1 #include <unistd.h> 2 #include <fcntl.h> 3 #include <string.h> 4 #include <signal.h> 5 #include <time.h> 6 #include <assert.h> 7 8 #include "fio.h" 9 #include "hash.h" 10 #include "verify.h" 11 #include "trim.h" 12 #include "lib/rand.h" 13 #include "lib/axmap.h" 14 #include "err.h" 15 16 struct io_completion_data { 17 int nr; /* input */ 18 19 int error; /* output */ 20 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */ 21 struct timeval time; /* output */ 22 }; 23 24 /* 25 * The ->io_axmap contains a map of blocks we have or have not done io 26 * to yet. Used to make sure we cover the entire range in a fair fashion. 27 */ 28 static int random_map_free(struct fio_file *f, const uint64_t block) 29 { 30 return !axmap_isset(f->io_axmap, block); 31 } 32 33 /* 34 * Mark a given offset as used in the map. 35 */ 36 static void mark_random_map(struct thread_data *td, struct io_u *io_u) 37 { 38 unsigned int min_bs = td->o.rw_min_bs; 39 struct fio_file *f = io_u->file; 40 unsigned int nr_blocks; 41 uint64_t block; 42 43 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs; 44 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs; 45 46 if (!(io_u->flags & IO_U_F_BUSY_OK)) 47 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks); 48 49 if ((nr_blocks * min_bs) < io_u->buflen) 50 io_u->buflen = nr_blocks * min_bs; 51 } 52 53 static uint64_t last_block(struct thread_data *td, struct fio_file *f, 54 enum fio_ddir ddir) 55 { 56 uint64_t max_blocks; 57 uint64_t max_size; 58 59 assert(ddir_rw(ddir)); 60 61 /* 62 * Hmm, should we make sure that ->io_size <= ->real_file_size? 63 */ 64 max_size = f->io_size; 65 if (max_size > f->real_file_size) 66 max_size = f->real_file_size; 67 68 if (td->o.zone_range) 69 max_size = td->o.zone_range; 70 71 max_blocks = max_size / (uint64_t) td->o.ba[ddir]; 72 if (!max_blocks) 73 return 0; 74 75 return max_blocks; 76 } 77 78 struct rand_off { 79 struct flist_head list; 80 uint64_t off; 81 }; 82 83 static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f, 84 enum fio_ddir ddir, uint64_t *b) 85 { 86 uint64_t r, lastb; 87 88 lastb = last_block(td, f, ddir); 89 if (!lastb) 90 return 1; 91 92 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) { 93 uint64_t rmax; 94 95 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX; 96 97 if (td->o.use_os_rand) { 98 rmax = OS_RAND_MAX; 99 r = os_random_long(&td->random_state); 100 } else { 101 rmax = FRAND_MAX; 102 r = __rand(&td->__random_state); 103 } 104 105 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r); 106 107 *b = lastb * (r / ((uint64_t) rmax + 1.0)); 108 } else { 109 uint64_t off = 0; 110 111 if (lfsr_next(&f->lfsr, &off, lastb)) 112 return 1; 113 114 *b = off; 115 } 116 117 /* 118 * if we are not maintaining a random map, we are done. 119 */ 120 if (!file_randommap(td, f)) 121 goto ret; 122 123 /* 124 * calculate map offset and check if it's free 125 */ 126 if (random_map_free(f, *b)) 127 goto ret; 128 129 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n", 130 (unsigned long long) *b); 131 132 *b = axmap_next_free(f->io_axmap, *b); 133 if (*b == (uint64_t) -1ULL) 134 return 1; 135 ret: 136 return 0; 137 } 138 139 static int __get_next_rand_offset_zipf(struct thread_data *td, 140 struct fio_file *f, enum fio_ddir ddir, 141 uint64_t *b) 142 { 143 *b = zipf_next(&f->zipf); 144 return 0; 145 } 146 147 static int __get_next_rand_offset_pareto(struct thread_data *td, 148 struct fio_file *f, enum fio_ddir ddir, 149 uint64_t *b) 150 { 151 *b = pareto_next(&f->zipf); 152 return 0; 153 } 154 155 static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b) 156 { 157 struct rand_off *r1 = flist_entry(a, struct rand_off, list); 158 struct rand_off *r2 = flist_entry(b, struct rand_off, list); 159 160 return r1->off - r2->off; 161 } 162 163 static int get_off_from_method(struct thread_data *td, struct fio_file *f, 164 enum fio_ddir ddir, uint64_t *b) 165 { 166 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) 167 return __get_next_rand_offset(td, f, ddir, b); 168 else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF) 169 return __get_next_rand_offset_zipf(td, f, ddir, b); 170 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO) 171 return __get_next_rand_offset_pareto(td, f, ddir, b); 172 173 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution); 174 return 1; 175 } 176 177 /* 178 * Sort the reads for a verify phase in batches of verifysort_nr, if 179 * specified. 180 */ 181 static inline int should_sort_io(struct thread_data *td) 182 { 183 if (!td->o.verifysort_nr || !td->o.do_verify) 184 return 0; 185 if (!td_random(td)) 186 return 0; 187 if (td->runstate != TD_VERIFYING) 188 return 0; 189 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) 190 return 0; 191 192 return 1; 193 } 194 195 static int should_do_random(struct thread_data *td, enum fio_ddir ddir) 196 { 197 unsigned int v; 198 unsigned long r; 199 200 if (td->o.perc_rand[ddir] == 100) 201 return 1; 202 203 if (td->o.use_os_rand) { 204 r = os_random_long(&td->seq_rand_state[ddir]); 205 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0))); 206 } else { 207 r = __rand(&td->__seq_rand_state[ddir]); 208 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0))); 209 } 210 211 return v <= td->o.perc_rand[ddir]; 212 } 213 214 static int get_next_rand_offset(struct thread_data *td, struct fio_file *f, 215 enum fio_ddir ddir, uint64_t *b) 216 { 217 struct rand_off *r; 218 int i, ret = 1; 219 220 if (!should_sort_io(td)) 221 return get_off_from_method(td, f, ddir, b); 222 223 if (!flist_empty(&td->next_rand_list)) { 224 struct rand_off *r; 225 fetch: 226 r = flist_entry(td->next_rand_list.next, struct rand_off, list); 227 flist_del(&r->list); 228 *b = r->off; 229 free(r); 230 return 0; 