Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_JSREGEXP_H_
      6 #define V8_JSREGEXP_H_
      7 
      8 #include "src/allocation.h"
      9 #include "src/assembler.h"
     10 #include "src/zone-inl.h"
     11 
     12 namespace v8 {
     13 namespace internal {
     14 
     15 class NodeVisitor;
     16 class RegExpCompiler;
     17 class RegExpMacroAssembler;
     18 class RegExpNode;
     19 class RegExpTree;
     20 class BoyerMooreLookahead;
     21 
     22 class RegExpImpl {
     23  public:
     24   // Whether V8 is compiled with native regexp support or not.
     25   static bool UsesNativeRegExp() {
     26 #ifdef V8_INTERPRETED_REGEXP
     27     return false;
     28 #else
     29     return true;
     30 #endif
     31   }
     32 
     33   // Creates a regular expression literal in the old space.
     34   // This function calls the garbage collector if necessary.
     35   MUST_USE_RESULT static MaybeHandle<Object> CreateRegExpLiteral(
     36       Handle<JSFunction> constructor,
     37       Handle<String> pattern,
     38       Handle<String> flags);
     39 
     40   // Returns a string representation of a regular expression.
     41   // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
     42   // This function calls the garbage collector if necessary.
     43   static Handle<String> ToString(Handle<Object> value);
     44 
     45   // Parses the RegExp pattern and prepares the JSRegExp object with
     46   // generic data and choice of implementation - as well as what
     47   // the implementation wants to store in the data field.
     48   // Returns false if compilation fails.
     49   MUST_USE_RESULT static MaybeHandle<Object> Compile(
     50       Handle<JSRegExp> re,
     51       Handle<String> pattern,
     52       Handle<String> flags);
     53 
     54   // See ECMA-262 section 15.10.6.2.
     55   // This function calls the garbage collector if necessary.
     56   MUST_USE_RESULT static MaybeHandle<Object> Exec(
     57       Handle<JSRegExp> regexp,
     58       Handle<String> subject,
     59       int index,
     60       Handle<JSArray> lastMatchInfo);
     61 
     62   // Prepares a JSRegExp object with Irregexp-specific data.
     63   static void IrregexpInitialize(Handle<JSRegExp> re,
     64                                  Handle<String> pattern,
     65                                  JSRegExp::Flags flags,
     66                                  int capture_register_count);
     67 
     68 
     69   static void AtomCompile(Handle<JSRegExp> re,
     70                           Handle<String> pattern,
     71                           JSRegExp::Flags flags,
     72                           Handle<String> match_pattern);
     73 
     74 
     75   static int AtomExecRaw(Handle<JSRegExp> regexp,
     76                          Handle<String> subject,
     77                          int index,
     78                          int32_t* output,
     79                          int output_size);
     80 
     81 
     82   static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
     83                                  Handle<String> subject,
     84                                  int index,
     85                                  Handle<JSArray> lastMatchInfo);
     86 
     87   enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
     88 
     89   // Prepare a RegExp for being executed one or more times (using
     90   // IrregexpExecOnce) on the subject.
     91   // This ensures that the regexp is compiled for the subject, and that
     92   // the subject is flat.
     93   // Returns the number of integer spaces required by IrregexpExecOnce
     94   // as its "registers" argument.  If the regexp cannot be compiled,
     95   // an exception is set as pending, and this function returns negative.
     96   static int IrregexpPrepare(Handle<JSRegExp> regexp,
     97                              Handle<String> subject);
     98 
     99   // Execute a regular expression on the subject, starting from index.
    100   // If matching succeeds, return the number of matches.  This can be larger
    101   // than one in the case of global regular expressions.
    102   // The captures and subcaptures are stored into the registers vector.
    103   // If matching fails, returns RE_FAILURE.
    104   // If execution fails, sets a pending exception and returns RE_EXCEPTION.
    105   static int IrregexpExecRaw(Handle<JSRegExp> regexp,
    106                              Handle<String> subject,
    107                              int index,
    108                              int32_t* output,
    109                              int output_size);
    110 
    111   // Execute an Irregexp bytecode pattern.
    112   // On a successful match, the result is a JSArray containing
    113   // captured positions.  On a failure, the result is the null value.
    114   // Returns an empty handle in case of an exception.
    115   MUST_USE_RESULT static MaybeHandle<Object> IrregexpExec(
    116       Handle<JSRegExp> regexp,
    117       Handle<String> subject,
    118       int index,
    119       Handle<JSArray> lastMatchInfo);
    120 
    121   // Set last match info.  If match is NULL, then setting captures is omitted.
    122   static Handle<JSArray> SetLastMatchInfo(Handle<JSArray> last_match_info,
    123                                           Handle<String> subject,
    124                                           int capture_count,
    125                                           int32_t* match);
    126 
    127 
    128   class GlobalCache {
    129    public:
    130     GlobalCache(Handle<JSRegExp> regexp,
    131                 Handle<String> subject,
    132                 bool is_global,
    133                 Isolate* isolate);
    134 
    135     INLINE(~GlobalCache());
    136 
    137     // Fetch the next entry in the cache for global regexp match results.
    138     // This does not set the last match info.  Upon failure, NULL is returned.
    139     // The cause can be checked with Result().  The previous
    140     // result is still in available in memory when a failure happens.
    141     INLINE(int32_t* FetchNext());
    142 
    143     INLINE(int32_t* LastSuccessfulMatch());
    144 
    145     INLINE(bool HasException()) { return num_matches_ < 0; }
    146 
    147    private:
    148     int num_matches_;
    149     int max_matches_;
    150     int current_match_index_;
    151     int registers_per_match_;
    152     // Pointer to the last set of captures.
    153     int32_t* register_array_;
    154     int register_array_size_;
    155     Handle<JSRegExp> regexp_;
    156     Handle<String> subject_;
    157   };
    158 
    159 
    160   // Array index in the lastMatchInfo array.
    161   static const int kLastCaptureCount = 0;
    162   static const int kLastSubject = 1;
    163   static const int kLastInput = 2;
    164   static const int kFirstCapture = 3;
    165   static const int kLastMatchOverhead = 3;
    166 
    167   // Direct offset into the lastMatchInfo array.
    168   static const int kLastCaptureCountOffset =
    169       FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
    170   static const int kLastSubjectOffset =
    171       FixedArray::kHeaderSize + kLastSubject * kPointerSize;
    172   static const int kLastInputOffset =
    173       FixedArray::kHeaderSize + kLastInput * kPointerSize;
    174   static const int kFirstCaptureOffset =
    175       FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
    176 
    177   // Used to access the lastMatchInfo array.
    178   static int GetCapture(FixedArray* array, int index) {
    179     return Smi::cast(array->get(index + kFirstCapture))->value();
    180   }
    181 
    182   static void SetLastCaptureCount(FixedArray* array, int to) {
    183     array->set(kLastCaptureCount, Smi::FromInt(to));
    184   }
    185 
    186   static void SetLastSubject(FixedArray* array, String* to) {
    187     array->set(kLastSubject, to);
    188   }
    189 
    190   static void SetLastInput(FixedArray* array, String* to) {
    191     array->set(kLastInput, to);
    192   }
    193 
    194   static void SetCapture(FixedArray* array, int index, int to) {
    195     array->set(index + kFirstCapture, Smi::FromInt(to));
    196   }
    197 
    198   static int GetLastCaptureCount(FixedArray* array) {
    199     return Smi::cast(array->get(kLastCaptureCount))->value();
    200   }
    201 
    202   // For acting on the JSRegExp data FixedArray.
