Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_GLOBALS_H_
      6 #define V8_GLOBALS_H_
      7 
      8 #include "include/v8stdint.h"
      9 
     10 #include "src/base/build_config.h"
     11 #include "src/base/macros.h"
     12 #include "src/checks.h"
     13 
     14 // Unfortunately, the INFINITY macro cannot be used with the '-pedantic'
     15 // warning flag and certain versions of GCC due to a bug:
     16 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11931
     17 // For now, we use the more involved template-based version from <limits>, but
     18 // only when compiling with GCC versions affected by the bug (2.96.x - 4.0.x)
     19 #if V8_CC_GNU && V8_GNUC_PREREQ(2, 96, 0) && !V8_GNUC_PREREQ(4, 1, 0)
     20 # include <limits>  // NOLINT
     21 # define V8_INFINITY std::numeric_limits<double>::infinity()
     22 #elif V8_LIBC_MSVCRT
     23 # define V8_INFINITY HUGE_VAL
     24 #else
     25 # define V8_INFINITY INFINITY
     26 #endif
     27 
     28 namespace v8 {
     29 namespace internal {
     30 
     31 // Determine whether we are running in a simulated environment.
     32 // Setting USE_SIMULATOR explicitly from the build script will force
     33 // the use of a simulated environment.
     34 #if !defined(USE_SIMULATOR)
     35 #if (V8_TARGET_ARCH_ARM64 && !V8_HOST_ARCH_ARM64)
     36 #define USE_SIMULATOR 1
     37 #endif
     38 #if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM)
     39 #define USE_SIMULATOR 1
     40 #endif
     41 #if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS)
     42 #define USE_SIMULATOR 1
     43 #endif
     44 #endif
     45 
     46 // Determine whether the architecture uses an out-of-line constant pool.
     47 #define V8_OOL_CONSTANT_POOL 0
     48 
     49 // Support for alternative bool type. This is only enabled if the code is
     50 // compiled with USE_MYBOOL defined. This catches some nasty type bugs.
     51 // For instance, 'bool b = "false";' results in b == true! This is a hidden
     52 // source of bugs.
     53 // However, redefining the bool type does have some negative impact on some
     54 // platforms. It gives rise to compiler warnings (i.e. with
     55 // MSVC) in the API header files when mixing code that uses the standard
     56 // bool with code that uses the redefined version.
     57 // This does not actually belong in the platform code, but needs to be
     58 // defined here because the platform code uses bool, and platform.h is
     59 // include very early in the main include file.
     60 
     61 #ifdef USE_MYBOOL
     62 typedef unsigned int __my_bool__;
     63 #define bool __my_bool__  // use 'indirection' to avoid name clashes
     64 #endif
     65 
     66 typedef uint8_t byte;
     67 typedef byte* Address;
     68 
     69 // Define our own macros for writing 64-bit constants.  This is less fragile
     70 // than defining __STDC_CONSTANT_MACROS before including <stdint.h>, and it
     71 // works on compilers that don't have it (like MSVC).