231 } 232 233 for (i = 0; i < td->o.verifysort_nr; i++) { 234 r = malloc(sizeof(*r)); 235 236 ret = get_off_from_method(td, f, ddir, &r->off); 237 if (ret) { 238 free(r); 239 break; 240 } 241 242 flist_add(&r->list, &td->next_rand_list); 243 } 244 245 if (ret && !i) 246 return ret; 247 248 assert(!flist_empty(&td->next_rand_list)); 249 flist_sort(NULL, &td->next_rand_list, flist_cmp); 250 goto fetch; 251 } 252 253 static int get_next_rand_block(struct thread_data *td, struct fio_file *f, 254 enum fio_ddir ddir, uint64_t *b) 255 { 256 if (!get_next_rand_offset(td, f, ddir, b)) 257 return 0; 258 259 if (td->o.time_based) { 260 fio_file_reset(td, f); 261 if (!get_next_rand_offset(td, f, ddir, b)) 262 return 0; 263 } 264 265 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n", 266 f->file_name, (unsigned long long) f->last_pos, 267 (unsigned long long) f->real_file_size); 268 return 1; 269 } 270 271 static int get_next_seq_offset(struct thread_data *td, struct fio_file *f, 272 enum fio_ddir ddir, uint64_t *offset) 273 { 274 assert(ddir_rw(ddir)); 275 276 if (f->last_pos >= f->io_size + get_start_offset(td, f) && td->o.time_based) 277 f->last_pos = f->last_pos - f->io_size; 278 279 if (f->last_pos < f->real_file_size) { 280 uint64_t pos; 281 282 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0) 283 f->last_pos = f->real_file_size; 284 285 pos = f->last_pos - f->file_offset; 286 if (pos) 287 pos += td->o.ddir_seq_add; 288 289 *offset = pos; 290 return 0; 291 } 292 293 return 1; 294 } 295 296 static int get_next_block(struct thread_data *td, struct io_u *io_u, 297 enum fio_ddir ddir, int rw_seq, 298 unsigned int *is_random) 299 { 300 struct fio_file *f = io_u->file; 301 uint64_t b, offset; 302 int ret; 303 304 assert(ddir_rw(ddir)); 305 306 b = offset = -1ULL; 307 308 if (rw_seq) { 309 if (td_random(td)) { 310 if (should_do_random(td, ddir)) { 311 ret = get_next_rand_block(td, f, ddir, &b); 312 *is_random = 1; 313 } else { 314 *is_random = 0; 315 io_u->flags |= IO_U_F_BUSY_OK; 316 ret = get_next_seq_offset(td, f, ddir, &offset); 317 if (ret) 318 ret = get_next_rand_block(td, f, ddir, &b); 319 } 320 } else { 321 *is_random = 0; 322 ret = get_next_seq_offset(td, f, ddir, &offset); 323 } 324 } else { 325 io_u->flags |= IO_U_F_BUSY_OK; 326 *is_random = 0; 327 328 if (td->o.rw_seq == RW_SEQ_SEQ) { 329 ret = get_next_seq_offset(td, f, ddir, &offset); 330 if (ret) { 331 ret = get_next_rand_block(td, f, ddir, &b); 332 *is_random = 0; 333 } 334 } else if (td->o.rw_seq == RW_SEQ_IDENT) { 335 if (f->last_start != -1ULL) 336 offset = f->last_start - f->file_offset; 337 else 338 offset = 0; 339 ret = 0; 340 } else { 341 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq); 342 ret = 1; 343 } 344 } 345 346 if (!ret) { 347 if (offset != -1ULL) 348 io_u->offset = offset; 349 else if (b != -1ULL) 350 io_u->offset = b * td->o.ba[ddir]; 351 else { 352 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b); 353 ret = 1; 354 } 355 } 356 357 return ret; 358 } 359 360 /* 361 * For random io, generate a random new block and see if it's used. Repeat 362 * until we find a free one. For sequential io, just return the end of 363 * the last io issued. 364 */ 365 static int __get_next_offset(struct thread_data *td, struct io_u *io_u, 366 unsigned int *is_random) 367 { 368 struct fio_file *f = io_u->file; 369 enum fio_ddir ddir = io_u->ddir; 370 int rw_seq_hit = 0; 371 372 assert(ddir_rw(ddir)); 373 374 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) { 375 rw_seq_hit = 1; 376 td->ddir_seq_nr = td->o.ddir_seq_nr; 377 } 378 379 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random)) 380 return 1; 381 382 if (io_u->offset >= f->io_size) { 383 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n", 384 (unsigned long long) io_u->offset, 385 (unsigned long long) f->io_size); 386 return 1; 387 } 388 389 io_u->offset += f->file_offset; 390 if (io_u->offset >= f->real_file_size) { 391 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n", 392 (unsigned long long) io_u->offset, 393 (unsigned long long) f->real_file_size); 394 return 1; 395 } 396 397 return 0; 398 } 399 400 static int get_next_offset(struct thread_data *td, struct io_u *io_u, 401 unsigned int *is_random) 402 { 403 if (td->flags & TD_F_PROFILE_OPS) { 404 struct prof_io_ops *ops = &td->prof_io_ops; 405 406 if (ops->fill_io_u_off) 407 return ops->fill_io_u_off(td, io_u, is_random); 408 } 409 410 return __get_next_offset(td, io_u, is_random); 411 } 412 413 static inline int io_u_fits(struct thread_data *td, struct io_u *io_u, 414 unsigned int buflen) 415 { 416 struct fio_file *f = io_u->file; 417 418 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f); 419 } 420 421 static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u, 422 unsigned int is_random) 423 { 424 int ddir = io_u->ddir; 425 unsigned int buflen = 0; 426 unsigned int minbs, maxbs; 427 unsigned long r, rand_max; 428 429 assert(ddir_rw(ddir)); 430 431 if (td->o.bs_is_seq_rand) 432 ddir = is_random ? DDIR_WRITE: DDIR_READ; 433 434 minbs = td->o.min_bs[ddir]; 435 maxbs = td->o.max_bs[ddir]; 436 437 if (minbs == maxbs) 438 return minbs; 439 440 /* 441 * If we can't satisfy the min block size from here, then fail 442 */ 443 if (!io_u_fits(td, io_u, minbs)) 444 return 0; 445 446 if (td->o.use_os_rand) 447 rand_max = OS_RAND_MAX; 448 else 449 rand_max = FRAND_MAX; 450 451 do { 452 if (td->o.use_os_rand) 453 r = os_random_long(&td->bsrange_state); 454 else 455 r = __rand(&td->__bsrange_state); 456 457 if (!td->o.bssplit_nr[ddir]) { 458 buflen = 1 + (unsigned int) ((double) maxbs * 459 (r / (rand_max + 1.0))); 460 if (buflen < minbs) 461 buflen = minbs; 462 } else { 463 long perc = 0; 464 unsigned int i; 465 466 