    203   static int IrregexpMaxRegisterCount(FixedArray* re);
    204   static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
    205   static int IrregexpNumberOfCaptures(FixedArray* re);
    206   static int IrregexpNumberOfRegisters(FixedArray* re);
    207   static ByteArray* IrregexpByteCode(FixedArray* re, bool is_ascii);
    208   static Code* IrregexpNativeCode(FixedArray* re, bool is_ascii);
    209 
    210   // Limit the space regexps take up on the heap.  In order to limit this we
    211   // would like to keep track of the amount of regexp code on the heap.  This
    212   // is not tracked, however.  As a conservative approximation we track the
    213   // total regexp code compiled including code that has subsequently been freed
    214   // and the total executable memory at any point.
    215   static const int kRegExpExecutableMemoryLimit = 16 * MB;
    216   static const int kRegWxpCompiledLimit = 1 * MB;
    217 
    218  private:
    219   static bool CompileIrregexp(
    220       Handle<JSRegExp> re, Handle<String> sample_subject, bool is_ascii);
    221   static inline bool EnsureCompiledIrregexp(
    222       Handle<JSRegExp> re, Handle<String> sample_subject, bool is_ascii);
    223 };
    224 
    225 
    226 // Represents the location of one element relative to the intersection of
    227 // two sets. Corresponds to the four areas of a Venn diagram.
    228 enum ElementInSetsRelation {
    229   kInsideNone = 0,
    230   kInsideFirst = 1,
    231   kInsideSecond = 2,
    232   kInsideBoth = 3
    233 };
    234 
    235 
    236 // Represents code units in the range from from_ to to_, both ends are
    237 // inclusive.
    238 class CharacterRange {
    239  public:
    240   CharacterRange() : from_(0), to_(0) { }
    241   // For compatibility with the CHECK_OK macro
    242   CharacterRange(void* null) { ASSERT_EQ(NULL, null); }  //NOLINT
    243   CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
    244   static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges,
    245                              Zone* zone);
    246   static Vector<const int> GetWordBounds();
    247   static inline CharacterRange Singleton(uc16 value) {
    248     return CharacterRange(value, value);
    249   }
    250   static inline CharacterRange Range(uc16 from, uc16 to) {
    251     ASSERT(from <= to);
    252     return CharacterRange(from, to);
    253   }
    254   static inline CharacterRange Everything() {
    255     return CharacterRange(0, 0xFFFF);
    256   }
    257   bool Contains(uc16 i) { return from_ <= i && i <= to_; }
    258   uc16 from() const { return from_; }
    259   void set_from(uc16 value) { from_ = value; }
    260   uc16 to() const { return to_; }
    261   void set_to(uc16 value) { to_ = value; }
    262   bool is_valid() { return from_ <= to_; }
    263   bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
    264   bool IsSingleton() { return (from_ == to_); }
    265   void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_ascii,
    266                           Zone* zone);
    267   static void Split(ZoneList<CharacterRange>* base,
    268                     Vector<const int> overlay,
    269                     ZoneList<CharacterRange>** included,
    270                     ZoneList<CharacterRange>** excluded,
    271                     Zone* zone);
    272   // Whether a range list is in canonical form: Ranges ordered by from value,
    273   // and ranges non-overlapping and non-adjacent.
    274   static bool IsCanonical(ZoneList<CharacterRange>* ranges);
    275   // Convert range list to canonical form. The characters covered by the ranges
    276   // will still be the same, but no character is in more than one range, and
    277   // adjacent ranges are merged. The resulting list may be shorter than the
    278   // original, but cannot be longer.
    279   static void Canonicalize(ZoneList<CharacterRange>* ranges);
    280   // Negate the contents of a character range in canonical form.
    281   static void Negate(ZoneList<CharacterRange>* src,
    282                      ZoneList<CharacterRange>* dst,
    283                      Zone* zone);
    284   static const int kStartMarker = (1 << 24);
    285   static const int kPayloadMask = (1 << 24) - 1;
    286 
    287  private:
    288   uc16 from_;
    289   uc16 to_;
    290 };
    291 
    292 
    293 // A set of unsigned integers that behaves especially well on small
    294 // integers (< 32).  May do zone-allocation.
    295 class OutSet: public ZoneObject {
    296  public:
    297   OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
    298   OutSet* Extend(unsigned value, Zone* zone);
    299   bool Get(unsigned value) const;
    300   static const unsigned kFirstLimit = 32;
    301 
    302  private:
    303   // Destructively set a value in this set.  In most cases you want
    304   // to use Extend instead to ensure that only one instance exists
    305   // that contains the same values.
    306   void Set(unsigned value, Zone* zone);
    307 
    308   // The successors are a list of sets that contain the same values
    309   // as this set and the one more value that is not present in this
    310   // set.
    311   ZoneList<OutSet*>* successors(Zone* zone) { return successors_; }
    312 
    313   OutSet(uint32_t first, ZoneList<unsigned>* remaining)
    314       : first_(first), remaining_(remaining), successors_(NULL) { }
    315   uint32_t first_;
    316   ZoneList<unsigned>* remaining_;
    317   ZoneList<OutSet*>* successors_;
    318   friend class Trace;
    319 };
    320 
    321 
    322 // A mapping from integers, specified as ranges, to a set of integers.
    323 // Used for mapping character ranges to choices.
    324 class DispatchTable : public ZoneObject {
    325  public:
    326   explicit DispatchTable(Zone* zone) : tree_(zone) { }
    327 
    328   class Entry {
    329    public:
    330     Entry() : from_(0), to_(0), out_set_(NULL) { }
    331     Entry(uc16 from, uc16 to, OutSet* out_set)
    332         : from_(from), to_(to), out_set_(out_set) { }
    333     uc16 from() { return from_; }
    334     uc16 to() { return to_; }
    335     void set_to(uc16 value) { to_ = value; }
    336     void AddValue(int value, Zone* zone) {
    337       out_set_ = out_set_->Extend(value, zone);
    338     }
    339     OutSet* out_set() { return out_set_; }
    340    private:
    341     uc16 from_;
    342     uc16 to_;
    343     OutSet* out_set_;
    344   };
    345 
    346   class Config {
    347    public:
    348     typedef uc16 Key;
    349     typedef Entry Value;
    350     static const uc16 kNoKey;
    351     static const Entry NoValue() { return Value(); }
    352     static inline int Compare(uc16 a, uc16 b) {
    353       if (a == b)
    354         return 0;
    355       else if (a < b)
    356         return -1;
    357       else
    358         return 1;
    359     }
    360   };
    361 
    362   void AddRange(CharacterRange range, int value, Zone* zone);
    363   OutSet* Get(uc16 value);
    364   void Dump();
    365 
    366   template <typename Callback>
    367   void ForEach(Callback* callback) {
    368     return tree()->ForEach(callback);
    369   }
    370 
    371  private:
    372   // There can't be a static empty set since it allocates its
    373   // successors in a zone and caches them.