     72 #if V8_CC_MSVC
     73 # define V8_UINT64_C(x)   (x ## UI64)
     74 # define V8_INT64_C(x)    (x ## I64)
     75 # if V8_HOST_ARCH_64_BIT
     76 #  define V8_INTPTR_C(x)  (x ## I64)
     77 #  define V8_PTR_PREFIX   "ll"
     78 # else
     79 #  define V8_INTPTR_C(x)  (x)
     80 #  define V8_PTR_PREFIX   ""
     81 # endif  // V8_HOST_ARCH_64_BIT
     82 #elif V8_CC_MINGW64
     83 # define V8_UINT64_C(x)   (x ## ULL)
     84 # define V8_INT64_C(x)    (x ## LL)
     85 # define V8_INTPTR_C(x)   (x ## LL)
     86 # define V8_PTR_PREFIX    "I64"
     87 #elif V8_HOST_ARCH_64_BIT
     88 # if V8_OS_MACOSX
     89 #  define V8_UINT64_C(x)   (x ## ULL)
     90 #  define V8_INT64_C(x)    (x ## LL)
     91 # else
     92 #  define V8_UINT64_C(x)   (x ## UL)
     93 #  define V8_INT64_C(x)    (x ## L)
     94 # endif
     95 # define V8_INTPTR_C(x)   (x ## L)
     96 # define V8_PTR_PREFIX    "l"
     97 #else
     98 # define V8_UINT64_C(x)   (x ## ULL)
     99 # define V8_INT64_C(x)    (x ## LL)
    100 # define V8_INTPTR_C(x)   (x)
    101 # define V8_PTR_PREFIX    ""
    102 #endif
    103 
    104 #define V8PRIxPTR V8_PTR_PREFIX "x"
    105 #define V8PRIdPTR V8_PTR_PREFIX "d"
    106 #define V8PRIuPTR V8_PTR_PREFIX "u"
    107 
    108 // Fix for Mac OS X defining uintptr_t as "unsigned long":
    109 #if V8_OS_MACOSX
    110 #undef V8PRIxPTR
    111 #define V8PRIxPTR "lx"
    112 #endif
    113 
    114 // -----------------------------------------------------------------------------
    115 // Constants
    116 
    117 const int KB = 1024;
    118 const int MB = KB * KB;
    119 const int GB = KB * KB * KB;
    120 const int kMaxInt = 0x7FFFFFFF;
    121 const int kMinInt = -kMaxInt - 1;
    122 const int kMaxInt8 = (1 << 7) - 1;
    123 const int kMinInt8 = -(1 << 7);
    124 const int kMaxUInt8 = (1 << 8) - 1;
    125 const int kMinUInt8 = 0;
    126 const int kMaxInt16 = (1 << 15) - 1;
    127 const int kMinInt16 = -(1 << 15);
    128 const int kMaxUInt16 = (1 << 16) - 1;
    129 const int kMinUInt16 = 0;
    130 
    131 const uint32_t kMaxUInt32 = 0xFFFFFFFFu;
    132 
    133 const int kCharSize      = sizeof(char);      // NOLINT
    134 const int kShortSize     = sizeof(short);     // NOLINT
    135 const int kIntSize       = sizeof(int);       // NOLINT
    136 const int kInt32Size     = sizeof(int32_t);   // NOLINT
    137 const int kInt64Size     = sizeof(int64_t);   // NOLINT
    138 const int kDoubleSize    = sizeof(double);    // NOLINT
    139 const int kIntptrSize    = sizeof(intptr_t);  // NOLINT
    140 const int kPointerSize   = sizeof(void*);     // NOLINT
    141 const int kRegisterSize  = kPointerSize;
    142 const int kPCOnStackSize = kRegisterSize;
    143 const int kFPOnStackSize = kRegisterSize;
    144 
    145 const int kDoubleSizeLog2 = 3;
    146 
    147 #if V8_HOST_ARCH_64_BIT
    148 const int kPointerSizeLog2 = 3;
    149 const intptr_t kIntptrSignBit = V8_INT64_C(0x8000000000000000);
    150 const uintptr_t kUintptrAllBitsSet = V8_UINT64_C(0xFFFFFFFFFFFFFFFF);
    151 const bool kRequiresCodeRange = true;
    152 const size_t kMaximalCodeRangeSize = 512 * MB;
    153 #else
    154 const int kPointerSizeLog2 = 2;
    155 const intptr_t kIntptrSignBit = 0x80000000;
    156 const uintptr_t kUintptrAllBitsSet = 0xFFFFFFFFu;
    157 const bool kRequiresCodeRange = false;
    158 const size_t kMaximalCodeRangeSize = 0 * MB;
    159 #endif
    160 
    161 const int kBitsPerByte = 8;
    162 const int kBitsPerByteLog2 = 3;
    163 const int kBitsPerPointer = kPointerSize * kBitsPerByte;
    164 const int kBitsPerInt = kIntSize * kBitsPerByte;
    165 
    166 // IEEE 754 single precision floating point number bit layout.