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) { 467 struct bssplit *bsp = &td->o.bssplit[ddir][i]; 468 469 buflen = bsp->bs; 470 perc += bsp->perc; 471 if ((r <= ((rand_max / 100L) * perc)) && 472 io_u_fits(td, io_u, buflen)) 473 break; 474 } 475 } 476 477 if (td->o.do_verify && td->o.verify != VERIFY_NONE) 478 buflen = (buflen + td->o.verify_interval - 1) & 479 ~(td->o.verify_interval - 1); 480 481 if (!td->o.bs_unaligned && is_power_of_2(minbs)) 482 buflen = (buflen + minbs - 1) & ~(minbs - 1); 483 484 } while (!io_u_fits(td, io_u, buflen)); 485 486 return buflen; 487 } 488 489 static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u, 490 unsigned int is_random) 491 { 492 if (td->flags & TD_F_PROFILE_OPS) { 493 struct prof_io_ops *ops = &td->prof_io_ops; 494 495 if (ops->fill_io_u_size) 496 return ops->fill_io_u_size(td, io_u, is_random); 497 } 498 499 return __get_next_buflen(td, io_u, is_random); 500 } 501 502 static void set_rwmix_bytes(struct thread_data *td) 503 { 504 unsigned int diff; 505 506 /* 507 * we do time or byte based switch. this is needed because 508 * buffered writes may issue a lot quicker than they complete, 509 * whereas reads do not. 510 */ 511 diff = td->o.rwmix[td->rwmix_ddir ^ 1]; 512 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100; 513 } 514 515 static inline enum fio_ddir get_rand_ddir(struct thread_data *td) 516 { 517 unsigned int v; 518 unsigned long r; 519 520 if (td->o.use_os_rand) { 521 r = os_random_long(&td->rwmix_state); 522 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0))); 523 } else { 524 r = __rand(&td->__rwmix_state); 525 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0))); 526 } 527 528 if (v <= td->o.rwmix[DDIR_READ]) 529 return DDIR_READ; 530 531 return DDIR_WRITE; 532 } 533 534 void io_u_quiesce(struct thread_data *td) 535 { 536 /* 537 * We are going to sleep, ensure that we flush anything pending as 538 * not to skew our latency numbers. 539 * 540 * Changed to only monitor 'in flight' requests here instead of the 541 * td->cur_depth, b/c td->cur_depth does not accurately represent 542 * io's that have been actually submitted to an async engine, 543 * and cur_depth is meaningless for sync engines. 544 */ 545 while (td->io_u_in_flight) { 546 int fio_unused ret; 547 548 ret = io_u_queued_complete(td, 1, NULL); 549 } 550 } 551 552 static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir) 553 { 554 enum fio_ddir odir = ddir ^ 1; 555 struct timeval t; 556 long usec; 557 558 assert(ddir_rw(ddir)); 559 560 if (td->rate_pending_usleep[ddir] <= 0) 561 return ddir; 562 563 /* 564 * We have too much pending sleep in this direction. See if we 565 * should switch. 566 */ 567 if (td_rw(td) && td->o.rwmix[odir]) { 568 /* 569 * Other direction does not have too much pending, switch 570 */ 571 if (td->rate_pending_usleep[odir] < 100000) 572 return odir; 573 574 /* 575 * Both directions have pending sleep. Sleep the minimum time 576 * and deduct from both. 577 */ 578 if (td->rate_pending_usleep[ddir] <= 579 td->rate_pending_usleep[odir]) { 580 usec = td->rate_pending_usleep[ddir]; 581 } else { 582 usec = td->rate_pending_usleep[odir]; 583 ddir = odir; 584 } 585 } else 586 usec = td->rate_pending_usleep[ddir]; 587 588 io_u_quiesce(td); 589 590 fio_gettime(&t, NULL); 591 usec_sleep(td, usec); 592 usec = utime_since_now(&t); 593 594 td->rate_pending_usleep[ddir] -= usec; 595 596 odir = ddir ^ 1; 597 if (td_rw(td) && __should_check_rate(td, odir)) 598 td->rate_pending_usleep[odir] -= usec; 599 600 if (ddir_trim(ddir)) 601 return ddir; 602 603 return ddir; 604 } 605 606 /* 607 * Return the data direction for the next io_u. If the job is a 608 * mixed read/write workload, check the rwmix cycle and switch if 609 * necessary. 610 */ 611 static enum fio_ddir get_rw_ddir(struct thread_data *td) 612 { 613 enum fio_ddir ddir; 614 615 /* 616 * see if it's time to fsync 617 */ 618 if (td->o.fsync_blocks && 619 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) && 620 td->io_issues[DDIR_WRITE] && should_fsync(td)) 621 return DDIR_SYNC; 622 623 /* 624 * see if it's time to fdatasync 625 */ 626 if (td->o.fdatasync_blocks && 627 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) && 628 td->io_issues[DDIR_WRITE] && should_fsync(td)) 629 return DDIR_DATASYNC; 630 631 /* 632 * see if it's time to sync_file_range 633 */ 634 if (td->sync_file_range_nr && 635 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) && 636 td->io_issues[DDIR_WRITE] && should_fsync(td)) 637 return DDIR_SYNC_FILE_RANGE; 638 639 if (td_rw(td)) { 640 /* 641 * Check if it's time to seed a new data direction. 642 */ 643 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) { 644 /* 645 * Put a top limit on how many bytes we do for 646 * one data direction, to avoid overflowing the 647 * ranges too much 648 */ 649 ddir = get_rand_ddir(td); 650 651 if (ddir != td->rwmix_ddir) 652 set_rwmix_bytes(td); 653 654 td->rwmix_ddir = ddir; 655 } 656 ddir = td->rwmix_ddir; 657 } else if (td_read(td)) 658 ddir = DDIR_READ; 659 else if (td_write(td)) 660 ddir = DDIR_WRITE; 661 else 662 ddir = DDIR_TRIM; 663 664 td->rwmix_ddir = rate_ddir(td, ddir); 665 return td->rwmix_ddir; 666 } 667 668 static void set_rw_ddir(struct thread_data *td, struct io_u *io_u) 669 { 670 io_u->ddir = io_u->acct_ddir = get_rw_ddir(td); 671 672 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) && 673 td->o.barrier_blocks && 674 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) && 675 td->io_issues[DDIR_WRITE]) 676 io_u->flags |= IO_U_F_BARRIER; 677 } 678 679 void put_file_log(struct thread_data *td, struct fio_file *f) 680 { 681 unsigned int ret = put_file(td, f); 682 683 if (ret) 684 td_verror(td, ret, "file close"); 685 } 686 687 void put_io_u(struct thread_data *td, struct