    374   OutSet* empty() { return &empty_; }
    375   OutSet empty_;
    376   ZoneSplayTree<Config>* tree() { return &tree_; }
    377   ZoneSplayTree<Config> tree_;
    378 };
    379 
    380 
    381 #define FOR_EACH_NODE_TYPE(VISIT)                                    \
    382   VISIT(End)                                                         \
    383   VISIT(Action)                                                      \
    384   VISIT(Choice)                                                      \
    385   VISIT(BackReference)                                               \
    386   VISIT(Assertion)                                                   \
    387   VISIT(Text)
    388 
    389 
    390 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT)                            \
    391   VISIT(Disjunction)                                                 \
    392   VISIT(Alternative)                                                 \
    393   VISIT(Assertion)                                                   \
    394   VISIT(CharacterClass)                                              \
    395   VISIT(Atom)                                                        \
    396   VISIT(Quantifier)                                                  \
    397   VISIT(Capture)                                                     \
    398   VISIT(Lookahead)                                                   \
    399   VISIT(BackReference)                                               \
    400   VISIT(Empty)                                                       \
    401   VISIT(Text)
    402 
    403 
    404 #define FORWARD_DECLARE(Name) class RegExp##Name;
    405 FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
    406 #undef FORWARD_DECLARE
    407 
    408 
    409 class TextElement V8_FINAL BASE_EMBEDDED {
    410  public:
    411   enum TextType {
    412     ATOM,
    413     CHAR_CLASS
    414   };
    415 
    416   static TextElement Atom(RegExpAtom* atom);
    417   static TextElement CharClass(RegExpCharacterClass* char_class);
    418 
    419   int cp_offset() const { return cp_offset_; }
    420   void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
    421   int length() const;
    422 
    423   TextType text_type() const { return text_type_; }
    424 
    425   RegExpTree* tree() const { return tree_; }
    426 
    427   RegExpAtom* atom() const {
    428     ASSERT(text_type() == ATOM);
    429     return reinterpret_cast<RegExpAtom*>(tree());
    430   }
    431 
    432   RegExpCharacterClass* char_class() const {
    433     ASSERT(text_type() == CHAR_CLASS);
    434     return reinterpret_cast<RegExpCharacterClass*>(tree());
    435   }
    436 
    437  private:
    438   TextElement(TextType text_type, RegExpTree* tree)
    439       : cp_offset_(-1), text_type_(text_type), tree_(tree) {}
    440 
    441   int cp_offset_;
    442   TextType text_type_;
    443   RegExpTree* tree_;
    444 };
    445 
    446 
    447 class Trace;
    448 
    449 
    450 struct NodeInfo {
    451   NodeInfo()
    452       : being_analyzed(false),
    453         been_analyzed(false),
    454         follows_word_interest(false),
    455         follows_newline_interest(false),
    456         follows_start_interest(false),
    457         at_end(false),
    458         visited(false),
    459         replacement_calculated(false) { }
    460 
    461   // Returns true if the interests and assumptions of this node
    462   // matches the given one.
    463   bool Matches(NodeInfo* that) {
    464     return (at_end == that->at_end) &&
    465            (follows_word_interest == that->follows_word_interest) &&
    466            (follows_newline_interest == that->follows_newline_interest) &&
    467            (follows_start_interest == that->follows_start_interest);
    468   }
    469 
    470   // Updates the interests of this node given the interests of the
    471   // node preceding it.
    472   void AddFromPreceding(NodeInfo* that) {
    473     at_end |= that->at_end;
    474     follows_word_interest |= that->follows_word_interest;
    475     follows_newline_interest |= that->follows_newline_interest;
    476     follows_start_interest |= that->follows_start_interest;
    477   }
    478 
    479   bool HasLookbehind() {
    480     return follows_word_interest ||
    481            follows_newline_interest ||
    482            follows_start_interest;
    483   }
    484 
    485   // Sets the interests of this node to include the interests of the
    486   // following node.
    487   void AddFromFollowing(NodeInfo* that) {
    488     follows_word_interest |= that->follows_word_interest;
    489     follows_newline_interest |= that->follows_newline_interest;
    490     follows_start_interest |= that->follows_start_interest;
    491   }
    492 
    493   void ResetCompilationState() {
    494     being_analyzed = false;
    495     been_analyzed = false;
    496   }
    497 
    498   bool being_analyzed: 1;
    499   bool been_analyzed: 1;
    500 
    501   // These bits are set of this node has to know what the preceding
    502   // character was.
    503   bool follows_word_interest: 1;
    504   bool follows_newline_interest: 1;
    505   bool follows_start_interest: 1;
    506 
    507   bool at_end: 1;
    508   bool visited: 1;
    509   bool replacement_calculated: 1;
    510 };
    511 
    512 
    513 // Details of a quick mask-compare check that can look ahead in the
    514 // input stream.
    515 class QuickCheckDetails {
    516  public:
    517   QuickCheckDetails()
    518       : characters_(0),
    519         mask_(0),
    520         value_(0),
    521         cannot_match_(false) { }
    522   explicit QuickCheckDetails(int characters)
    523       : characters_(characters),
    524         mask_(0),
    525         value_(0),
    526         cannot_match_(false) { }
    527   bool Rationalize(bool ascii);
    528   // Merge in the information from another branch of an alternation.
    529   void Merge(QuickCheckDetails* other, int from_index);
    530   // Advance the current position by some amount.
    531   void Advance(int by, bool ascii);
    532   void Clear();
    533   bool cannot_match() { return cannot_match_; }
    534   void set_cannot_match() { cannot_match_ = true; }
    535   struct Position {
    536     Position() : mask(0), value(0), determines_perfectly(false) { }
    537     uc16 mask;
    538     uc16 value;
    539     bool determines_perfectly;
    540   };
    541   int characters() { return characters_; }
    542   void set_characters(int characters) { characters_ = characters; }
    543   Position* positions(int index) {
    544     ASSERT(index >= 0);
    545     ASSERT(index < characters_);
    546     return positions_ + index;
    547   }
    548   uint32_t mask() { return mask_; }
    549   uint32_t value() { return value_; }
    550 
    551  private:
    552   // How many characters do we have quick check information from.  This is
    553   // the same for all branches of a choice node.
    554   int characters_;
    555   Position positions_[4];
    556   // These values are the condensate of the above array after Rationalize().
    557   uint32_t mask_;
    558   uint32_t value_;
    559   // If set to true, there is no way this quick check can match at all.
    560   // E.g., if it requires to be at the start of the input, and isn't.
    561   bool cannot_match_;
    562 };
    563 
    564 
    565 extern int kUninitializedRegExpNodePlaceHolder;
    566 
    567 
    568 class RegExpNode: public ZoneObject {
    569  public:
    570   explicit RegExpNode(Zone* zone)
    571   : replacement_(NULL), trace_count_(0), zone_(zone) {
    572     bm_info_[0] = bm_info_[1] = NULL;
    573   }
    574   virtual ~RegExpNode();
    575   virtual void Accept(NodeVisitor* visitor) = 0;
    576   // Generates a goto to this node or actually generates the code at this point.
    577   virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
    578   // How many characters must this node consume at a minimum in order to
    579   // succeed.  If we have found at least 'still_to_find' characters that
    580   // must be consumed there is no need to ask any following nodes whether
    581   // they are sure to eat any more characters.  The not_at_start argument is
    582   // used to indicate that we know we are not at the start of the input.  In
    583   // this case anchored branches will always fail and can be ignored when
    584   // determining how many characters are consumed on success.
    585   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0;
    586   // Emits some quick code that checks whether the preloaded characters match.
    587   // Falls through on certain failure, jumps to the label on possible success.
    588   // If the node cannot make a quick check it does nothing and returns false.
    589   bool EmitQuickCheck(RegExpCompiler* compiler,
    590                       Trace* trace,
    591                       bool preload_has_checked_bounds,
    592                       Label* on_possible_success,
    593                       QuickCheckDetails* details_return,
    594                       bool fall_through_on_failure);
    595   // For a given number of characters this returns a mask and a value.  The
    596   // next n characters are anded with the mask and compared with the value.
    597   // A comparison failure indicates the node cannot match the next n characters.
    598   // A comparison success indicates the node may match.
    599   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    600                                     RegExpCompiler* compiler,
    601                                     int characters_filled_in,
    602                                     bool not_at_start) = 0;
    603   static const int kNodeIsTooComplexForGreedyLoops = -1;
    604   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
    605   // Only returns the successor for a text node of length 1 that matches any
    606   // character and that has no guards on it.
    607   virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
    608       RegExpCompiler* compiler) {
    609     return NULL;
    610   }
    611 
    612   // Collects information on the possible code units (mod 128) that can match if
    613   // we look forward.  This is used for a Boyer-Moore-like string searching
    614   // implementation.  TODO(erikcorry):  This should share more code with
    615   // EatsAtLeast, GetQuickCheckDetails.  The budget argument is used to limit
    616   // the number of nodes we are willing to look at in order to create this data.