    167 const uint32_t kBinary32SignMask = 0x80000000u;
    168 const uint32_t kBinary32ExponentMask = 0x7f800000u;
    169 const uint32_t kBinary32MantissaMask = 0x007fffffu;
    170 const int kBinary32ExponentBias = 127;
    171 const int kBinary32MaxExponent  = 0xFE;
    172 const int kBinary32MinExponent  = 0x01;
    173 const int kBinary32MantissaBits = 23;
    174 const int kBinary32ExponentShift = 23;
    175 
    176 // Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no
    177 // other bits set.
    178 const uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51;
    179 
    180 // Latin1/UTF-16 constants
    181 // Code-point values in Unicode 4.0 are 21 bits wide.
    182 // Code units in UTF-16 are 16 bits wide.
    183 typedef uint16_t uc16;
    184 typedef int32_t uc32;
    185 const int kOneByteSize    = kCharSize;
    186 const int kUC16Size     = sizeof(uc16);      // NOLINT
    187 
    188 
    189 // Round up n to be a multiple of sz, where sz is a power of 2.
    190 #define ROUND_UP(n, sz) (((n) + ((sz) - 1)) & ~((sz) - 1))
    191 
    192 
    193 // FUNCTION_ADDR(f) gets the address of a C function f.
    194 #define FUNCTION_ADDR(f)                                        \
    195   (reinterpret_cast<v8::internal::Address>(reinterpret_cast<intptr_t>(f)))
    196 
    197 
    198 // FUNCTION_CAST<F>(addr) casts an address into a function
    199 // of type F. Used to invoke generated code from within C.
    200 template <typename F>
    201 F FUNCTION_CAST(Address addr) {
    202   return reinterpret_cast<F>(reinterpret_cast<intptr_t>(addr));
    203 }
    204 
    205 
    206 // -----------------------------------------------------------------------------
    207 // Forward declarations for frequently used classes
    208 // (sorted alphabetically)
    209 
    210 class FreeStoreAllocationPolicy;
    211 template <typename T, class P = FreeStoreAllocationPolicy> class List;
    212 
    213 // -----------------------------------------------------------------------------
    214 // Declarations for use in both the preparser and the rest of V8.
    215 
    216 // The Strict Mode (ECMA-262 5th edition, 4.2.2).
    217 
    218 enum StrictMode { SLOPPY, STRICT };
    219 
    220 
    221 // Mask for the sign bit in a smi.
    222 const intptr_t kSmiSignMask = kIntptrSignBit;
    223 
    224 const int kObjectAlignmentBits = kPointerSizeLog2;
    225 const intptr_t kObjectAlignment = 1 << kObjectAlignmentBits;
    226 const intptr_t kObjectAlignmentMask = kObjectAlignment - 1;
    227 
    228 // Desired alignment for pointers.
    229 const intptr_t kPointerAlignment = (1 << kPointerSizeLog2);
    230 const intptr_t kPointerAlignmentMask = kPointerAlignment - 1;
    231 
    232 // Desired alignment for double values.
    233 const intptr_t kDoubleAlignment = 8;
    234 const intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1;
    235 
    236 // Desired alignment for generated code is 32 bytes (to improve cache line
    237 // utilization).
    238 const int kCodeAlignmentBits = 5;
    239 const intptr_t kCodeAlignment = 1 << kCodeAlignmentBits;
    240 const intptr_t kCodeAlignmentMask = kCodeAlignment - 1;
    241 
    242 // Tag information for Failure.
    243 // TODO(yangguo): remove this from space owner calculation.
    244 const int kFailureTag = 3;
    245 const int kFailureTagSize = 2;
    246 const intptr_t kFailureTagMask = (1 << kFailureTagSize) - 1;
    247 
    248 
    249 // Zap-value: The value used for zapping dead objects.
    250 // Should be a recognizable hex value tagged as a failure.