io_u *io_u) 688 { 689 td_io_u_lock(td); 690 691 if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF)) 692 put_file_log(td, io_u->file); 693 io_u->file = NULL; 694 io_u->flags &= ~IO_U_F_FREE_DEF; 695 io_u->flags |= IO_U_F_FREE; 696 697 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) 698 td->cur_depth--; 699 io_u_qpush(&td->io_u_freelist, io_u); 700 td_io_u_unlock(td); 701 td_io_u_free_notify(td); 702 } 703 704 void clear_io_u(struct thread_data *td, struct io_u *io_u) 705 { 706 io_u->flags &= ~IO_U_F_FLIGHT; 707 put_io_u(td, io_u); 708 } 709 710 void requeue_io_u(struct thread_data *td, struct io_u **io_u) 711 { 712 struct io_u *__io_u = *io_u; 713 enum fio_ddir ddir = acct_ddir(__io_u); 714 715 dprint(FD_IO, "requeue %p\n", __io_u); 716 717 td_io_u_lock(td); 718 719 __io_u->flags |= IO_U_F_FREE; 720 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir)) 721 td->io_issues[ddir]--; 722 723 __io_u->flags &= ~IO_U_F_FLIGHT; 724 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) 725 td->cur_depth--; 726 727 io_u_rpush(&td->io_u_requeues, __io_u); 728 td_io_u_unlock(td); 729 *io_u = NULL; 730 } 731 732 static int fill_io_u(struct thread_data *td, struct io_u *io_u) 733 { 734 unsigned int is_random; 735 736 if (td->io_ops->flags & FIO_NOIO) 737 goto out; 738 739 set_rw_ddir(td, io_u); 740 741 /* 742 * fsync() or fdatasync() or trim etc, we are done 743 */ 744 if (!ddir_rw(io_u->ddir)) 745 goto out; 746 747 /* 748 * See if it's time to switch to a new zone 749 */ 750 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) { 751 td->zone_bytes = 0; 752 io_u->file->file_offset += td->o.zone_range + td->o.zone_skip; 753 io_u->file->last_pos = io_u->file->file_offset; 754 td->io_skip_bytes += td->o.zone_skip; 755 } 756 757 /* 758 * No log, let the seq/rand engine retrieve the next buflen and 759 * position. 760 */ 761 if (get_next_offset(td, io_u, &is_random)) { 762 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u); 763 return 1; 764 } 765 766 io_u->buflen = get_next_buflen(td, io_u, is_random); 767 if (!io_u->buflen) { 768 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u); 769 return 1; 770 } 771 772 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) { 773 dprint(FD_IO, "io_u %p, offset too large\n", io_u); 774 dprint(FD_IO, " off=%llu/%lu > %llu\n", 775 (unsigned long long) io_u->offset, io_u->buflen, 776 (unsigned long long) io_u->file->real_file_size); 777 return 1; 778 } 779 780 /* 781 * mark entry before potentially trimming io_u 782 */ 783 if (td_random(td) && file_randommap(td, io_u->file)) 784 mark_random_map(td, io_u); 785 786 out: 787 dprint_io_u(io_u, "fill_io_u"); 788 td->zone_bytes += io_u->buflen; 789 return 0; 790 } 791 792 static void __io_u_mark_map(unsigned int *map, unsigned int nr) 793 { 794 int idx = 0; 795 796 switch (nr) { 797 default: 798 idx = 6; 799 break; 800 case 33 ... 64: 801 idx = 5; 802 break; 803 case 17 ... 32: 804 idx = 4; 805 break; 806 case 9 ... 16: 807 idx = 3; 808 break; 809 case 5 ... 8: 810 idx = 2; 811 break; 812 case 1 ... 4: 813 idx = 1; 814 case 0: 815 break; 816 } 817 818 map[idx]++; 819 } 820 821 void io_u_mark_submit(struct thread_data *td, unsigned int nr) 822 { 823 __io_u_mark_map(td->ts.io_u_submit, nr); 824 td->ts.total_submit++; 825 } 826 827 void io_u_mark_complete(struct thread_data *td, unsigned int nr) 828 { 829 __io_u_mark_map(td->ts.io_u_complete, nr); 830 td->ts.total_complete++; 831 } 832 833 void io_u_mark_depth(struct thread_data *td, unsigned int nr) 834 { 835 int idx = 0; 836 837 switch (td->cur_depth) { 838 default: 839 idx = 6; 840 break; 841 case 32 ... 63: 842 idx = 5; 843 break; 844 case 16 ... 31: 845 idx = 4; 846 break; 847 case 8 ... 15: 848 idx = 3; 849 break; 850 case 4 ... 7: 851 idx = 2; 852 break; 853 case 2 ... 3: 854 idx = 1; 855 case 1: 856 break; 857 } 858 859 td->ts.io_u_map[idx] += nr; 860 } 861 862 static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec) 863 { 864 int idx = 0; 865 866 assert(usec < 1000); 867 868 switch (usec) { 869 case 750 ... 999: 870 idx = 9; 871 break; 872 case 500 ... 749: 873 idx = 8; 874 break; 875 case 250 ... 499: 876 idx = 7; 877 break; 878 case 100 ... 249: 879 idx = 6; 880 break; 881 case 50 ... 99: 882 idx = 5; 883 break; 884 case 20 ... 49: 885 idx = 4; 886 break; 887 case 10 ... 19: 888 idx = 3; 889 break; 890 case 4 ... 9: 891 idx = 2; 892 break; 893 case 2 ... 3: 894 idx = 1; 895 case 0 ... 1: 896 break; 897 } 898 899 assert(idx < FIO_IO_U_LAT_U_NR); 900 td->ts.io_u_lat_u[idx]++; 901 } 902 903 static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec) 904 { 905 int idx = 0; 906 907 switch (msec) { 908 default: 909 idx = 11; 910 break; 911 case 1000 ... 1999: 912 idx = 10; 913 break; 914 case 750 ... 999: 915 idx = 9; 916 break; 917 case 500 ... 749: 918 idx = 8; 919 break; 920 case 250 ... 499: 921 idx = 7; 922 break; 923 case 100 ... 249: 924 idx = 6; 925 break; 926 case 50 ... 99: 927 idx = 5; 928 break; 929 case 20 ... 49: 930 idx = 4; 931 break; 932 case 10 ... 19: 933 idx = 3; 934 break; 935 case 4 ... 9: 936 idx = 2; 937 break; 938 case 2 ... 3: 939 idx = 1; 940 case 0 ... 