    617   static const int kRecursionBudget = 200;
    618   virtual void FillInBMInfo(int offset,
    619                             int budget,
    620                             BoyerMooreLookahead* bm,
    621                             bool not_at_start) {
    622     UNREACHABLE();
    623   }
    624 
    625   // If we know that the input is ASCII then there are some nodes that can
    626   // never match.  This method returns a node that can be substituted for
    627   // itself, or NULL if the node can never match.
    628   virtual RegExpNode* FilterASCII(int depth, bool ignore_case) { return this; }
    629   // Helper for FilterASCII.
    630   RegExpNode* replacement() {
    631     ASSERT(info()->replacement_calculated);
    632     return replacement_;
    633   }
    634   RegExpNode* set_replacement(RegExpNode* replacement) {
    635     info()->replacement_calculated = true;
    636     replacement_ =  replacement;
    637     return replacement;  // For convenience.
    638   }
    639 
    640   // We want to avoid recalculating the lookahead info, so we store it on the
    641   // node.  Only info that is for this node is stored.  We can tell that the
    642   // info is for this node when offset == 0, so the information is calculated
    643   // relative to this node.
    644   void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) {
    645     if (offset == 0) set_bm_info(not_at_start, bm);
    646   }
    647 
    648   Label* label() { return &label_; }
    649   // If non-generic code is generated for a node (i.e. the node is not at the
    650   // start of the trace) then it cannot be reused.  This variable sets a limit
    651   // on how often we allow that to happen before we insist on starting a new
    652   // trace and generating generic code for a node that can be reused by flushing
    653   // the deferred actions in the current trace and generating a goto.
    654   static const int kMaxCopiesCodeGenerated = 10;
    655 
    656   NodeInfo* info() { return &info_; }
    657 
    658   BoyerMooreLookahead* bm_info(bool not_at_start) {
    659     return bm_info_[not_at_start ? 1 : 0];
    660   }
    661 
    662   Zone* zone() const { return zone_; }
    663 
    664  protected:
    665   enum LimitResult { DONE, CONTINUE };
    666   RegExpNode* replacement_;
    667 
    668   LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
    669 
    670   void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
    671     bm_info_[not_at_start ? 1 : 0] = bm;
    672   }
    673 
    674  private:
    675   static const int kFirstCharBudget = 10;
    676   Label label_;
    677   NodeInfo info_;
    678   // This variable keeps track of how many times code has been generated for
    679   // this node (in different traces).  We don't keep track of where the
    680   // generated code is located unless the code is generated at the start of
    681   // a trace, in which case it is generic and can be reused by flushing the
    682   // deferred operations in the current trace and generating a goto.
    683   int trace_count_;
    684   BoyerMooreLookahead* bm_info_[2];
    685 
    686   Zone* zone_;
    687 };
    688 
    689 
    690 // A simple closed interval.
    691 class Interval {
    692  public:
    693   Interval() : from_(kNone), to_(kNone) { }
    694   Interval(int from, int to) : from_(from), to_(to) { }
    695   Interval Union(Interval that) {
    696     if (that.from_ == kNone)
    697       return *this;
    698     else if (from_ == kNone)
    699       return that;
    700     else
    701       return Interval(Min(from_, that.from_), Max(to_, that.to_));
    702   }
    703   bool Contains(int value) {
    704     return (from_ <= value) && (value <= to_);
    705   }
    706   bool is_empty() { return from_ == kNone; }
    707   int from() const { return from_; }
    708   int to() const { return to_; }
    709   static Interval Empty() { return Interval(); }
    710   static const int kNone = -1;
    711  private:
    712   int from_;
    713   int to_;
    714 };
    715 
    716 
    717 class SeqRegExpNode: public RegExpNode {
    718  public:
    719   explicit SeqRegExpNode(RegExpNode* on_success)
    720       : RegExpNode(on_success->zone()), on_success_(on_success) { }
    721   RegExpNode* on_success() { return on_success_; }
    722   void set_on_success(RegExpNode* node) { on_success_ = node; }
    723   virtual RegExpNode* FilterASCII(int depth, bool ignore_case);
    724   virtual void FillInBMInfo(int offset,
    725                             int budget,
    726                             BoyerMooreLookahead* bm,
    727                             bool not_at_start) {
    728     on_success_->FillInBMInfo(offset, budget - 1, bm, not_at_start);
    729     if (offset == 0) set_bm_info(not_at_start, bm);
    730   }
    731 
    732  protected:
    733   RegExpNode* FilterSuccessor(int depth, bool ignore_case);
    734 
    735  private:
    736   RegExpNode* on_success_;
    737 };
    738 
    739 
    740 class ActionNode: public SeqRegExpNode {
    741  public:
    742   enum ActionType {
    743     SET_REGISTER,
    744     INCREMENT_REGISTER,
    745     STORE_POSITION,
    746     BEGIN_SUBMATCH,
    747     POSITIVE_SUBMATCH_SUCCESS,
    748     EMPTY_MATCH_CHECK,
    749     CLEAR_CAPTURES
    750   };
    751   static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
    752   static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
    753   static ActionNode* StorePosition(int reg,
    754                                    bool is_capture,
    755                                    RegExpNode* on_success);
    756   static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
    757   static ActionNode* BeginSubmatch(int stack_pointer_reg,
    758                                    int position_reg,
    759                                    RegExpNode* on_success);
    760   static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
    761                                              int restore_reg,
    762                                              int clear_capture_count,
    763                                              int clear_capture_from,
    764                                              RegExpNode* on_success);
    765   static ActionNode* EmptyMatchCheck(int start_register,
    766                                      int repetition_register,
    767                                      int repetition_limit,
    768                                      RegExpNode* on_success);
    769   virtual void Accept(NodeVisitor* visitor);
    770   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    771   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
    772   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    773                                     RegExpCompiler* compiler,
    774                                     int filled_in,
    775                                     bool not_at_start) {
    776     return on_success()->GetQuickCheckDetails(
    777         details, compiler, filled_in, not_at_start);
    778   }
    779   virtual void FillInBMInfo(int offset,
    780                             int budget,
    781                             BoyerMooreLookahead* bm,
    782                             bool not_at_start);
    783   ActionType action_type() { return action_type_; }
    784   // TODO(erikcorry): We should allow some action nodes in greedy loops.
    785   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
    786 
    787  private:
    788   union {
    789     struct {
    790       int reg;
    791       int value;
    792     } u_store_register;
    793     struct {
    794       int reg;
    795     } u_increment_register;
    796     struct {
    797       int reg;
    798       bool is_capture;
    799     } u_position_register;
    800     struct {
    801       int stack_pointer_register;
    802       int current_position_register;
    803       int clear_register_count;
    804       int clear_register_from;
    805     } u_submatch;
    806     struct {
    807       int start_register;
    808       int repetition_register;
    809       int repetition_limit;
    810     } u_empty_match_check;
    811     struct {
    812       int range_from;
    813       int range_to;
    814     } u_clear_captures;
    815   } data_;
    816   ActionNode(ActionType action_type, RegExpNode* on_success)
    817       : SeqRegExpNode(on_success),
    818         action_type_(action_type) { }
    819   ActionType action_type_;
    820   friend class DotPrinter;
    821 };
    822 
    823 
    824 class TextNode: public SeqRegExpNode {
    825  public:
    826   TextNode(ZoneList<TextElement>* elms,
    827            RegExpNode* on_success)
    828       : SeqRegExpNode(on_success),
    829         elms_(elms) { }
    830   TextNode(RegExpCharacterClass* that,
    831            RegExpNode* on_success)
    832       : SeqRegExpNode(on_success),
    833         elms_(new(zone()) ZoneList<TextElement>(1, zone())) {
    834     elms_->Add(TextElement::CharClass(that), zone());
    835   }
    836   virtual void Accept(NodeVisitor* visitor);
    837   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    838   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
    839   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    840                                     RegExpCompiler* compiler,
    841                                     int characters_filled_in,
    842                                     bool not_at_start);
    843   ZoneList<TextElement>* elements() { return elms_; }
    844   void MakeCaseIndependent(bool is_ascii);
    845   virtual int GreedyLoopTextLength();
    846   virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
    847       RegExpCompiler* compiler);
    848   virtual void FillInBMInfo(int offset,
    849                             int budget,
    850                             BoyerMooreLookahead* bm,
    851                             bool not_at_start);
    852   void CalculateOffsets();
    853   virtual RegExpNode* FilterASCII(int depth, bool ignore_case);
    854 
    855  private:
