind,
     87 
     88       /// The empty string.
     89       EmptyKind,
     90 
     91       /// A pointer to a Twine instance.
     92       TwineKind,
     93 
     94       /// A pointer to a C string instance.
     95       CStringKind,
     96 
     97       /// A pointer to an std::string instance.
     98       StdStringKind,
     99 
    100       /// A pointer to a StringRef instance.
    101       StringRefKind,
    102 
    103       /// A char value reinterpreted as a pointer, to render as a character.
    104       CharKind,
    105 
    106       /// An unsigned int value reinterpreted as a pointer, to render as an
    107       /// unsigned decimal integer.
    108       DecUIKind,
    109 
    110       /// An int value reinterpreted as a pointer, to render as a signed
    111       /// decimal integer.
    112       DecIKind,
    113 
    114       /// A pointer to an unsigned long value, to render as an unsigned decimal
    115       /// integer.
    116       DecULKind,
    117 
    118       /// A pointer to a long value, to render as a signed decimal integer.
    119       DecLKind,
    120 
    121       /// A pointer to an unsigned long long value, to render as an unsigned
    122       /// decimal integer.
    123       DecULLKind,
    124 
    125       /// A pointer to a long long value, to render as a signed decimal integer.
    126       DecLLKind,
    127 
    128       /// A pointer to a uint64_t value, to render as an unsigned hexadecimal
    129       /// integer.
    130       UHexKind
    131     };
    132 
    133     union Child
    134     {
    135       const Twine *twine;
    136       const char *cString;
    137       const std::string *stdString;
    138       const StringRef *stringRef;
    139       char character;
    140       unsigned int decUI;
    141       int decI;
    142       const unsigned long *decUL;
    143       const long *decL;
    144       const unsigned long long *decULL;
    145       const long long *decLL;
    146       const uint64_t *uHex;
    147     };
    148 
    149   private:
    150     /// LHS - The prefix in the concatenation, which may be uninitialized for
    151     /// Null or Empty kinds.
    152     Child LHS;
    153     /// RHS - The suffix in the concatenation, which may be uninitialized for
    154     /// Null or Empty kinds.
    155     Child RHS;
    156     // enums stored as unsigned chars to save on space while some compilers
    157     // don't support specifying the backing type for an enum
    158     /// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
    159     unsigned char LHSKind;
    160     /// RHSKind - The NodeKind of the left hand side, \see getLHSKind().
    161     unsigned char RHSKind;
    162 
    163   private:
    164     /// Construct a nullary twine; the kind must be NullKind or EmptyKind.
    165     explicit Twine(NodeKind Kind)
    166       : LHSKind(Kind), RHSKind(EmptyKind) {
    167       assert(isNullary() && "Invalid kind!");
    168     }
    169 
    170     /// Construct a binary twine.
    171     explicit Twine(const Twine &_LHS, const Twine &_RHS)
    172       : LHSKind(TwineKind), RHSKind(TwineKind) {
    173       LHS.twine = &_LHS;
    174       RHS.twine = &_RHS;
    175       assert(isValid() && "Invalid twine!");
    176     }
    177 
    178     /// Construct a twine from explicit values.
    179     explicit Twine(Child _LHS, NodeKind _LHSKind,
    180                    Child _RHS, NodeKind _RHSKind)
    181       : LHS(_LHS), RHS(_RHS), LHSKind(_LHSKind), RHSKind(_RHSKind) {
    182       assert(isValid() && "Invalid twine!");
    183     }
    184 
    185     /// Since the intended use of twines is as temporary objects, assignments
    186     /// when concatenating might cause undefined behavior or stack corruptions
    187     Twine &operator=(const Twine &Other) LLVM_DELETED_FUNCTION;
    188 
    189     /// isNull - Check for the null twine.
    190     bool isNull() const {
    191       return getLHSKind() == NullKind;
    192     }
    193 
    194     /// isEmpty - Check for the empty twine.
    195     bool isEmpty() const {
    196       return getLHSKind() == EmptyKind;
    197     }
    198 
    199     /// isNullary - Check if this is a nullary twine (null or empty).