    251 #ifdef V8_HOST_ARCH_64_BIT
    252 const Address kZapValue =
    253     reinterpret_cast<Address>(V8_UINT64_C(0xdeadbeedbeadbeef));
    254 const Address kHandleZapValue =
    255     reinterpret_cast<Address>(V8_UINT64_C(0x1baddead0baddeaf));
    256 const Address kGlobalHandleZapValue =
    257     reinterpret_cast<Address>(V8_UINT64_C(0x1baffed00baffedf));
    258 const Address kFromSpaceZapValue =
    259     reinterpret_cast<Address>(V8_UINT64_C(0x1beefdad0beefdaf));
    260 const uint64_t kDebugZapValue = V8_UINT64_C(0xbadbaddbbadbaddb);
    261 const uint64_t kSlotsZapValue = V8_UINT64_C(0xbeefdeadbeefdeef);
    262 const uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf;
    263 #else
    264 const Address kZapValue = reinterpret_cast<Address>(0xdeadbeef);
    265 const Address kHandleZapValue = reinterpret_cast<Address>(0xbaddeaf);
    266 const Address kGlobalHandleZapValue = reinterpret_cast<Address>(0xbaffedf);
    267 const Address kFromSpaceZapValue = reinterpret_cast<Address>(0xbeefdaf);
    268 const uint32_t kSlotsZapValue = 0xbeefdeef;
    269 const uint32_t kDebugZapValue = 0xbadbaddb;
    270 const uint32_t kFreeListZapValue = 0xfeed1eaf;
    271 #endif
    272 
    273 const int kCodeZapValue = 0xbadc0de;
    274 
    275 // Number of bits to represent the page size for paged spaces. The value of 20
    276 // gives 1Mb bytes per page.
    277 const int kPageSizeBits = 20;
    278 
    279 // On Intel architecture, cache line size is 64 bytes.
    280 // On ARM it may be less (32 bytes), but as far this constant is
    281 // used for aligning data, it doesn't hurt to align on a greater value.
    282 #define PROCESSOR_CACHE_LINE_SIZE 64
    283 
    284 // Constants relevant to double precision floating point numbers.
    285 // If looking only at the top 32 bits, the QNaN mask is bits 19 to 30.
    286 const uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32);
    287 
    288 
    289 // -----------------------------------------------------------------------------
    290 // Forward declarations for frequently used classes
    291 
    292 class AccessorInfo;
    293 class Allocation;
    294 class Arguments;
    295 class Assembler;
    296 class Code;
    297 class CodeGenerator;
    298 class CodeStub;
    299 class Context;
    300 class Debug;
    301 class Debugger;
    302 class DebugInfo;
    303 class Descriptor;
    304 class DescriptorArray;
    305 class TransitionArray;
    306 class ExternalReference;
    307 class FixedArray;
    308 class FunctionTemplateInfo;
    309 class MemoryChunk;
    310 class SeededNumberDictionary;
    311 class UnseededNumberDictionary;
    312 class NameDictionary;
    313 template <typename T> class MaybeHandle;
    314 template <typename T> class Handle;
    315 class Heap;
    316 class HeapObject;
    317 class IC;
    318 class InterceptorInfo;
    319 class Isolate;
    320 class JSReceiver;
    321 class JSArray;
    322 class JSFunction;
    323 class JSObject;
    324 class LargeObjectSpace;
    325 class LookupResult;
    326 class MacroAssembler;
    327 class Map;
    328 class MapSpace;
    329 class MarkCompactCollector;
    330 class NewSpace;
    331 class Object;
    332 class OldSpace;
    333 class Foreign;
    334 class Scope;
    335 class ScopeInfo;
    336 class Script;
    337 class Smi;
    338 template <typename Config, class Allocator = FreeStoreAllocationPolicy>
    339     class SplayTree;
    340 class String;
    341 class Name;
    342 class Struct;
    343 class Variable;
    344 class RelocInfo;
    345 class Deserializer;
    346 class MessageLocation;
    347 class VirtualMemory;
    348 class Mutex;
    349 class RecursiveMutex;
    350 
    351 typedef bool (*WeakSlotCallback)(Object** pointer);
    352 
    353 typedef bool (*WeakSlotCallbackWithHeap)(Heap* heap, Object** pointer);
    354 
    355 // -----------------------------------------------------------------------------
    356 // Miscellaneous
    357 
    358 // NOTE: SpaceIterator depends on AllocationSpace enumeration values being
    359 // consecutive.