    856   enum TextEmitPassType {
    857     NON_ASCII_MATCH,             // Check for characters that can't match.
    858     SIMPLE_CHARACTER_MATCH,      // Case-dependent single character check.
    859     NON_LETTER_CHARACTER_MATCH,  // Check characters that have no case equivs.
    860     CASE_CHARACTER_MATCH,        // Case-independent single character check.
    861     CHARACTER_CLASS_MATCH        // Character class.
    862   };
    863   static bool SkipPass(int pass, bool ignore_case);
    864   static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
    865   static const int kLastPass = CHARACTER_CLASS_MATCH;
    866   void TextEmitPass(RegExpCompiler* compiler,
    867                     TextEmitPassType pass,
    868                     bool preloaded,
    869                     Trace* trace,
    870                     bool first_element_checked,
    871                     int* checked_up_to);
    872   int Length();
    873   ZoneList<TextElement>* elms_;
    874 };
    875 
    876 
    877 class AssertionNode: public SeqRegExpNode {
    878  public:
    879   enum AssertionType {
    880     AT_END,
    881     AT_START,
    882     AT_BOUNDARY,
    883     AT_NON_BOUNDARY,
    884     AFTER_NEWLINE
    885   };
    886   static AssertionNode* AtEnd(RegExpNode* on_success) {
    887     return new(on_success->zone()) AssertionNode(AT_END, on_success);
    888   }
    889   static AssertionNode* AtStart(RegExpNode* on_success) {
    890     return new(on_success->zone()) AssertionNode(AT_START, on_success);
    891   }
    892   static AssertionNode* AtBoundary(RegExpNode* on_success) {
    893     return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
    894   }
    895   static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
    896     return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
    897   }
    898   static AssertionNode* AfterNewline(RegExpNode* on_success) {
    899     return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
    900   }
    901   virtual void Accept(NodeVisitor* visitor);
    902   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    903   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
    904   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    905                                     RegExpCompiler* compiler,
    906                                     int filled_in,
    907                                     bool not_at_start);
    908   virtual void FillInBMInfo(int offset,
    909                             int budget,
    910                             BoyerMooreLookahead* bm,
    911                             bool not_at_start);
    912   AssertionType assertion_type() { return assertion_type_; }
    913 
    914  private:
    915   void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
    916   enum IfPrevious { kIsNonWord, kIsWord };
    917   void BacktrackIfPrevious(RegExpCompiler* compiler,
    918                            Trace* trace,
    919                            IfPrevious backtrack_if_previous);
    920   AssertionNode(AssertionType t, RegExpNode* on_success)
    921       : SeqRegExpNode(on_success), assertion_type_(t) { }
    922   AssertionType assertion_type_;
    923 };
    924 
    925 
    926 class BackReferenceNode: public SeqRegExpNode {
    927  public:
    928   BackReferenceNode(int start_reg,
    929                     int end_reg,
    930                     RegExpNode* on_success)
    931       : SeqRegExpNode(on_success),
    932         start_reg_(start_reg),
    933         end_reg_(end_reg) { }
    934   virtual void Accept(NodeVisitor* visitor);
    935   int start_register() { return start_reg_; }
    936   int end_register() { return end_reg_; }
    937   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    938   virtual int EatsAtLeast(int still_to_find,
    939                           int recursion_depth,
    940                           bool not_at_start);
    941   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    942                                     RegExpCompiler* compiler,
    943                                     int characters_filled_in,
    944                                     bool not_at_start) {
    945     return;
    946   }
    947   virtual void FillInBMInfo(int offset,
    948                             int budget,
    949                             BoyerMooreLookahead* bm,
    950                             bool not_at_start);
    951 
    952  private:
    953   int start_reg_;
    954   int end_reg_;
    955 };
    956 
    957 
    958 class EndNode: public RegExpNode {
    959  public:
    960   enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
    961   explicit EndNode(Action action, Zone* zone)
    962       : RegExpNode(zone), action_(action) { }
    963   virtual void Accept(NodeVisitor* visitor);
    964   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    965   virtual int EatsAtLeast(int still_to_find,
    966                           int recursion_depth,
    967                           bool not_at_start) { return 0; }
    968   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    969                                     RegExpCompiler* compiler,
    970                                     int characters_filled_in,
    971                                     bool not_at_start) {
    972     // Returning 0 from EatsAtLeast should ensure we never get here.
    973     UNREACHABLE();
    974   }
    975   virtual void FillInBMInfo(int offset,
    976                             int budget,
    977                             BoyerMooreLookahead* bm,
    978                             bool not_at_start) {
    979     // Returning 0 from EatsAtLeast should ensure we never get here.
    980     UNREACHABLE();
    981   }
    982 
    983  private:
    984   Action action_;
    985 };
    986 
    987 
    988 class NegativeSubmatchSuccess: public EndNode {
    989  public:
    990   NegativeSubmatchSuccess(int stack_pointer_reg,
    991                           int position_reg,
    992                           int clear_capture_count,
    993                           int clear_capture_start,
    994                           Zone* zone)
    995       : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
    996         stack_pointer_register_(stack_pointer_reg),
    997         current_position_register_(position_reg),
    998         clear_capture_count_(clear_capture_count),
    999         clear_capture_start_(clear_capture_start) { }
   1000   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
   1001 
   1002  private:
   1003   int stack_pointer_register_;
   1004   int current_position_register_;
   1005   int clear_capture_count_;
   1006   int clear_capture_start_;
   1007 };
   1008 
   1009 
   1010 class Guard: public ZoneObject {
   1011  public:
   1012   enum Relation { LT, GEQ };
   1013   Guard(int reg, Relation op, int value)
   1014       : reg_(reg),
   1015         op_(op),
   1016         value_(value) { }
   1017   int reg() { return reg_; }
   1018   Relation op() { return op_; }
   1019   int value() { return value_; }
   1020 
   1021  private:
   1022   int reg_;
   1023   Relation op_;
   1024   int value_;
   1025 };
   1026 
   1027 
   1028 class GuardedAlternative {
   1029  public:
   1030   explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
   1031   void AddGuard(Guard* guard, Zone* zone);
   1032   RegExpNode* node() { return node_; }
   1033   void set_node(RegExpNode* node) { node_ = node; }
   1034   ZoneList<Guard*>* guards() { return guards_; }
   1035 
   1036  private:
   1037   RegExpNode* node_;
   1038   ZoneList<Guard*>* guards_;
   1039 };
   1040 
   1041 
   1042 class AlternativeGeneration;
   1043 
   1044 
   1045 class ChoiceNode: public RegExpNode {
   1046  public:
   1047   explicit ChoiceNode(int expected_size, Zone* zone)
   1048       : RegExpNode(zone),
   1049         alternatives_(new(zone)
   1050                       ZoneList<GuardedAlternative>(expected_size, zone)),
   1051         table_(NULL),
   1052         not_at_start_(false),
   1053         being_calculated_(false) { }
   1054   virtual void Accept(NodeVisitor* visitor);
   1055   void AddAlternative(GuardedAlternative node) {
   1056     alternatives()->Add(node, zone());
   1057   }
   1058   ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
   1059   DispatchTable* GetTable(bool ignore_case);
   1060   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
   1061   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
   1062   int EatsAtLeastHelper(int still_to_find,
   1063                         int budget,
   1064                         RegExpNode* ignore_this_node,
   1065                         bool not_at_start);
   1066   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
   1067                                     RegExpCompiler* compiler,
   1068                                     int characters_filled_in,
   1069                                     bool not_at_start);
   1070   virtual void FillInBMInfo(int offset,
   1071                             int budget,
   1072                             BoyerMooreLookahead* bm,
   1073                             bool not_at_start);
   1074 
   1075   bool being_calculated() { return being_calculated_; }
   1076   bool not_at_start() { return not_at_start_; }
   1077   void set_not_at_start() { not_at_start_ = true; }
   1078   void set_being_calculated(bool b) { being_calculated_ = b; }
   1079   virtual bool try_to_emit_quick_check_for_alternative(int i) { return true; }
   1080   virtual RegExpNode* FilterASCII(int depth, bool ignore_case);
   1081 
   1082  protected:
   1083   int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
   1084   ZoneList<GuardedAlternative>* alternatives_;
   1085 
   1086  private:
   1087   friend class DispatchTableConstructor;
   1088   friend class Analysis;
   1089   void GenerateGuard(RegExpMacroAssembler* macro_assembler,
   1090                      Guard* guard,
   1091                      Trace* trace);
   1092   int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least);
   1093   void EmitOutOfLineContinuation(RegExpCompiler* compiler,
   1094                                  Trace* trace,
   1095                                  GuardedAlternative alternative,
   1096                                  AlternativeGeneration* alt_gen,
   1097                                  int preload_characters,
   1098                                  bool next_expects_preload);
   1099   DispatchTable* table_;
   1100   // If true, this node is never checked at the start of the input.