    200     bool isNullary() const {
    201       return isNull() || isEmpty();
    202     }
    203 
    204     /// isUnary - Check if this is a unary twine.
    205     bool isUnary() const {
    206       return getRHSKind() == EmptyKind && !isNullary();
    207     }
    208 
    209     /// isBinary - Check if this is a binary twine.
    210     bool isBinary() const {
    211       return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
    212     }
    213 
    214     /// isValid - Check if this is a valid twine (satisfying the invariants on
    215     /// order and number of arguments).
    216     bool isValid() const {
    217       // Nullary twines always have Empty on the RHS.
    218       if (isNullary() && getRHSKind() != EmptyKind)
    219         return false;
    220 
    221       // Null should never appear on the RHS.
    222       if (getRHSKind() == NullKind)
    223         return false;
    224 
    225       // The RHS cannot be non-empty if the LHS is empty.
    226       if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
    227         return false;
    228 
    229       // A twine child should always be binary.
    230       if (getLHSKind() == TwineKind &&
    231           !LHS.twine->isBinary())
    232         return false;
    233       if (getRHSKind() == TwineKind &&
    234           !RHS.twine->isBinary())
    235         return false;
    236 
    237       return true;
    238     }
    239 
    240     /// getLHSKind - Get the NodeKind of the left-hand side.
    241     NodeKind getLHSKind() const { return (NodeKind) LHSKind; }
    242 
    243     /// getRHSKind - Get the NodeKind of the right-hand side.
    244     NodeKind getRHSKind() const { return (NodeKind) RHSKind; }
    245 
    246     /// printOneChild - Print one child from a twine.
    247     void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const;
    248 
    249     /// printOneChildRepr - Print the representation of one child from a twine.
    250     void printOneChildRepr(raw_ostream &OS, Child Ptr,
    251                            NodeKind Kind) const;
    252 
    253   public:
    254     /// @name Constructors
    255     /// @{
    256 
    257     /// Construct from an empty string.
    258     /*implicit*/ Twine() : LHSKind(EmptyKind), RHSKind(EmptyKind) {
    259       assert(isValid() && "Invalid twine!");
    260     }
    261 
    262     /// Construct from a C string.
    263     ///
    264     /// We take care here to optimize "" into the empty twine -- this will be
    265     /// optimized out for string constants. This allows Twine arguments have
    266     /// default "" values, without introducing unnecessary string constants.
    267     /*implicit*/ Twine(const char *Str)
    268       : RHSKind(EmptyKind) {
    269       if (Str[0] != '\0') {
    270         LHS.cString = Str;
    271         LHSKind = CStringKind;
    272       } else
    273         LHSKind = EmptyKind;
    274 
    275       assert(isValid() && "Invalid twine!");
    276     }
    277 
    278     /// Construct from an std::string.
    279     /*implicit*/ Twine(const std::string &Str)
    280       : LHSKind(StdStringKind), RHSKind(EmptyKind) {
    281       LHS.stdString = &Str;
    282       assert(isValid() && "Invalid twine!");
    283     }
    284 
    285     /// Construct from a StringRef.
    286     /*implicit*/ Twine(const StringRef &Str)
    287       : LHSKind(StringRefKind), RHSKind(EmptyKind) {
    288       LHS.stringRef = &Str;
    289       assert(isValid() && "Invalid twine!");
    290     }
    291 
    292     /// Construct from a char.
    293     explicit Twine(char Val)
    294       : LHSKind(CharKind), RHSKind(EmptyKind) {
    295       LHS.character = Val;
    296     }
    297 
    298     /// Construct from a signed char.
    299     explicit Twine(signed char Val)
    300       : LHSKind(CharKind), RHSKind(EmptyKind) {
    301       LHS.character = static_cast<char>(Val);
    302     }
    303 
    304     /// Construct from an unsigned char.
    305     explicit Twine(unsigned char Val)
    306       : LHSKind(CharKind), RHSKind(EmptyKind) {
    307       LHS.character = static_cast<char>(Val);
    308     }
    309 
    310     /// Construct a twine to print \p Val as an unsigned decimal integer.