1: 941 break; 942 } 943 944 assert(idx < FIO_IO_U_LAT_M_NR); 945 td->ts.io_u_lat_m[idx]++; 946 } 947 948 static void io_u_mark_latency(struct thread_data *td, unsigned long usec) 949 { 950 if (usec < 1000) 951 io_u_mark_lat_usec(td, usec); 952 else 953 io_u_mark_lat_msec(td, usec / 1000); 954 } 955 956 /* 957 * Get next file to service by choosing one at random 958 */ 959 static struct fio_file *get_next_file_rand(struct thread_data *td, 960 enum fio_file_flags goodf, 961 enum fio_file_flags badf) 962 { 963 struct fio_file *f; 964 int fno; 965 966 do { 967 int opened = 0; 968 unsigned long r; 969 970 if (td->o.use_os_rand) { 971 r = os_random_long(&td->next_file_state); 972 fno = (unsigned int) ((double) td->o.nr_files 973 * (r / (OS_RAND_MAX + 1.0))); 974 } else { 975 r = __rand(&td->__next_file_state); 976 fno = (unsigned int) ((double) td->o.nr_files 977 * (r / (FRAND_MAX + 1.0))); 978 } 979 980 f = td->files[fno]; 981 if (fio_file_done(f)) 982 continue; 983 984 if (!fio_file_open(f)) { 985 int err; 986 987 if (td->nr_open_files >= td->o.open_files) 988 return ERR_PTR(-EBUSY); 989 990 err = td_io_open_file(td, f); 991 if (err) 992 continue; 993 opened = 1; 994 } 995 996 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) { 997 dprint(FD_FILE, "get_next_file_rand: %p\n", f); 998 return f; 999 } 1000 if (opened) 1001 td_io_close_file(td, f); 1002 } while (1); 1003 } 1004 1005 /* 1006 * Get next file to service by doing round robin between all available ones 1007 */ 1008 static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf, 1009 int badf) 1010 { 1011 unsigned int old_next_file = td->next_file; 1012 struct fio_file *f; 1013 1014 do { 1015 int opened = 0; 1016 1017 f = td->files[td->next_file]; 1018 1019 td->next_file++; 1020 if (td->next_file >= td->o.nr_files) 1021 td->next_file = 0; 1022 1023 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags); 1024 if (fio_file_done(f)) { 1025 f = NULL; 1026 continue; 1027 } 1028 1029 if (!fio_file_open(f)) { 1030 int err; 1031 1032 if (td->nr_open_files >= td->o.open_files) 1033 return ERR_PTR(-EBUSY); 1034 1035 err = td_io_open_file(td, f); 1036 if (err) { 1037 dprint(FD_FILE, "error %d on open of %s\n", 1038 err, f->file_name); 1039 f = NULL; 1040 continue; 1041 } 1042 opened = 1; 1043 } 1044 1045 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf, 1046 f->flags); 1047 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) 1048 break; 1049 1050 if (opened) 1051 td_io_close_file(td, f); 1052 1053 f = NULL; 1054 } while (td->next_file != old_next_file); 1055 1056 dprint(FD_FILE, "get_next_file_rr: %p\n", f); 1057 return f; 1058 } 1059 1060 static struct fio_file *__get_next_file(struct thread_data *td) 1061 { 1062 struct fio_file *f; 1063 1064 assert(td->o.nr_files <= td->files_index); 1065 1066 if (td->nr_done_files >= td->o.nr_files) { 1067 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d," 1068 " nr_files=%d\n", td->nr_open_files, 1069 td->nr_done_files, 1070 td->o.nr_files); 1071 return NULL; 1072 } 1073 1074 f = td->file_service_file; 1075 if (f && fio_file_open(f) && !fio_file_closing(f)) { 1076 if (td->o.file_service_type == FIO_FSERVICE_SEQ) 1077 goto out; 1078 if (td->file_service_left--) 1079 goto out; 1080 } 1081 1082 if (td->o.file_service_type == FIO_FSERVICE_RR || 1083 td->o.file_service_type == FIO_FSERVICE_SEQ) 1084 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing); 1085 else 1086 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing); 1087 1088 if (IS_ERR(f)) 1089 return f; 1090 1091 td->file_service_file = f; 1092 td->file_service_left = td->file_service_nr - 1; 1093 out: 1094 if (f) 1095 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name); 1096 else 1097 dprint(FD_FILE, "get_next_file: NULL\n"); 1098 return f; 1099 } 1100 1101 static struct fio_file *get_next_file(struct thread_data *td) 1102 { 1103 if (!(td->flags & TD_F_PROFILE_OPS)) { 1104 struct prof_io_ops *ops = &td->prof_io_ops; 1105 1106 if (ops->get_next_file) 1107 return ops->get_next_file(td); 1108 } 1109 1110 return __get_next_file(td); 1111 } 1112 1113 static long set_io_u_file(struct thread_data *td, struct io_u *io_u) 1114 { 1115 struct fio_file *f; 1116 1117 do { 1118 f = get_next_file(td); 1119 if (IS_ERR_OR_NULL(f)) 1120 return PTR_ERR(f); 1121 1122 io_u->file = f; 1123 get_file(f); 1124 1125 if (!fill_io_u(td, io_u)) 1126 break; 1127 1128 put_file_log(td, f); 1129 td_io_close_file(td, f); 1130 io_u->file = NULL; 1131 fio_file_set_done(f); 1132 td->nr_done_files++; 1133 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name, 1134 td->nr_done_files, td->o.nr_files); 1135 } while (1); 1136 1137 return 0; 1138 } 1139 1140 static void lat_fatal(struct thread_data *td, struct io_completion_data *icd, 1141 unsigned long tusec, unsigned long max_usec) 1142 { 1143 if (!td->error) 1144 log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec); 1145 td_verror(td, ETIMEDOUT, "max latency exceeded"); 1146 icd->error = ETIMEDOUT; 1147 } 1148 1149 static void lat_new_cycle(struct thread_data *td) 1150 { 1151 fio_gettime(&td->latency_ts, NULL); 1152 td->latency_ios = ddir_rw_sum(td->io_blocks); 1153 td->latency_failed = 0; 1154 } 1155 1156 /* 1157 * We had an IO outside the latency target. Reduce the queue depth. If we 1158 * are at QD=1, then it's time to give up. 1159 */ 1160 static int __lat_target_failed(struct thread_data *td) 1161 { 1162 if (td->latency_qd == 1) 1163 return 1; 1164 1165 td->latency_qd_high = td->latency_qd; 1166 1167 if (td->latency_qd == td->latency_qd_low) 1168 td->latency_qd_low--; 1169 1170 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2; 1171 1172 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high); 1173 1174 /* 1175 * When we ramp QD down, quiesce existing IO to prevent 1176 * a storm of ramp downs due to pending higher depth. 