   1101   // Allows a new trace to start with at_start() set to false.
   1102   bool not_at_start_;
   1103   bool being_calculated_;
   1104 };
   1105 
   1106 
   1107 class NegativeLookaheadChoiceNode: public ChoiceNode {
   1108  public:
   1109   explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
   1110                                        GuardedAlternative then_do_this,
   1111                                        Zone* zone)
   1112       : ChoiceNode(2, zone) {
   1113     AddAlternative(this_must_fail);
   1114     AddAlternative(then_do_this);
   1115   }
   1116   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
   1117   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
   1118                                     RegExpCompiler* compiler,
   1119                                     int characters_filled_in,
   1120                                     bool not_at_start);
   1121   virtual void FillInBMInfo(int offset,
   1122                             int budget,
   1123                             BoyerMooreLookahead* bm,
   1124                             bool not_at_start) {
   1125     alternatives_->at(1).node()->FillInBMInfo(
   1126         offset, budget - 1, bm, not_at_start);
   1127     if (offset == 0) set_bm_info(not_at_start, bm);
   1128   }
   1129   // For a negative lookahead we don't emit the quick check for the
   1130   // alternative that is expected to fail.  This is because quick check code
   1131   // starts by loading enough characters for the alternative that takes fewest
   1132   // characters, but on a negative lookahead the negative branch did not take
   1133   // part in that calculation (EatsAtLeast) so the assumptions don't hold.
   1134   virtual bool try_to_emit_quick_check_for_alternative(int i) { return i != 0; }
   1135   virtual RegExpNode* FilterASCII(int depth, bool ignore_case);
   1136 };
   1137 
   1138 
   1139 class LoopChoiceNode: public ChoiceNode {
   1140  public:
   1141   explicit LoopChoiceNode(bool body_can_be_zero_length, Zone* zone)
   1142       : ChoiceNode(2, zone),
   1143         loop_node_(NULL),
   1144         continue_node_(NULL),
   1145         body_can_be_zero_length_(body_can_be_zero_length) { }
   1146   void AddLoopAlternative(GuardedAlternative alt);
   1147   void AddContinueAlternative(GuardedAlternative alt);
   1148   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
   1149   virtual int EatsAtLeast(int still_to_find,  int budget, bool not_at_start);
   1150   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
   1151                                     RegExpCompiler* compiler,
   1152                                     int characters_filled_in,
   1153                                     bool not_at_start);
   1154   virtual void FillInBMInfo(int offset,
   1155                             int budget,
   1156                             BoyerMooreLookahead* bm,
   1157                             bool not_at_start);
   1158   RegExpNode* loop_node() { return loop_node_; }
   1159   RegExpNode* continue_node() { return continue_node_; }
   1160   bool body_can_be_zero_length() { return body_can_be_zero_length_; }
   1161   virtual void Accept(NodeVisitor* visitor);
   1162   virtual RegExpNode* FilterASCII(int depth, bool ignore_case);
   1163 
   1164  private:
   1165   // AddAlternative is made private for loop nodes because alternatives
   1166   // should not be added freely, we need to keep track of which node
   1167   // goes back to the node itself.
   1168   void AddAlternative(GuardedAlternative node) {
   1169     ChoiceNode::AddAlternative(node);
   1170   }
   1171 
   1172   RegExpNode* loop_node_;
   1173   RegExpNode* continue_node_;
   1174   bool body_can_be_zero_length_;
   1175 };
   1176 
   1177 
   1178 // Improve the speed that we scan for an initial point where a non-anchored
   1179 // regexp can match by using a Boyer-Moore-like table. This is done by
   1180 // identifying non-greedy non-capturing loops in the nodes that eat any
   1181 // character one at a time.  For example in the middle of the regexp
   1182 // /foo[\s\S]*?bar/ we find such a loop.  There is also such a loop implicitly
   1183 // inserted at the start of any non-anchored regexp.
   1184 //
   1185 // When we have found such a loop we look ahead in the nodes to find the set of
   1186 // characters that can come at given distances. For example for the regexp
   1187 // /.?foo/ we know that there are at least 3 characters ahead of us, and the
   1188 // sets of characters that can occur are [any, [f, o], [o]]. We find a range in
   1189 // the lookahead info where the set of characters is reasonably constrained. In
   1190 // our example this is from index 1 to 2 (0 is not constrained). We can now
   1191 // look 3 characters ahead and if we don't find one of [f, o] (the union of
   1192 // [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
   1193 //
   1194 // For Unicode input strings we do the same, but modulo 128.
   1195 //
   1196 // We also look at the first string fed to the regexp and use that to get a hint
   1197 // of the character frequencies in the inputs. This affects the assessment of
   1198 // whether the set of characters is 'reasonably constrained'.
   1199 //
   1200 // We also have another lookahead mechanism (called quick check in the code),
   1201 // which uses a wide load of multiple characters followed by a mask and compare
   1202 // to determine whether a match is possible at this point.
   1203 enum ContainedInLattice {
   1204   kNotYet = 0,
   1205   kLatticeIn = 1,
   1206   kLatticeOut = 2,
   1207   kLatticeUnknown = 3  // Can also mean both in and out.