    360 enum AllocationSpace {
    361   NEW_SPACE,            // Semispaces collected with copying collector.
    362   OLD_POINTER_SPACE,    // May contain pointers to new space.
    363   OLD_DATA_SPACE,       // Must not have pointers to new space.
    364   CODE_SPACE,           // No pointers to new space, marked executable.
    365   MAP_SPACE,            // Only and all map objects.
    366   CELL_SPACE,           // Only and all cell objects.
    367   PROPERTY_CELL_SPACE,  // Only and all global property cell objects.
    368   LO_SPACE,             // Promoted large objects.
    369   INVALID_SPACE,        // Only used in AllocationResult to signal success.
    370 
    371   FIRST_SPACE = NEW_SPACE,
    372   LAST_SPACE = LO_SPACE,
    373   FIRST_PAGED_SPACE = OLD_POINTER_SPACE,
    374   LAST_PAGED_SPACE = PROPERTY_CELL_SPACE
    375 };
    376 const int kSpaceTagSize = 3;
    377 const int kSpaceTagMask = (1 << kSpaceTagSize) - 1;
    378 
    379 
    380 // A flag that indicates whether objects should be pretenured when
    381 // allocated (allocated directly into the old generation) or not
    382 // (allocated in the young generation if the object size and type
    383 // allows).
    384 enum PretenureFlag { NOT_TENURED, TENURED };
    385 
    386 enum MinimumCapacity {
    387   USE_DEFAULT_MINIMUM_CAPACITY,
    388   USE_CUSTOM_MINIMUM_CAPACITY
    389 };
    390 
    391 enum GarbageCollector { SCAVENGER, MARK_COMPACTOR };
    392 
    393 enum Executability { NOT_EXECUTABLE, EXECUTABLE };
    394 
    395 enum VisitMode {
    396   VISIT_ALL,
    397   VISIT_ALL_IN_SCAVENGE,
    398   VISIT_ALL_IN_SWEEP_NEWSPACE,
    399   VISIT_ONLY_STRONG
    400 };
    401 
    402 // Flag indicating whether code is built into the VM (one of the natives files).
    403 enum NativesFlag { NOT_NATIVES_CODE, NATIVES_CODE };
    404 
    405 
    406 // A CodeDesc describes a buffer holding instructions and relocation
    407 // information. The instructions start at the beginning of the buffer
    408 // and grow forward, the relocation information starts at the end of
    409 // the buffer and grows backward.
    410 //
    411 //  |<--------------- buffer_size ---------------->|
    412 //  |<-- instr_size -->|        |<-- reloc_size -->|
    413 //  +==================+========+==================+
    414 //  |   instructions   |  free  |    reloc info    |
    415 //  +==================+========+==================+
    416 //  ^
    417 //  |
    418 //  buffer
    419 
    420 struct CodeDesc {
    421   byte* buffer;
    422   int buffer_size;
    423   int instr_size;
    424   int reloc_size;
    425   Assembler* origin;
    426 };
    427 
    428 
    429 // Callback function used for iterating objects in heap spaces,
    430 // for example, scanning heap objects.
    431 typedef int (*HeapObjectCallback)(HeapObject* obj);
    432 
    433 
    434 // Callback function used for checking constraints when copying/relocating
    435 // objects. Returns true if an object can be copied/relocated from its
    436 // old_addr to a new_addr.
    437 typedef bool (*ConstraintCallback)(Address new_addr, Address old_addr);
    438 
    439 
    440 // Callback function on inline caches, used for iterating over inline caches
    441 // in compiled code.
    442 typedef void (*InlineCacheCallback)(Code* code, Address ic);
    443 
    444 
    445 // State for inline cache call sites. Aliased as IC::State.
    446 enum InlineCacheState {
    447   // Has never been executed.
