1 // Copyright 2013 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef MEDIA_CAST_CAST_DEFINES_H_ 6 #define MEDIA_CAST_CAST_DEFINES_H_ 7 8 #include <stdint.h> 9 10 #include <map> 11 #include <set> 12 13 #include "base/basictypes.h" 14 #include "base/compiler_specific.h" 15 #include "base/logging.h" 16 #include "base/time/time.h" 17 #include "media/cast/transport/cast_transport_config.h" 18 19 namespace media { 20 namespace cast { 21 22 const int64 kDontShowTimeoutMs = 33; 23 const float kDefaultCongestionControlBackOff = 0.875f; 24 const uint32 kVideoFrequency = 90000; 25 const uint32 kStartFrameId = UINT32_C(0xffffffff); 26 27 // This is an important system-wide constant. This limits how much history the 28 // implementation must retain in order to process the acknowledgements of past 29 // frames. 30 const int kMaxUnackedFrames = 60; 31 32 const size_t kMaxIpPacketSize = 1500; 33 const int kStartRttMs = 20; 34 const int64 kCastMessageUpdateIntervalMs = 33; 35 const int64 kNackRepeatIntervalMs = 30; 36 37 enum CastInitializationStatus { 38 STATUS_AUDIO_UNINITIALIZED, 39 STATUS_VIDEO_UNINITIALIZED, 40 STATUS_AUDIO_INITIALIZED, 41 STATUS_VIDEO_INITIALIZED, 42 STATUS_INVALID_CAST_ENVIRONMENT, 43 STATUS_INVALID_CRYPTO_CONFIGURATION, 44 STATUS_UNSUPPORTED_AUDIO_CODEC, 45 STATUS_UNSUPPORTED_VIDEO_CODEC, 46 STATUS_INVALID_AUDIO_CONFIGURATION, 47 STATUS_INVALID_VIDEO_CONFIGURATION, 48 STATUS_GPU_ACCELERATION_NOT_SUPPORTED, 49 STATUS_GPU_ACCELERATION_ERROR, 50 }; 51 52 enum DefaultSettings { 53 kDefaultAudioEncoderBitrate = 0, // This means "auto," and may mean VBR. 54 kDefaultAudioSamplingRate = 48000, 55 kDefaultMaxQp = 56, 56 kDefaultMinQp = 4, 57 kDefaultMaxFrameRate = 30, 58 kDefaultNumberOfVideoBuffers = 1, 59 kDefaultRtcpIntervalMs = 500, 60 kDefaultRtpHistoryMs = 1000, 61 kDefaultRtpMaxDelayMs = 100, 62 }; 63 64 enum PacketType { 65 kNewPacket, 66 kNewPacketCompletingFrame, 67 kDuplicatePacket, 68 kTooOldPacket, 69 }; 70 71 // kRtcpCastAllPacketsLost is used in PacketIDSet and 72 // on the wire to mean that ALL packets for a particular 73 // frame are lost. 74 const uint16 kRtcpCastAllPacketsLost = 0xffff; 75 76 // kRtcpCastLastPacket is used in PacketIDSet to ask for 77 // the last packet of a frame to be retransmitted. 78 const uint16 kRtcpCastLastPacket = 0xfffe; 79 80 const size_t kMinLengthOfRtcp = 8; 81 82 // Basic RTP header + cast header. 83 const size_t kMinLengthOfRtp = 12 + 6; 84 85 // Each uint16 represents one packet id within a cast frame. 86 // Can also contain kRtcpCastAllPacketsLost and kRtcpCastLastPacket. 87 typedef std::set<uint16> PacketIdSet; 88 // Each uint8 represents one cast frame. 89 typedef std::map<uint8, PacketIdSet> MissingFramesAndPacketsMap; 90 91 // TODO(pwestin): Re-factor the functions bellow into a class with static 92 // methods. 93 94 // January 1970, in NTP seconds. 95 // Network Time Protocol (NTP), which is in seconds relative to 0h UTC on 96 // 1 January 1900. 97 static const int64 kUnixEpochInNtpSeconds = INT64_C(2208988800); 98 99 // Magic fractional unit. Used to convert time (in microseconds) to/from 100 // fractional NTP seconds. 101 static const double kMagicFractionalUnit = 4.294967296E3; 102 103 // The maximum number of Cast receiver events to keep in history for the 104 // purpose of sending the events through RTCP. 105 // The number chosen should be more than the number of events that can be 106 // stored in a RTCP packet. 