1 /* 2 * Copyright (C) 2010 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ANDROID_GUI_SURFACE_H 18 #define ANDROID_GUI_SURFACE_H 19 20 #include <gui/IGraphicBufferProducer.h> 21 #include <gui/BufferQueue.h> 22 23 #include <ui/ANativeObjectBase.h> 24 #include <ui/Region.h> 25 26 #include <utils/RefBase.h> 27 #include <utils/threads.h> 28 #include <utils/KeyedVector.h> 29 30 struct ANativeWindow_Buffer; 31 32 namespace android { 33 34 /* 35 * An implementation of ANativeWindow that feeds graphics buffers into a 36 * BufferQueue. 37 * 38 * This is typically used by programs that want to render frames through 39 * some means (maybe OpenGL, a software renderer, or a hardware decoder) 40 * and have the frames they create forwarded to SurfaceFlinger for 41 * compositing. For example, a video decoder could render a frame and call 42 * eglSwapBuffers(), which invokes ANativeWindow callbacks defined by 43 * Surface. Surface then forwards the buffers through Binder IPC 44 * to the BufferQueue's producer interface, providing the new frame to a 45 * consumer such as GLConsumer. 46 */ 47 class Surface 48 : public ANativeObjectBase<ANativeWindow, Surface, RefBase> 49 { 50 public: 51 52 /* 53 * creates a Surface from the given IGraphicBufferProducer (which concrete 54 * implementation is a BufferQueue). 55 * 56 * Surface is mainly state-less while it's disconnected, it can be 57 * viewed as a glorified IGraphicBufferProducer holder. It's therefore 58 * safe to create other Surfaces from the same IGraphicBufferProducer. 59 * 60 * However, once a Surface is connected, it'll prevent other Surfaces 61 * referring to the same IGraphicBufferProducer to become connected and 62 * therefore prevent them to be used as actual producers of buffers. 63 * 64 * the controlledByApp flag indicates that this Surface (producer) is 65 * controlled by the application. This flag is used at connect time. 66 */ 67 Surface(const sp<IGraphicBufferProducer>& bufferProducer, bool controlledByApp = false); 68 69 /* getIGraphicBufferProducer() returns the IGraphicBufferProducer this 70 * Surface was created with. Usually it's an error to use the 71 * IGraphicBufferProducer while the Surface is connected. 72 */ 73 sp<IGraphicBufferProducer> getIGraphicBufferProducer() const; 74 75 /* convenience function to check that the given surface is non NULL as 76 * well as its IGraphicBufferProducer */ 77 static bool isValid(const sp<Surface>& surface) { 78 return surface != NULL && surface->getIGraphicBufferProducer() != NULL; 79 } 80 81 /* Attaches a sideband buffer stream to the Surface's IGraphicBufferProducer. 82 * 83 * A sideband stream is a device-specific mechanism for passing buffers 84 * from the producer to the consumer without using dequeueBuffer/ 85 * queueBuffer. If a sideband stream is present, the consumer can choose 86 * whether to acquire buffers from the sideband stream or from the queued 87 * buffers. 88 * 89 * Passing NULL or a different stream handle will detach the previous 90 * handle if any. 91 */ 92 void setSidebandStream(const sp<NativeHandle>& stream); 93 94 /* Allocates buffers based on the current dimensions/format. 95 * 96 * This function will allocate up to the maximum number of buffers 97 * permitted by the current BufferQueue configuration. It will use the 98 * default format and dimensions. This is most useful to avoid an allocation 99 * delay during dequeueBuffer. If there are already the maximum number of 100 * buffers allocated, this function has no effect. 