    448   UNINITIALIZED,
    449   // Has been executed but monomorhic state has been delayed.
    450   PREMONOMORPHIC,
    451   // Has been executed and only one receiver type has been seen.
    452   MONOMORPHIC,
    453   // Like MONOMORPHIC but check failed due to prototype.
    454   MONOMORPHIC_PROTOTYPE_FAILURE,
    455   // Multiple receiver types have been seen.
    456   POLYMORPHIC,
    457   // Many receiver types have been seen.
    458   MEGAMORPHIC,
    459   // A generic handler is installed and no extra typefeedback is recorded.
    460   GENERIC,
    461   // Special state for debug break or step in prepare stubs.
    462   DEBUG_STUB
    463 };
    464 
    465 
    466 enum CallFunctionFlags {
    467   NO_CALL_FUNCTION_FLAGS,
    468   CALL_AS_METHOD,
    469   // Always wrap the receiver and call to the JSFunction. Only use this flag
    470   // both the receiver type and the target method are statically known.
    471   WRAP_AND_CALL
    472 };
    473 
    474 
    475 enum CallConstructorFlags {
    476   NO_CALL_CONSTRUCTOR_FLAGS,
    477   // The call target is cached in the instruction stream.
    478   RECORD_CONSTRUCTOR_TARGET
    479 };
    480 
    481 
    482 enum InlineCacheHolderFlag {
    483   OWN_MAP,  // For fast properties objects.
    484   PROTOTYPE_MAP  // For slow properties objects (except GlobalObjects).
    485 };
    486 
    487 
    488 // The Store Buffer (GC).
    489 typedef enum {
    490   kStoreBufferFullEvent,
    491   kStoreBufferStartScanningPagesEvent,
    492   kStoreBufferScanningPageEvent
    493 } StoreBufferEvent;
    494 
    495 
    496 typedef void (*StoreBufferCallback)(Heap* heap,
    497                                     MemoryChunk* page,
    498                                     StoreBufferEvent event);
    499 
    500 
    501 // Union used for fast testing of specific double values.
    502 union DoubleRepresentation {
    503   double  value;
    504   int64_t bits;
    505   DoubleRepresentation(double x) { value = x; }
    506   bool operator==(const DoubleRepresentation& other) const {
    507     return bits == other.bits;
    508   }
    509 };
    510 
    511 
    512 // Union used for customized checking of the IEEE double types
    513 // inlined within v8 runtime, rather than going to the underlying
    514 // platform headers and libraries
    515 union IeeeDoubleLittleEndianArchType {
    516   double d;
    517   struct {
    518     unsigned int man_low  :32;
    519     unsigned int man_high :20;
    520     unsigned int exp      :11;
    521     unsigned int sign     :1;
    522   } bits;
    523 };
    524 
    525 
    526 union IeeeDoubleBigEndianArchType {
    527   double d;
    528   struct {
    529     unsigned int sign     :1;
    530     unsigned int exp      :11;
    531     unsigned int man_high :20;
    532     unsigned int man_low  :32;
    533   } bits;
    534 };
    535 
    536 
    537 // AccessorCallback
    538 struct AccessorDescriptor {
    539   Object* (*getter)(Isolate* isolate, Object* object, void* data);
    540   Object* (*setter)(
    541       Isolate* isolate, JSObject* object, Object* value, void* data);
    542   void* data;
    543 };
    544 
    545 
    546 // Logging and profiling.  A StateTag represents a possible state of
    547 // the VM. The logger maintains a stack of these. Creating a VMState
    548 // object enters a state by pushing on the stack, and destroying a
    549 // VMState object leaves a state by popping the current state from the
    550 // stack.
    551 
    552 enum StateTag {
    553   JS,
    554   GC,
    555   COMPILER,
    556   OTHER,
    557   EXTERNAL,
    558   IDLE
    559 };
    560 
    561 
    562 // -----------------------------------------------------------------------------
    563 // Macros
    564 
    565 // Testers for test.