    311     explicit Twine(unsigned Val)
    312       : LHSKind(DecUIKind), RHSKind(EmptyKind) {
    313       LHS.decUI = Val;
    314     }
    315 
    316     /// Construct a twine to print \p Val as a signed decimal integer.
    317     explicit Twine(int Val)
    318       : LHSKind(DecIKind), RHSKind(EmptyKind) {
    319       LHS.decI = Val;
    320     }
    321 
    322     /// Construct a twine to print \p Val as an unsigned decimal integer.
    323     explicit Twine(const unsigned long &Val)
    324       : LHSKind(DecULKind), RHSKind(EmptyKind) {
    325       LHS.decUL = &Val;
    326     }
    327 
    328     /// Construct a twine to print \p Val as a signed decimal integer.
    329     explicit Twine(const long &Val)
    330       : LHSKind(DecLKind), RHSKind(EmptyKind) {
    331       LHS.decL = &Val;
    332     }
    333 
    334     /// Construct a twine to print \p Val as an unsigned decimal integer.
    335     explicit Twine(const unsigned long long &Val)
    336       : LHSKind(DecULLKind), RHSKind(EmptyKind) {
    337       LHS.decULL = &Val;
    338     }
    339 
    340     /// Construct a twine to print \p Val as a signed decimal integer.
    341     explicit Twine(const long long &Val)
    342       : LHSKind(DecLLKind), RHSKind(EmptyKind) {
    343       LHS.decLL = &Val;
    344     }
    345 
    346     // FIXME: Unfortunately, to make sure this is as efficient as possible we
    347     // need extra binary constructors from particular types. We can't rely on
    348     // the compiler to be smart enough to fold operator+()/concat() down to the
    349     // right thing. Yet.
    350 
    351     /// Construct as the concatenation of a C string and a StringRef.
    352     /*implicit*/ Twine(const char *_LHS, const StringRef &_RHS)
    353       : LHSKind(CStringKind), RHSKind(StringRefKind) {
    354       LHS.cString = _LHS;
    355       RHS.stringRef = &_RHS;
    356       assert(isValid() && "Invalid twine!");
    357     }
    358 
    359     /// Construct as the concatenation of a StringRef and a C string.
    360     /*implicit*/ Twine(const StringRef &_LHS, const char *_RHS)
    361       : LHSKind(StringRefKind), RHSKind(CStringKind) {
    362       LHS.stringRef = &_LHS;
    363       RHS.cString = _RHS;
    364       assert(isValid() && "Invalid twine!");
    365     }
    366 
    367     /// Create a 'null' string, which is an empty string that always
    368     /// concatenates to form another empty string.
    369     static Twine createNull() {
    370       return Twine(NullKind);
    371     }
    372 
    373     /// @}
    374     /// @name Numeric Conversions
    375     /// @{
    376 
    377     // Construct a twine to print \p Val as an unsigned hexadecimal integer.
    378     static Twine utohexstr(const uint64_t &Val) {
    379       Child LHS, RHS;
    380       LHS.uHex = &Val;
    381       RHS.twine = nullptr;
    382       return Twine(LHS, UHexKind, RHS, EmptyKind);
    383     }
    384 
    385     /// @}
    386     /// @name Predicate Operations
    387     /// @{
    388 
    389     /// isTriviallyEmpty - Check if this twine is trivially empty; a false
    390     /// return value does not necessarily mean the twine is empty.
    391     bool isTriviallyEmpty() const {
    392       return isNullary();
    393     }
    394 
    395     /// isSingleStringRef - Return true if this twine can be dynamically
    396     /// accessed as a single StringRef value with getSingleStringRef().
    397     bool isSingleStringRef() const {
    398       if (getRHSKind() != EmptyKind) return false;
    399 
    400       switch (getLHSKind()) {
    401       case EmptyKind:
    402       case CStringKind:
    403       case StdStringKind:
    404       case StringRefKind:
    405         return true;
    406       default:
    407         return false;
    408       }
    409     }
    410 
    411     /// @}
    412     /// @name String Operations
    413     /// @{
    414 
    415     Twine concat(const Twine &Suffix) const;
    416 
    417     /// @}
    418     /// @name Output & Conversion.