107 static const size_t kReceiverRtcpEventHistorySize = 512; 108 109 inline bool IsNewerFrameId(uint32 frame_id, uint32 prev_frame_id) { 110 return (frame_id != prev_frame_id) && 111 static_cast<uint32>(frame_id - prev_frame_id) < 0x80000000; 112 } 113 114 inline bool IsNewerRtpTimestamp(uint32 timestamp, uint32 prev_timestamp) { 115 return (timestamp != prev_timestamp) && 116 static_cast<uint32>(timestamp - prev_timestamp) < 0x80000000; 117 } 118 119 inline bool IsOlderFrameId(uint32 frame_id, uint32 prev_frame_id) { 120 return (frame_id == prev_frame_id) || IsNewerFrameId(prev_frame_id, frame_id); 121 } 122 123 inline bool IsNewerPacketId(uint16 packet_id, uint16 prev_packet_id) { 124 return (packet_id != prev_packet_id) && 125 static_cast<uint16>(packet_id - prev_packet_id) < 0x8000; 126 } 127 128 inline bool IsNewerSequenceNumber(uint16 sequence_number, 129 uint16 prev_sequence_number) { 130 // Same function as IsNewerPacketId just different data and name. 131 return IsNewerPacketId(sequence_number, prev_sequence_number); 132 } 133 134 // Create a NTP diff from seconds and fractions of seconds; delay_fraction is 135 // fractions of a second where 0x80000000 is half a second. 136 inline uint32 ConvertToNtpDiff(uint32 delay_seconds, uint32 delay_fraction) { 137 return ((delay_seconds & 0x0000FFFF) << 16) + 138 ((delay_fraction & 0xFFFF0000) >> 16); 139 } 140 141 inline base::TimeDelta ConvertFromNtpDiff(uint32 ntp_delay) { 142 uint32 delay_ms = (ntp_delay & 0x0000ffff) * 1000; 143 delay_ms >>= 16; 144 delay_ms += ((ntp_delay & 0xffff0000) >> 16) * 1000; 145 return base::TimeDelta::FromMilliseconds(delay_ms); 146 } 147 148 inline void ConvertTimeToFractions(int64 ntp_time_us, 149 uint32* seconds, 150 uint32* fractions) { 151 DCHECK_GE(ntp_time_us, 0) << "Time must NOT be negative"; 152 const int64 seconds_component = 153 ntp_time_us / base::Time::kMicrosecondsPerSecond; 154 // NTP time will overflow in the year 2036. Also, make sure unit tests don't 155 // regress and use an origin past the year 2036. If this overflows here, the 156 // inverse calculation fails to compute the correct TimeTicks value, throwing 157 // off the entire system. 158 DCHECK_LT(seconds_component, INT64_C(4263431296)) 159 << "One year left to fix the NTP year 2036 wrap-around issue!"; 160 *seconds = static_cast<uint32>(seconds_component); 161 *fractions = static_cast<uint32>( 162 (ntp_time_us % base::Time::kMicrosecondsPerSecond) * 163 kMagicFractionalUnit); 164 } 165 166 inline void ConvertTimeTicksToNtp(const base::TimeTicks& time, 167 uint32* ntp_seconds, 168 uint32* ntp_fractions) { 169 base::TimeDelta elapsed_since_unix_epoch = 170 time - base::TimeTicks::UnixEpoch(); 171 172 int64 ntp_time_us = 173 elapsed_since_unix_epoch.InMicroseconds() + 174 (kUnixEpochInNtpSeconds * base::Time::kMicrosecondsPerSecond); 175 176 ConvertTimeToFractions(ntp_time_us, ntp_seconds, ntp_fractions); 177 } 178 179 inline base::TimeTicks ConvertNtpToTimeTicks(uint32 ntp_seconds, 180 uint32 ntp_fractions) { 181 int64 ntp_time_us = 182 static_cast<int64>(ntp_seconds) * base::Time::kMicrosecondsPerSecond + 183 static_cast<int64>(ntp_fractions) / kMagicFractionalUnit; 184 185 base::TimeDelta elapsed_since_unix_epoch = base::TimeDelta::FromMicroseconds( 186 ntp_time_us - 187 (kUnixEpochInNtpSeconds * base::Time::kMicrosecondsPerSecond)); 188 return base::TimeTicks::UnixEpoch() + elapsed_since_unix_epoch; 189 } 190 191 inline base::TimeDelta RtpDeltaToTimeDelta(int64 rtp_delta, int rtp_timebase) { 192 DCHECK_GT(rtp_timebase, 0); 193 return rtp_delta * base::TimeDelta::FromSeconds(1) / rtp_timebase; 194 } 195 196 inline uint32 GetVideoRtpTimestamp(const base::TimeTicks& time_ticks) { 197 base::TimeTicks zero_time; 198 base::TimeDelta recorded_delta = time_ticks - zero_time; 199 // Timestamp is in 90 KHz for video. 200 return static_cast<uint32>(recorded_delta.InMilliseconds() * 90); 201 } 202 203 } // namespace cast 204 } // namespace media 205 206 #endif // MEDIA_CAST_CAST_DEFINES_H_ 207