1177 */ 1178 io_u_quiesce(td); 1179 lat_new_cycle(td); 1180 return 0; 1181 } 1182 1183 static int lat_target_failed(struct thread_data *td) 1184 { 1185 if (td->o.latency_percentile.u.f == 100.0) 1186 return __lat_target_failed(td); 1187 1188 td->latency_failed++; 1189 return 0; 1190 } 1191 1192 void lat_target_init(struct thread_data *td) 1193 { 1194 td->latency_end_run = 0; 1195 1196 if (td->o.latency_target) { 1197 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target); 1198 fio_gettime(&td->latency_ts, NULL); 1199 td->latency_qd = 1; 1200 td->latency_qd_high = td->o.iodepth; 1201 td->latency_qd_low = 1; 1202 td->latency_ios = ddir_rw_sum(td->io_blocks); 1203 } else 1204 td->latency_qd = td->o.iodepth; 1205 } 1206 1207 void lat_target_reset(struct thread_data *td) 1208 { 1209 if (!td->latency_end_run) 1210 lat_target_init(td); 1211 } 1212 1213 static void lat_target_success(struct thread_data *td) 1214 { 1215 const unsigned int qd = td->latency_qd; 1216 struct thread_options *o = &td->o; 1217 1218 td->latency_qd_low = td->latency_qd; 1219 1220 /* 1221 * If we haven't failed yet, we double up to a failing value instead 1222 * of bisecting from highest possible queue depth. If we have set 1223 * a limit other than td->o.iodepth, bisect between that. 1224 */ 1225 if (td->latency_qd_high != o->iodepth) 1226 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2; 1227 else 1228 td->latency_qd *= 2; 1229 1230 if (td->latency_qd > o->iodepth) 1231 td->latency_qd = o->iodepth; 1232 1233 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high); 1234 1235 /* 1236 * Same as last one, we are done. Let it run a latency cycle, so 1237 * we get only the results from the targeted depth. 1238 */ 1239 if (td->latency_qd == qd) { 1240 if (td->latency_end_run) { 1241 dprint(FD_RATE, "We are done\n"); 1242 td->done = 1; 1243 } else { 1244 dprint(FD_RATE, "Quiesce and final run\n"); 1245 io_u_quiesce(td); 1246 td->latency_end_run = 1; 1247 reset_all_stats(td); 1248 reset_io_stats(td); 1249 } 1250 } 1251 1252 lat_new_cycle(td); 1253 } 1254 1255 /* 1256 * Check if we can bump the queue depth 1257 */ 1258 void lat_target_check(struct thread_data *td) 1259 { 1260 uint64_t usec_window; 1261 uint64_t ios; 1262 double success_ios; 1263 1264 usec_window = utime_since_now(&td->latency_ts); 1265 if (usec_window < td->o.latency_window) 1266 return; 1267 1268 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios; 1269 success_ios = (double) (ios - td->latency_failed) / (double) ios; 1270 success_ios *= 100.0; 1271 1272 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f); 1273 1274 if (success_ios >= td->o.latency_percentile.u.f) 1275 lat_target_success(td); 1276 else 1277 __lat_target_failed(td); 1278 } 1279 1280 /* 1281 * If latency target is enabled, we might be ramping up or down and not 1282 * using the full queue depth available. 1283 */ 1284 int queue_full(struct thread_data *td) 1285 { 1286 const int qempty = io_u_qempty(&td->io_u_freelist); 1287 1288 if (qempty) 1289 return 1; 1290 if (!td->o.latency_target) 1291 return 0; 1292 1293 return td->cur_depth >= td->latency_qd; 1294 } 1295 1296 struct io_u *__get_io_u(struct thread_data *td) 1297 { 1298 struct io_u *io_u = NULL; 1299 1300 td_io_u_lock(td); 1301 1302 again: 1303 if (!io_u_rempty(&td->io_u_requeues)) 1304 io_u = io_u_rpop(&td->io_u_requeues); 1305 else if (!queue_full(td)) { 1306 io_u = io_u_qpop(&td->io_u_freelist); 1307 1308 io_u->file = NULL; 1309 io_u->buflen = 0; 1310 io_u->resid = 0; 1311 io_u->end_io = NULL; 1312 } 1313 1314 if (io_u) { 1315 assert(io_u->flags & IO_U_F_FREE); 1316 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF); 1317 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER); 1318 io_u->flags &= ~IO_U_F_VER_LIST; 1319 1320 io_u->error = 0; 1321 io_u->acct_ddir = -1; 1322 td->cur_depth++; 1323 io_u->flags |= IO_U_F_IN_CUR_DEPTH; 1324 io_u->ipo = NULL; 1325 } else if (td->o.verify_async) { 1326 /* 1327 * We ran out, wait for async verify threads to finish and 1328 * return one 1329 */ 1330 pthread_cond_wait(&td->free_cond, &td->io_u_lock); 1331 goto again; 1332 } 1333 1334 td_io_u_unlock(td); 1335 return io_u; 1336 } 1337 1338 static int check_get_trim(struct thread_data *td, struct io_u *io_u) 1339 { 1340 if (!(td->flags & TD_F_TRIM_BACKLOG)) 1341 return 0; 1342 1343 if (td->trim_entries) { 1344 int get_trim = 0; 1345 1346 if (td->trim_batch) { 1347 td->trim_batch--; 1348 get_trim = 1; 1349 } else if (!(td->io_hist_len % td->o.trim_backlog) && 1350 td->last_ddir != DDIR_READ) { 1351 td->trim_batch = td->o.trim_batch; 1352 if (!td->trim_batch) 1353 td->trim_batch = td->o.trim_backlog; 1354 get_trim = 1; 1355 } 1356 1357 if (get_trim && !get_next_trim(td, io_u)) 1358 return 1; 1359 } 1360 1361 return 0; 1362 } 1363 1364 static int check_get_verify(struct thread_data *td, struct io_u *io_u) 1365 { 1366 if (!(td->flags & TD_F_VER_BACKLOG)) 1367 return 0; 1368 1369 if (td->io_hist_len) { 1370 int get_verify = 0; 1371 1372 if (td->verify_batch) 1373 get_verify = 1; 1374 else if (!(td->io_hist_len % td->o.verify_backlog) && 1375 td->last_ddir != DDIR_READ) { 1376 td->verify_batch = td->o.verify_batch; 1377 if (!td->verify_batch) 1378 td->verify_batch = td->o.verify_backlog; 1379 get_verify = 1; 1380 } 1381 1382 if (get_verify && !get_next_verify(td, io_u)) { 1383 td->verify_batch--; 1384 return 1; 1385 } 1386 } 1387 1388 return 0; 1389 } 1390 1391 /* 1392 * Fill offset and start time into the buffer content, to prevent too 1393 * easy compressible data for simple de-dupe attempts. Do this for every 1394 * 512b block in the range, since that should be the smallest block size 1395 * we can expect from a device. 1396 */ 1397 static void small_content_scramble(struct io_u *io_u) 1398 { 1399 unsigned int i, nr_blocks = io_u->buflen / 512; 1400 uint64_t boffset; 1401 unsigned int offset; 1402 void *p, *end; 1403 1404 if (!nr_blocks) 1405 return; 1406 1407 p = io_u->xfer_buf; 1408 boffset = io_u->offset; 1409 io_u->buf_filled_len = 0; 1410 1411 for (i = 0; i < nr_blocks; i++) { 1412 /* 1413 * Fill the byte offset into a "random" start offset of 1414 * the buffer, given by the product of the usec time 1415 * and the actual offset. 