    419     /// @{
    420 
    421     /// str - Return the twine contents as a std::string.
    422     std::string str() const;
    423 
    424     /// toVector - Write the concatenated string into the given SmallString or
    425     /// SmallVector.
    426     void toVector(SmallVectorImpl<char> &Out) const;
    427 
    428     /// getSingleStringRef - This returns the twine as a single StringRef.  This
    429     /// method is only valid if isSingleStringRef() is true.
    430     StringRef getSingleStringRef() const {
    431       assert(isSingleStringRef() &&"This cannot be had as a single stringref!");
    432       switch (getLHSKind()) {
    433       default: llvm_unreachable("Out of sync with isSingleStringRef");
    434       case EmptyKind:      return StringRef();
    435       case CStringKind:    return StringRef(LHS.cString);
    436       case StdStringKind:  return StringRef(*LHS.stdString);
    437       case StringRefKind:  return *LHS.stringRef;
    438       }
    439     }
    440 
    441     /// toStringRef - This returns the twine as a single StringRef if it can be
    442     /// represented as such. Otherwise the twine is written into the given
    443     /// SmallVector and a StringRef to the SmallVector's data is returned.
    444     StringRef toStringRef(SmallVectorImpl<char> &Out) const;
    445 
    446     /// toNullTerminatedStringRef - This returns the twine as a single null
    447     /// terminated StringRef if it can be represented as such. Otherwise the
    448     /// twine is written into the given SmallVector and a StringRef to the
    449     /// SmallVector's data is returned.
    450     ///
    451     /// The returned StringRef's size does not include the null terminator.
    452     StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const;
    453 
    454     /// Write the concatenated string represented by this twine to the
    455     /// stream \p OS.
    456     void print(raw_ostream &OS) const;
    457 
    458     /// Dump the concatenated string represented by this twine to stderr.
    459     void dump() const;
    460 
    461     /// Write the representation of this twine to the stream \p OS.
    462     void printRepr(raw_ostream &OS) const;
    463 
    464     /// Dump the representation of this twine to stderr.
    465     void dumpRepr() const;
    466 
    467     /// @}
    468   };
    469 
    470   /// @name Twine Inline Implementations
    471   /// @{
    472 
    473   inline Twine Twine::concat(const Twine &Suffix) const {
    474     // Concatenation with null is null.
    475     if (isNull() || Suffix.isNull())
    476       return Twine(NullKind);
    477 
    478     // Concatenation with empty yields the other side.
    479     if (isEmpty())
    480       return Suffix;
    481     if (Suffix.isEmpty())
    482       return *this;
    483 
    484     // Otherwise we need to create a new node, taking care to fold in unary
    485     // twines.
    486     Child NewLHS, NewRHS;
    487     NewLHS.twine = this;
    488     NewRHS.twine = &Suffix;
    489     NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
    490     if (isUnary()) {
    491       NewLHS = LHS;
    492       NewLHSKind = getLHSKind();
    493     }
    494     if (Suffix.isUnary()) {
    495       NewRHS = Suffix.LHS;
    496       NewRHSKind = Suffix.getLHSKind();
    497     }
    498 
    499     return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
    500   }
    501 
    502   inline Twine operator+(const Twine &LHS, const Twine &RHS) {
    503     return LHS.concat(RHS);
    504   }
    505 
    506   /// Additional overload to guarantee simplified codegen; this is equivalent to
    507   /// concat().
    508 
    509   inline Twine operator+(const char *LHS, const StringRef &RHS) {
    510     return Twine(LHS, RHS);
    511   }
    512 
    513   /// Additional overload to guarantee simplified codegen; this is equivalent to
    514   /// concat().
    515 
    516   inline Twine operator+(const StringRef &LHS, const char *RHS) {
    517     return Twine(LHS, RHS);
    518   }
    519 
    520   inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
    521     RHS.print(OS);
    522     return OS;
    523   }
    524 
    525   /// @}
    526 }
    527 
    528 #endif
    529