    566 
    567 #define HAS_SMI_TAG(value) \
    568   ((reinterpret_cast<intptr_t>(value) & kSmiTagMask) == kSmiTag)
    569 
    570 #define HAS_FAILURE_TAG(value) \
    571   ((reinterpret_cast<intptr_t>(value) & kFailureTagMask) == kFailureTag)
    572 
    573 // OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer
    574 #define OBJECT_POINTER_ALIGN(value)                             \
    575   (((value) + kObjectAlignmentMask) & ~kObjectAlignmentMask)
    576 
    577 // POINTER_SIZE_ALIGN returns the value aligned as a pointer.
    578 #define POINTER_SIZE_ALIGN(value)                               \
    579   (((value) + kPointerAlignmentMask) & ~kPointerAlignmentMask)
    580 
    581 // CODE_POINTER_ALIGN returns the value aligned as a generated code segment.
    582 #define CODE_POINTER_ALIGN(value)                               \
    583   (((value) + kCodeAlignmentMask) & ~kCodeAlignmentMask)
    584 
    585 // Support for tracking C++ memory allocation.  Insert TRACK_MEMORY("Fisk")
    586 // inside a C++ class and new and delete will be overloaded so logging is
    587 // performed.
    588 // This file (globals.h) is included before log.h, so we use direct calls to
    589 // the Logger rather than the LOG macro.
    590 #ifdef DEBUG
    591 #define TRACK_MEMORY(name) \
    592   void* operator new(size_t size) { \
    593     void* result = ::operator new(size); \
    594     Logger::NewEventStatic(name, result, size); \
    595     return result; \
    596   } \
    597   void operator delete(void* object) { \
    598     Logger::DeleteEventStatic(name, object); \
    599     ::operator delete(object); \
    600   }
    601 #else
    602 #define TRACK_MEMORY(name)
    603 #endif
    604 
    605 
    606 // CPU feature flags.
    607 enum CpuFeature {
    608     // x86
    609     SSE4_1,
    610     SSE3,
    611     SAHF,
    612     // ARM
    613     VFP3,
    614     ARMv7,
    615     SUDIV,
    616     MLS,
    617     UNALIGNED_ACCESSES,
    618     MOVW_MOVT_IMMEDIATE_LOADS,
    619     VFP32DREGS,
    620     NEON,
    621     // MIPS
    622     FPU,
    623     // ARM64
    624     ALWAYS_ALIGN_CSP,
    625     NUMBER_OF_CPU_FEATURES
    626 };
    627 
    628 
    629 // Used to specify if a macro instruction must perform a smi check on tagged
    630 // values.
    631 enum SmiCheckType {
    632   DONT_DO_SMI_CHECK,
    633   DO_SMI_CHECK
    634 };
    635 
    636 
    637 enum ScopeType {
    638   EVAL_SCOPE,      // The top-level scope for an eval source.
    639   FUNCTION_SCOPE,  // The top-level scope for a function.
    640   MODULE_SCOPE,    // The scope introduced by a module literal
    641   GLOBAL_SCOPE,    // The top-level scope for a program or a top-level eval.
    642   CATCH_SCOPE,     // The scope introduced by catch.
    643   BLOCK_SCOPE,     // The scope introduced by a new block.
    644   WITH_SCOPE       // The scope introduced by with.
    645 };
    646 
    647 
    648 const uint32_t kHoleNanUpper32 = 0x7FFFFFFF;
    649 const uint32_t kHoleNanLower32 = 0xFFFFFFFF;
    650 const uint32_t kNaNOrInfinityLowerBoundUpper32 = 0x7FF00000;
    651 
    652 const uint64_t kHoleNanInt64 =
    653     (static_cast<uint64_t>(kHoleNanUpper32) << 32) | kHoleNanLower32;
    654 const uint64_t kLastNonNaNInt64 =
    655     (static_cast<uint64_t>(kNaNOrInfinityLowerBoundUpper32) << 32);
    656 
    657 
    658 // The order of this enum has to be kept in sync with the predicates below.