101 */ 102 void allocateBuffers(); 103 104 protected: 105 virtual ~Surface(); 106 107 private: 108 // can't be copied 109 Surface& operator = (const Surface& rhs); 110 Surface(const Surface& rhs); 111 112 // ANativeWindow hooks 113 static int hook_cancelBuffer(ANativeWindow* window, 114 ANativeWindowBuffer* buffer, int fenceFd); 115 static int hook_dequeueBuffer(ANativeWindow* window, 116 ANativeWindowBuffer** buffer, int* fenceFd); 117 static int hook_perform(ANativeWindow* window, int operation, ...); 118 static int hook_query(const ANativeWindow* window, int what, int* value); 119 static int hook_queueBuffer(ANativeWindow* window, 120 ANativeWindowBuffer* buffer, int fenceFd); 121 static int hook_setSwapInterval(ANativeWindow* window, int interval); 122 123 static int hook_cancelBuffer_DEPRECATED(ANativeWindow* window, 124 ANativeWindowBuffer* buffer); 125 static int hook_dequeueBuffer_DEPRECATED(ANativeWindow* window, 126 ANativeWindowBuffer** buffer); 127 static int hook_lockBuffer_DEPRECATED(ANativeWindow* window, 128 ANativeWindowBuffer* buffer); 129 static int hook_queueBuffer_DEPRECATED(ANativeWindow* window, 130 ANativeWindowBuffer* buffer); 131 132 int dispatchConnect(va_list args); 133 int dispatchDisconnect(va_list args); 134 int dispatchSetBufferCount(va_list args); 135 int dispatchSetBuffersGeometry(va_list args); 136 int dispatchSetBuffersDimensions(va_list args); 137 int dispatchSetBuffersUserDimensions(va_list args); 138 int dispatchSetBuffersFormat(va_list args); 139 int dispatchSetScalingMode(va_list args); 140 int dispatchSetBuffersTransform(va_list args); 141 int dispatchSetBuffersStickyTransform(va_list args); 142 int dispatchSetBuffersTimestamp(va_list args); 143 int dispatchSetCrop(va_list args); 144 int dispatchSetPostTransformCrop(va_list args); 145 int dispatchSetUsage(va_list args); 146 int dispatchLock(va_list args); 147 int dispatchUnlockAndPost(va_list args); 148 int dispatchSetSidebandStream(va_list args); 149 150 protected: 151 virtual int dequeueBuffer(ANativeWindowBuffer** buffer, int* fenceFd); 152 virtual int cancelBuffer(ANativeWindowBuffer* buffer, int fenceFd); 153 virtual int queueBuffer(ANativeWindowBuffer* buffer, int fenceFd); 154 virtual int perform(int operation, va_list args); 155 virtual int query(int what, int* value) const; 156 virtual int setSwapInterval(int interval); 157 158 virtual int lockBuffer_DEPRECATED(ANativeWindowBuffer* buffer); 159 160 virtual int connect(int api); 161 virtual int disconnect(int api); 162 virtual int setBufferCount(int bufferCount); 163 virtual int setBuffersDimensions(int w, int h); 164 virtual int setBuffersUserDimensions(int w, int h); 165 virtual int setBuffersFormat(int format); 166 virtual int setScalingMode(int mode); 167 virtual int setBuffersTransform(int transform); 168 virtual int setBuffersStickyTransform(int transform); 169 virtual int setBuffersTimestamp(int64_t timestamp); 170 virtual int setCrop(Rect const* rect); 171 virtual int setUsage(uint32_t reqUsage); 172 173 public: 174 virtual int lock(ANativeWindow_Buffer* outBuffer, ARect* inOutDirtyBounds); 175 virtual int unlockAndPost(); 176 177 protected: 178 enum { NUM_BUFFER_SLOTS = BufferQueue::NUM_BUFFER_SLOTS }; 179 enum { DEFAULT_FORMAT = PIXEL_FORMAT_RGBA_8888 }; 180 181 private: 182 void freeAllBuffers(); 183 int getSlotFromBufferLocked(android_native_buffer_t* buffer) const; 184 185 struct BufferSlot { 186 sp<GraphicBuffer> buffer; 187 Region dirtyRegion; 188 }; 189 190 // mSurfaceTexture is the interface to the surface texture server. All 191 // operations on the surface texture client ultimately translate into 192 // interactions with the server using this interface. 