   1208 };
   1209 
   1210 
   1211 inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
   1212   return static_cast<ContainedInLattice>(a | b);
   1213 }
   1214 
   1215 
   1216 ContainedInLattice AddRange(ContainedInLattice a,
   1217                             const int* ranges,
   1218                             int ranges_size,
   1219                             Interval new_range);
   1220 
   1221 
   1222 class BoyerMoorePositionInfo : public ZoneObject {
   1223  public:
   1224   explicit BoyerMoorePositionInfo(Zone* zone)
   1225       : map_(new(zone) ZoneList<bool>(kMapSize, zone)),
   1226         map_count_(0),
   1227         w_(kNotYet),
   1228         s_(kNotYet),
   1229         d_(kNotYet),
   1230         surrogate_(kNotYet) {
   1231      for (int i = 0; i < kMapSize; i++) {
   1232        map_->Add(false, zone);
   1233      }
   1234   }
   1235 
   1236   bool& at(int i) { return map_->at(i); }
   1237 
   1238   static const int kMapSize = 128;
   1239   static const int kMask = kMapSize - 1;
   1240 
   1241   int map_count() const { return map_count_; }
   1242 
   1243   void Set(int character);
   1244   void SetInterval(const Interval& interval);
   1245   void SetAll();
   1246   bool is_non_word() { return w_ == kLatticeOut; }
   1247   bool is_word() { return w_ == kLatticeIn; }
   1248 
   1249  private:
   1250   ZoneList<bool>* map_;
   1251   int map_count_;  // Number of set bits in the map.
   1252   ContainedInLattice w_;  // The \w character class.
   1253   ContainedInLattice s_;  // The \s character class.
   1254   ContainedInLattice d_;  // The \d character class.
   1255   ContainedInLattice surrogate_;  // Surrogate UTF-16 code units.
   1256 };
   1257 
   1258 
   1259 class BoyerMooreLookahead : public ZoneObject {
   1260  public:
   1261   BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone);
   1262 
   1263   int length() { return length_; }
   1264   int max_char() { return max_char_; }
   1265   RegExpCompiler* compiler() { return compiler_; }
   1266 
   1267   int Count(int map_number) {
   1268     return bitmaps_->at(map_number)->map_count();
   1269   }
   1270 
   1271   BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); }
   1272 
   1273   void Set(int map_number, int character) {
   1274     if (character > max_char_) return;
   1275     BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
   1276     info->Set(character);
   1277   }
   1278 
   1279   void SetInterval(int map_number, const Interval& interval) {
   1280     if (interval.from() > max_char_) return;
   1281     BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
   1282     if (interval.to() > max_char_) {
   1283       info->SetInterval(Interval(interval.from(), max_char_));
   1284     } else {
   1285       info->SetInterval(interval);
   1286     }
   1287   }
   1288 
   1289   void SetAll(int map_number) {
   1290     bitmaps_->at(map_number)->SetAll();
   1291   }
   1292 
   1293   void SetRest(int from_map) {
   1294     for (int i = from_map; i < length_; i++) SetAll(i);
   1295   }
   1296   bool EmitSkipInstructions(RegExpMacroAssembler* masm);
   1297 
   1298  private:
   1299   // This is the value obtained by EatsAtLeast.  If we do not have at least this
   1300   // many characters left in the sample string then the match is bound to fail.
   1301   // Therefore it is OK to read a character this far ahead of the current match
   1302   // point.
   1303   int length_;
   1304   RegExpCompiler* compiler_;
   1305   // 0x7f for ASCII, 0xffff for UTF-16.
   1306   int max_char_;
   1307   ZoneList<BoyerMoorePositionInfo*>* bitmaps_;
   1308 
   1309   int GetSkipTable(int min_lookahead,
   1310                    int max_lookahead,
   1311                    Handle<ByteArray> boolean_skip_table);
   1312   bool FindWorthwhileInterval(int* from, int* to);
   1313   int FindBestInterval(
   1314     int max_number_of_chars, int old_biggest_points, int* from, int* to);
   1315 };
   1316 
   1317 
   1318 // There are many ways to generate code for a node.  This class encapsulates
   1319 // the current way we should be generating.  In other words it encapsulates
   1320 // the current state of the code generator.  The effect of this is that we
   1321 // generate code for paths that the matcher can take through the regular
   1322 // expression.  A given node in the regexp can be code-generated several times
   1323 // as it can be part of several traces.  For example for the regexp:
   1324 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
   1325 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace.  The code
   1326 // to match foo is generated only once (the traces have a common prefix).  The
   1327 // code to store the capture is deferred and generated (twice) after the places
   1328 // where baz has been matched.
   1329 class Trace {
   1330  public:
   1331   // A value for a property that is either known to be true, know to be false,
   1332   // or not known.
   1333   enum TriBool {
   1334     UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
   1335   };
   1336 
   1337   class DeferredAction {
   1338    public:
   1339     DeferredAction(ActionNode::ActionType action_type, int reg)
   1340         : action_type_(action_type), reg_(reg), next_(NULL) { }
   1341     DeferredAction* next() { return next_; }
   1342     bool Mentions(int reg);
   1343     int reg() { return reg_; }
   1344     ActionNode::ActionType action_type() { return action_type_; }
   1345    private:
   1346     ActionNode::ActionType action_type_;
   1347     int reg_;
   1348     DeferredAction* next_;
   1349     friend class Trace;
   1350   };
   1351 
   1352   class DeferredCapture : public DeferredAction {
   1353    public:
   1354     DeferredCapture(int reg, bool is_capture, Trace* trace)
   1355         : DeferredAction(ActionNode::STORE_POSITION, reg),
   1356           cp_offset_(trace->cp_offset()),
   1357           is_capture_(is_capture) { }
   1358     int cp_offset() { return cp_offset_; }
   1359     bool is_capture() { return is_capture_; }
   1360    private:
   1361     int cp_offset_;
   1362     bool is_capture_;
   1363     void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
   1364   };
   1365 
   1366   class DeferredSetRegister : public DeferredAction {
   1367    public:
   1368     DeferredSetRegister(int reg, int value)
   1369         : DeferredAction(ActionNode::SET_REGISTER, reg),
   1370           value_(value) { }
   1371     int value() { return value_; }
   1372    private:
   1373     int value_;
   1374   };
   1375 
   1376   class DeferredClearCaptures : public DeferredAction {
   1377    public:
   1378     explicit DeferredClearCaptures(Interval range)
   1379         : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
   1380           range_(range) { }
   1381     Interval range() { return range_; }
   1382    private:
   1383     Interval range_;
   1384   };
   1385 
   1386   class DeferredIncrementRegister : public DeferredAction {
   1387    public:
   1388     explicit DeferredIncrementRegister(int reg)
   1389         : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
   1390   };
   1391 
   1392   Trace()
   1393       : cp_offset_(0),
   1394         actions_(NULL),
   1395         backtrack_(NULL),
   1396         stop_node_(NULL),
   1397         loop_label_(NULL),
   1398         characters_preloaded_(0),
   1399         bound_checked_up_to_(0),
   1400         flush_budget_(100),
   1401         at_start_(UNKNOWN) { }
   1402 
   1403   // End the trace.  This involves flushing the deferred actions in the trace
   1404   // and pushing a backtrack location onto the backtrack stack.  Once this is
   1405   // done we can start a new trace or go to one that has already been
   1406   // generated.
   1407   void Flush(RegExpCompiler* compiler, RegExpNode* successor);
   1408   int cp_offset() { return cp_offset_; }
   1409   DeferredAction* actions() { return actions_; }
   1410   // A trivial trace is one that has no deferred actions or other state that
   1411   // affects the assumptions used when generating code.  There is no recorded
   1412   // backtrack location in a trivial trace, so with a trivial trace we will
   1413   // generate code that, on a failure to match, gets the backtrack location
   1414   // from the backtrack stack rather than using a direct jump instruction.  We
   1415   // always start code generation with a trivial trace and non-trivial traces
   1416   // are created as we emit code for nodes or add to the list of deferred
   1417   // actions in the trace.  The location of the code generated for a node using
   1418   // a trivial trace is recorded in a label in the node so that gotos can be
   1419   // generated to that code.