    659 enum VariableMode {
    660   // User declared variables:
    661   VAR,             // declared via 'var', and 'function' declarations
    662 
    663   CONST_LEGACY,    // declared via legacy 'const' declarations
    664 
    665   LET,             // declared via 'let' declarations (first lexical)
    666 
    667   CONST,           // declared via 'const' declarations
    668 
    669   MODULE,          // declared via 'module' declaration (last lexical)
    670 
    671   // Variables introduced by the compiler:
    672   INTERNAL,        // like VAR, but not user-visible (may or may not
    673                    // be in a context)
    674 
    675   TEMPORARY,       // temporary variables (not user-visible), stack-allocated
    676                    // unless the scope as a whole has forced context allocation
    677 
    678   DYNAMIC,         // always require dynamic lookup (we don't know
    679                    // the declaration)
    680 
    681   DYNAMIC_GLOBAL,  // requires dynamic lookup, but we know that the
    682                    // variable is global unless it has been shadowed
    683                    // by an eval-introduced variable
    684 
    685   DYNAMIC_LOCAL    // requires dynamic lookup, but we know that the
    686                    // variable is local and where it is unless it
    687                    // has been shadowed by an eval-introduced
    688                    // variable
    689 };
    690 
    691 
    692 inline bool IsDynamicVariableMode(VariableMode mode) {
    693   return mode >= DYNAMIC && mode <= DYNAMIC_LOCAL;
    694 }
    695 
    696 
    697 inline bool IsDeclaredVariableMode(VariableMode mode) {
    698   return mode >= VAR && mode <= MODULE;
    699 }
    700 
    701 
    702 inline bool IsLexicalVariableMode(VariableMode mode) {
    703   return mode >= LET && mode <= MODULE;
    704 }
    705 
    706 
    707 inline bool IsImmutableVariableMode(VariableMode mode) {
    708   return (mode >= CONST && mode <= MODULE) || mode == CONST_LEGACY;
    709 }
    710 
    711 
    712 // ES6 Draft Rev3 10.2 specifies declarative environment records with mutable
    713 // and immutable bindings that can be in two states: initialized and
    714 // uninitialized. In ES5 only immutable bindings have these two states. When
    715 // accessing a binding, it needs to be checked for initialization. However in
    716 // the following cases the binding is initialized immediately after creation
    717 // so the initialization check can always be skipped:
    718 // 1. Var declared local variables.
    719 //      var foo;
    720 // 2. A local variable introduced by a function declaration.
    721 //      function foo() {}
    722 // 3. Parameters
    723 //      function x(foo) {}
    724 // 4. Catch bound variables.
    725 //      try {} catch (foo) {}
    726 // 6. Function variables of named function expressions.
    727 //      var x = function foo() {}
    728 // 7. Implicit binding of 'this'.
    729 // 8. Implicit binding of 'arguments' in functions.
    730 //
    731 // ES5 specified object environment records which are introduced by ES elements
    732 // such as Program and WithStatement that associate identifier bindings with the
    733 // properties of some object. In the specification only mutable bindings exist
    734 // (which may be non-writable) and have no distinct initialization step. However
    735 // V8 allows const declarations in global code with distinct creation and
    736 // initialization steps which are represented by non-writable properties in the
    737 // global object. As a result also these bindings need to be checked for
    738 // initialization.
    739 //
    740 // The following enum specifies a flag that indicates if the binding needs a
    741 // distinct initialization step (kNeedsInitialization) or if the binding is
    742 // immediately initialized upon creation (kCreatedInitialized).
    743 enum InitializationFlag {
    744   kNeedsInitialization,
    745   kCreatedInitialized
    746 };
    747 
    748 
    749 enum ClearExceptionFlag {
    750   KEEP_EXCEPTION,
    751   CLEAR_EXCEPTION
    752 };
    753 
    754 
    755 enum MinusZeroMode {
    756   TREAT_MINUS_ZERO_AS_ZERO,
    757   FAIL_ON_MINUS_ZERO
    758 };
    759 
    760 } }  // namespace v8::internal
    761 
    762 namespace i = v8::internal;
    763 
    764 #endif  // V8_GLOBALS_H_
    765