1416 */ 1417 offset = (io_u->start_time.tv_usec ^ boffset) & 511; 1418 offset &= ~(sizeof(uint64_t) - 1); 1419 if (offset >= 512 - sizeof(uint64_t)) 1420 offset -= sizeof(uint64_t); 1421 memcpy(p + offset, &boffset, sizeof(boffset)); 1422 1423 end = p + 512 - sizeof(io_u->start_time); 1424 memcpy(end, &io_u->start_time, sizeof(io_u->start_time)); 1425 p += 512; 1426 boffset += 512; 1427 } 1428 } 1429 1430 /* 1431 * Return an io_u to be processed. Gets a buflen and offset, sets direction, 1432 * etc. The returned io_u is fully ready to be prepped and submitted. 1433 */ 1434 struct io_u *get_io_u(struct thread_data *td) 1435 { 1436 struct fio_file *f; 1437 struct io_u *io_u; 1438 int do_scramble = 0; 1439 long ret = 0; 1440 1441 io_u = __get_io_u(td); 1442 if (!io_u) { 1443 dprint(FD_IO, "__get_io_u failed\n"); 1444 return NULL; 1445 } 1446 1447 if (check_get_verify(td, io_u)) 1448 goto out; 1449 if (check_get_trim(td, io_u)) 1450 goto out; 1451 1452 /* 1453 * from a requeue, io_u already setup 1454 */ 1455 if (io_u->file) 1456 goto out; 1457 1458 /* 1459 * If using an iolog, grab next piece if any available. 1460 */ 1461 if (td->flags & TD_F_READ_IOLOG) { 1462 if (read_iolog_get(td, io_u)) 1463 goto err_put; 1464 } else if (set_io_u_file(td, io_u)) { 1465 ret = -EBUSY; 1466 dprint(FD_IO, "io_u %p, setting file failed\n", io_u); 1467 goto err_put; 1468 } 1469 1470 f = io_u->file; 1471 if (!f) { 1472 dprint(FD_IO, "io_u %p, setting file failed\n", io_u); 1473 goto err_put; 1474 } 1475 1476 assert(fio_file_open(f)); 1477 1478 if (ddir_rw(io_u->ddir)) { 1479 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) { 1480 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u); 1481 goto err_put; 1482 } 1483 1484 f->last_start = io_u->offset; 1485 f->last_pos = io_u->offset + io_u->buflen; 1486 1487 if (io_u->ddir == DDIR_WRITE) { 1488 if (td->flags & TD_F_REFILL_BUFFERS) { 1489 io_u_fill_buffer(td, io_u, 1490 io_u->xfer_buflen, io_u->xfer_buflen); 1491 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) && 1492 !(td->flags & TD_F_COMPRESS)) 1493 do_scramble = 1; 1494 if (td->flags & TD_F_VER_NONE) { 1495 populate_verify_io_u(td, io_u); 1496 do_scramble = 0; 1497 } 1498 } else if (io_u->ddir == DDIR_READ) { 1499 /* 1500 * Reset the buf_filled parameters so next time if the 1501 * buffer is used for writes it is refilled. 1502 */ 1503 io_u->buf_filled_len = 0; 1504 } 1505 } 1506 1507 /* 1508 * Set io data pointers. 1509 */ 1510 io_u->xfer_buf = io_u->buf; 1511 io_u->xfer_buflen = io_u->buflen; 1512 1513 out: 1514 assert(io_u->file); 1515 if (!td_io_prep(td, io_u)) { 1516 if (!td->o.disable_slat) 1517 fio_gettime(&io_u->start_time, NULL); 1518 if (do_scramble) 1519 small_content_scramble(io_u); 1520 return io_u; 1521 } 1522 err_put: 1523 dprint(FD_IO, "get_io_u failed\n"); 1524 put_io_u(td, io_u); 1525 return ERR_PTR(ret); 1526 } 1527 1528 void io_u_log_error(struct thread_data *td, struct io_u *io_u) 1529 { 1530 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error); 1531 const char *msg[] = { "read", "write", "sync", "datasync", 1532 "sync_file_range", "wait", "trim" }; 1533 1534 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump) 1535 return; 1536 1537 log_err("fio: io_u error"); 1538 1539 if (io_u->file) 1540 log_err(" on file %s", io_u->file->file_name); 1541 1542 log_err(": %s\n", strerror(io_u->error)); 1543 1544 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], 1545 io_u->offset, io_u->xfer_buflen); 1546 1547 if (!td->error) 1548 td_verror(td, io_u->error, "io_u error"); 1549 } 1550 1551 static inline int gtod_reduce(struct thread_data *td) 1552 { 1553 return td->o.disable_clat && td->o.disable_lat && td->o.disable_slat 1554 && td->o.disable_bw; 1555 } 1556 1557 static void account_io_completion(struct thread_data *td, struct io_u *io_u, 1558 struct io_completion_data *icd, 1559 const enum fio_ddir idx, unsigned int bytes) 1560 { 1561 unsigned long lusec = 0; 1562 1563 if (!gtod_reduce(td)) 1564 lusec = utime_since(&io_u->issue_time, &icd->time); 1565 1566 if (!td->o.disable_lat) { 1567 unsigned long tusec; 1568 1569 tusec = utime_since(&io_u->start_time, &icd->time); 1570 add_lat_sample(td, idx, tusec, bytes); 1571 1572 if (td->flags & TD_F_PROFILE_OPS) { 1573 struct prof_io_ops *ops = &td->prof_io_ops; 1574 1575 if (ops->io_u_lat) 1576 icd->error = ops->io_u_lat(td, tusec); 1577 } 1578 1579 if (td->o.max_latency && tusec > td->o.max_latency) 1580 lat_fatal(td, icd, tusec, td->o.max_latency); 1581 if (td->o.latency_target && tusec > td->o.latency_target) { 1582 if (lat_target_failed(td)) 1583 lat_fatal(td, icd, tusec, td->o.latency_target); 1584 } 1585 } 1586 1587 if (!td->o.disable_clat) { 1588 add_clat_sample(td, idx, lusec, bytes); 1589 io_u_mark_latency(td, lusec); 1590 } 1591 1592 if (!td->o.disable_bw) 1593 add_bw_sample(td, idx, bytes, &icd->time); 1594 1595 if (!gtod_reduce(td)) 1596 add_iops_sample(td, idx, bytes, &icd->time); 1597 } 1598 1599 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir) 1600 { 1601 uint64_t secs, remainder, bps, bytes; 1602 1603 bytes = td->this_io_bytes[ddir]; 1604 bps = td->rate_bps[ddir]; 1605 secs = bytes / bps; 1606 remainder = bytes % bps; 1607 return remainder * 1000000 / bps + secs * 1000000; 1608 } 1609 1610 static void io_completed(struct thread_data *td, struct io_u *io_u, 1611 struct io_completion_data *icd) 1612 { 1613 struct fio_file *f; 1614 1615 dprint_io_u(io_u, "io complete"); 1616 1617 td_io_u_lock(td); 1618 assert(io_u->flags & IO_U_F_FLIGHT); 1619 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK); 1620 1621 /* 1622 * Mark IO ok to verify 1623 */ 1624 if (io_u->ipo) { 1625 /* 1626 * Remove errored entry from the verification list 1627 */ 1628 if (io_u->error) 1629 unlog_io_piece(td, io_u); 1630 else { 1631 io_u->ipo->flags &= ~IP_F_IN_FLIGHT; 1632 write_barrier(); 1633 } 1634 } 1635 1636 td_io_u_unlock(td); 1637 1638 if (ddir_sync(io_u->ddir)) { 1639 td->last_was_sync = 1; 1640 f = io_u->file; 1641 if (f) { 1642 f->first_write = -1ULL; 1643 f->last_write = -1ULL; 1644 } 1645 return; 1646 } 1647 1648 td->last_was_sync = 0; 1649 td->last_ddir = io_u->ddir; 1650 1651 if (!io_u->error && ddir_rw(io_u->ddir)) { 1652 unsigned int bytes = io_u->buflen - io_u->resid; 1653 const enum fio_ddir idx = io_u->ddir; 1654 const enum fio_ddir odx = io_u->ddir ^ 1; 1655 int ret; 1656 1657 td->io_blocks[idx]++; 1658 td->this_io_blocks[idx]++; 1659 td->io_bytes[idx] += bytes; 1660 1661 if (!