   1420   bool is_trivial() {
   1421     return backtrack_ == NULL &&
   1422            actions_ == NULL &&
   1423            cp_offset_ == 0 &&
   1424            characters_preloaded_ == 0 &&
   1425            bound_checked_up_to_ == 0 &&
   1426            quick_check_performed_.characters() == 0 &&
   1427            at_start_ == UNKNOWN;
   1428   }
   1429   TriBool at_start() { return at_start_; }
   1430   void set_at_start(bool at_start) {
   1431     at_start_ = at_start ? TRUE_VALUE : FALSE_VALUE;
   1432   }
   1433   Label* backtrack() { return backtrack_; }
   1434   Label* loop_label() { return loop_label_; }
   1435   RegExpNode* stop_node() { return stop_node_; }
   1436   int characters_preloaded() { return characters_preloaded_; }
   1437   int bound_checked_up_to() { return bound_checked_up_to_; }
   1438   int flush_budget() { return flush_budget_; }
   1439   QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
   1440   bool mentions_reg(int reg);
   1441   // Returns true if a deferred position store exists to the specified
   1442   // register and stores the offset in the out-parameter.  Otherwise
   1443   // returns false.
   1444   bool GetStoredPosition(int reg, int* cp_offset);
   1445   // These set methods and AdvanceCurrentPositionInTrace should be used only on
   1446   // new traces - the intention is that traces are immutable after creation.
   1447   void add_action(DeferredAction* new_action) {
   1448     ASSERT(new_action->next_ == NULL);
   1449     new_action->next_ = actions_;
   1450     actions_ = new_action;
   1451   }
   1452   void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
   1453   void set_stop_node(RegExpNode* node) { stop_node_ = node; }
   1454   void set_loop_label(Label* label) { loop_label_ = label; }
   1455   void set_characters_preloaded(int count) { characters_preloaded_ = count; }
   1456   void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
   1457   void set_flush_budget(int to) { flush_budget_ = to; }
   1458   void set_quick_check_performed(QuickCheckDetails* d) {
   1459     quick_check_performed_ = *d;
   1460   }
   1461   void InvalidateCurrentCharacter();
   1462   void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
   1463 
   1464  private:
   1465   int FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
   1466   void PerformDeferredActions(RegExpMacroAssembler* macro,
   1467                               int max_register,
   1468                               const OutSet& affected_registers,
   1469                               OutSet* registers_to_pop,
   1470                               OutSet* registers_to_clear,
   1471                               Zone* zone);
   1472   void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
   1473                                 int max_register,
   1474                                 const OutSet& registers_to_pop,
   1475                                 const OutSet& registers_to_clear);
   1476   int cp_offset_;
   1477   DeferredAction* actions_;
   1478   Label* backtrack_;
   1479   RegExpNode* stop_node_;
   1480   Label* loop_label_;
   1481   int characters_preloaded_;
   1482   int bound_checked_up_to_;
   1483   QuickCheckDetails quick_check_performed_;
   1484   int flush_budget_;
   1485   TriBool at_start_;
   1486 };
   1487 
   1488 
   1489 class NodeVisitor {
   1490  public:
   1491   virtual ~NodeVisitor() { }
   1492 #define DECLARE_VISIT(Type)                                          \
   1493   virtual void Visit##Type(Type##Node* that) = 0;
   1494 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1495 #undef DECLARE_VISIT
   1496   virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
   1497 };
   1498 
   1499 
   1500 // Node visitor used to add the start set of the alternatives to the
   1501 // dispatch table of a choice node.
   1502 class DispatchTableConstructor: public NodeVisitor {
   1503  public:
   1504   DispatchTableConstructor(DispatchTable* table, bool ignore_case,
   1505                            Zone* zone)
   1506       : table_(table),
   1507         choice_index_(-1),
   1508         ignore_case_(ignore_case),
   1509         zone_(zone) { }
   1510 
   1511   void BuildTable(ChoiceNode* node);
   1512 
   1513   void AddRange(CharacterRange range) {
   1514     table()->AddRange(range, choice_index_, zone_);
   1515   }
   1516 
   1517   void AddInverse(ZoneList<CharacterRange>* ranges);
   1518 
   1519 #define DECLARE_VISIT(Type)                                          \
   1520   virtual void Visit##Type(Type##Node* that);
   1521 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1522 #undef DECLARE_VISIT
   1523 
   1524   DispatchTable* table() { return table_; }
   1525   void set_choice_index(int value) { choice_index_ = value; }
   1526 
   1527  protected:
   1528   DispatchTable* table_;
   1529   int choice_index_;
   1530   bool ignore_case_;
   1531   Zone* zone_;
   1532 };
   1533 
   1534 
   1535 // Assertion propagation moves information about assertions such as
   1536 // \b to the affected nodes.  For instance, in /.\b./ information must
   1537 // be propagated to the first '.' that whatever follows needs to know
   1538 // if it matched a word or a non-word, and to the second '.' that it
   1539 // has to check if it succeeds a word or non-word.  In this case the
   1540 // result will be something like:
   1541 //
   1542 //   +-------+        +------------+
   1543 //   |   .   |        |      .     |
   1544 //   +-------+  --->  +------------+
   1545 //   | word? |        | check word |
   1546 //   +-------+        +------------+
   1547 class Analysis: public NodeVisitor {
   1548  public:
   1549   Analysis(bool ignore_case, bool is_ascii)
   1550       : ignore_case_(ignore_case),
   1551         is_ascii_(is_ascii),
   1552         error_message_(NULL) { }
   1553   void EnsureAnalyzed(RegExpNode* node);
   1554 
   1555 #define DECLARE_VISIT(Type)                                          \
   1556   virtual void Visit##Type(Type##Node* that);
   1557 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1558 #undef DECLARE_VISIT
   1559   virtual void VisitLoopChoice(LoopChoiceNode* that);
   1560 
   1561   bool has_failed() { return error_message_ != NULL; }
   1562   const char* error_message() {
   1563     ASSERT(error_message_ != NULL);
   1564     return error_message_;
   1565   }
   1566   void fail(const char* error_message) {
   1567     error_message_ = error_message;
   1568   }
   1569 
   1570  private:
   1571   bool ignore_case_;
   1572   bool is_ascii_;
   1573   const char* error_message_;
   1574 
   1575   DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
   1576 };
   1577 
   1578 
   1579 struct RegExpCompileData {
   1580   RegExpCompileData()
   1581     : tree(NULL),
   1582       node(NULL),
   1583       simple(true),
   1584       contains_anchor(false),
   1585       capture_count(0) { }
   1586   RegExpTree* tree;
   1587   RegExpNode* node;
   1588   bool simple;
   1589   bool contains_anchor;
   1590   Handle<String> error;
   1591   int capture_count;
   1592 };
   1593 
   1594 
   1595 class RegExpEngine: public AllStatic {
   1596  public:
   1597   struct CompilationResult {
   1598     CompilationResult(Isolate* isolate, const char* error_message)
   1599         : error_message(error_message),
   1600           code(isolate->heap()->the_hole_value()),
   1601           num_registers(0) {}
   1602     CompilationResult(Object* code, int registers)
   1603       : error_message(NULL),
   1604         code(code),
   1605         num_registers(registers) {}
   1606     const char* error_message;
   1607     Object* code;
   1608     int num_registers;
   1609   };
   1610 
   1611   static CompilationResult Compile(RegExpCompileData* input,
   1612                                    bool ignore_case,
   1613                                    bool global,
   1614                                    bool multiline,
   1615                                    Handle<String> pattern,
   1616                                    Handle<String> sample_subject,
   1617                                    bool is_ascii, Zone* zone);
   1618 
   1619   static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
   1620 };
   1621 
   1622 
   1623 } }  // namespace v8::internal
   1624 
   1625 #endif  // V8_JSREGEXP_H_
   1626