(io_u->flags & IO_U_F_VER_LIST)) 1662 td->this_io_bytes[idx] += bytes; 1663 1664 if (idx == DDIR_WRITE) { 1665 f = io_u->file; 1666 if (f) { 1667 if (f->first_write == -1ULL || 1668 io_u->offset < f->first_write) 1669 f->first_write = io_u->offset; 1670 if (f->last_write == -1ULL || 1671 ((io_u->offset + bytes) > f->last_write)) 1672 f->last_write = io_u->offset + bytes; 1673 } 1674 } 1675 1676 if (ramp_time_over(td) && (td->runstate == TD_RUNNING || 1677 td->runstate == TD_VERIFYING)) { 1678 account_io_completion(td, io_u, icd, idx, bytes); 1679 1680 if (__should_check_rate(td, idx)) { 1681 td->rate_pending_usleep[idx] = 1682 (usec_for_io(td, idx) - 1683 utime_since_now(&td->start)); 1684 } 1685 if (idx != DDIR_TRIM && __should_check_rate(td, odx)) 1686 td->rate_pending_usleep[odx] = 1687 (usec_for_io(td, odx) - 1688 utime_since_now(&td->start)); 1689 } 1690 1691 icd->bytes_done[idx] += bytes; 1692 1693 if (io_u->end_io) { 1694 ret = io_u->end_io(td, io_u); 1695 if (ret && !icd->error) 1696 icd->error = ret; 1697 } 1698 } else if (io_u->error) { 1699 icd->error = io_u->error; 1700 io_u_log_error(td, io_u); 1701 } 1702 if (icd->error) { 1703 enum error_type_bit eb = td_error_type(io_u->ddir, icd->error); 1704 if (!td_non_fatal_error(td, eb, icd->error)) 1705 return; 1706 /* 1707 * If there is a non_fatal error, then add to the error count 1708 * and clear all the errors. 1709 */ 1710 update_error_count(td, icd->error); 1711 td_clear_error(td); 1712 icd->error = 0; 1713 io_u->error = 0; 1714 } 1715 } 1716 1717 static void init_icd(struct thread_data *td, struct io_completion_data *icd, 1718 int nr) 1719 { 1720 int ddir; 1721 1722 if (!gtod_reduce(td)) 1723 fio_gettime(&icd->time, NULL); 1724 1725 icd->nr = nr; 1726 1727 icd->error = 0; 1728 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) 1729 icd->bytes_done[ddir] = 0; 1730 } 1731 1732 static void ios_completed(struct thread_data *td, 1733 struct io_completion_data *icd) 1734 { 1735 struct io_u *io_u; 1736 int i; 1737 1738 for (i = 0; i < icd->nr; i++) { 1739 io_u = td->io_ops->event(td, i); 1740 1741 io_completed(td, io_u, icd); 1742 1743 if (!(io_u->flags & IO_U_F_FREE_DEF)) 1744 put_io_u(td, io_u); 1745 } 1746 } 1747 1748 /* 1749 * Complete a single io_u for the sync engines. 1750 */ 1751 int io_u_sync_complete(struct thread_data *td, struct io_u *io_u, 1752 uint64_t *bytes) 1753 { 1754 struct io_completion_data icd; 1755 1756 init_icd(td, &icd, 1); 1757 io_completed(td, io_u, &icd); 1758 1759 if (!(io_u->flags & IO_U_F_FREE_DEF)) 1760 put_io_u(td, io_u); 1761 1762 if (icd.error) { 1763 td_verror(td, icd.error, "io_u_sync_complete"); 1764 return -1; 1765 } 1766 1767 if (bytes) { 1768 int ddir; 1769 1770 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) 1771 bytes[ddir] += icd.bytes_done[ddir]; 1772 } 1773 1774 return 0; 1775 } 1776 1777 /* 1778 * Called to complete min_events number of io for the async engines. 1779 */ 1780 int io_u_queued_complete(struct thread_data *td, int min_evts, 1781 uint64_t *bytes) 1782 { 1783 struct io_completion_data icd; 1784 struct timespec *tvp = NULL; 1785 int ret; 1786 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, }; 1787 1788 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts); 1789 1790 if (!min_evts) 1791 tvp = &ts; 1792 1793 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp); 1794 if (ret < 0) { 1795 td_verror(td, -ret, "td_io_getevents"); 1796 return ret; 1797 } else if (!ret) 1798 return ret; 1799 1800 init_icd(td, &icd, ret); 1801 ios_completed(td, &icd); 1802 if (icd.error) { 1803 td_verror(td, icd.error, "io_u_queued_complete"); 1804 return -1; 1805 } 1806 1807 if (bytes) { 1808 int ddir; 1809 1810 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) 1811 bytes[ddir] += icd.bytes_done[ddir]; 1812 } 1813 1814 return 0; 1815 } 1816 1817 /* 1818 * Call when io_u is really queued, to update the submission latency. 1819 */ 1820 void io_u_queued(struct thread_data *td, struct io_u *io_u) 1821 { 1822 if (!td->o.disable_slat) { 1823 unsigned long slat_time; 1824 1825 slat_time = utime_since(&io_u->start_time, &io_u->issue_time); 1826 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen); 1827 } 1828 } 1829 1830 void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write, 1831 unsigned int max_bs) 1832 { 1833 if (td->o.buffer_pattern_bytes) 1834 fill_buffer_pattern(td, buf, max_bs); 1835 else if (!td->o.zero_buffers) { 1836 unsigned int perc = td->o.compress_percentage; 1837 1838 if (perc) { 1839 unsigned int seg = min_write; 1840 1841 seg = min(min_write, td->o.compress_chunk); 1842 if (!seg) 1843 seg = min_write; 1844 1845 fill_random_buf_percentage(&td->buf_state, buf, 1846 perc, seg, max_bs); 1847 } else 1848 fill_random_buf(&td->buf_state, buf, max_bs); 1849 } else 1850 memset(buf, 0, max_bs); 1851 } 1852 1853 /* 1854 * "randomly" fill the buffer contents 1855 */ 1856 void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u, 1857 unsigned int min_write, unsigned int max_bs) 1858 { 1859 io_u->buf_filled_len = 0; 1860 fill_io_buffer(td, io_u->buf, min_write, max_bs); 1861 } 1862