193 // TODO: rename to mBufferProducer 194 sp<IGraphicBufferProducer> mGraphicBufferProducer; 195 196 // mSlots stores the buffers that have been allocated for each buffer slot. 197 // It is initialized to null pointers, and gets filled in with the result of 198 // IGraphicBufferProducer::requestBuffer when the client dequeues a buffer from a 199 // slot that has not yet been used. The buffer allocated to a slot will also 200 // be replaced if the requested buffer usage or geometry differs from that 201 // of the buffer allocated to a slot. 202 BufferSlot mSlots[NUM_BUFFER_SLOTS]; 203 204 // mReqWidth is the buffer width that will be requested at the next dequeue 205 // operation. It is initialized to 1. 206 uint32_t mReqWidth; 207 208 // mReqHeight is the buffer height that will be requested at the next 209 // dequeue operation. It is initialized to 1. 210 uint32_t mReqHeight; 211 212 // mReqFormat is the buffer pixel format that will be requested at the next 213 // deuque operation. It is initialized to PIXEL_FORMAT_RGBA_8888. 214 uint32_t mReqFormat; 215 216 // mReqUsage is the set of buffer usage flags that will be requested 217 // at the next deuque operation. It is initialized to 0. 218 uint32_t mReqUsage; 219 220 // mTimestamp is the timestamp that will be used for the next buffer queue 221 // operation. It defaults to NATIVE_WINDOW_TIMESTAMP_AUTO, which means that 222 // a timestamp is auto-generated when queueBuffer is called. 223 int64_t mTimestamp; 224 225 // mCrop is the crop rectangle that will be used for the next buffer 226 // that gets queued. It is set by calling setCrop. 227 Rect mCrop; 228 229 // mScalingMode is the scaling mode that will be used for the next 230 // buffers that get queued. It is set by calling setScalingMode. 231 int mScalingMode; 232 233 // mTransform is the transform identifier that will be used for the next 234 // buffer that gets queued. It is set by calling setTransform. 235 uint32_t mTransform; 236 237 // mStickyTransform is a transform that is applied on top of mTransform 238 // in each buffer that is queued. This is typically used to force the 239 // compositor to apply a transform, and will prevent the transform hint 240 // from being set by the compositor. 241 uint32_t mStickyTransform; 242 243 // mDefaultWidth is default width of the buffers, regardless of the 244 // native_window_set_buffers_dimensions call. 245 uint32_t mDefaultWidth; 246 247 // mDefaultHeight is default height of the buffers, regardless of the 248 // native_window_set_buffers_dimensions call. 249 uint32_t mDefaultHeight; 250 251 // mUserWidth, if non-zero, is an application-specified override 252 // of mDefaultWidth. This is lower priority than the width set by 253 // native_window_set_buffers_dimensions. 254 uint32_t mUserWidth; 255 256 // mUserHeight, if non-zero, is an application-specified override 257 // of mDefaultHeight. This is lower priority than the height set 258 // by native_window_set_buffers_dimensions. 259 uint32_t mUserHeight; 260 261 // mTransformHint is the transform probably applied to buffers of this 262 // window. this is only a hint, actual transform may differ. 263 uint32_t mTransformHint; 264 265 // mProducerControlledByApp whether this buffer producer is controlled 266 // by the application 267 bool mProducerControlledByApp; 268 269 // mSwapIntervalZero set if we should drop buffers at queue() time to 270 // achieve an asynchronous swap interval 271 bool mSwapIntervalZero; 272 273 // mConsumerRunningBehind whether the consumer is running more than 274 // one buffer behind the producer. 275 mutable bool mConsumerRunningBehind; 276 277 // mMutex is the mutex used to prevent concurrent access to the member 278 // variables of Surface objects. It must be locked whenever the 279 // member variables are accessed. 280 mutable Mutex mMutex; 281 282 // must be used from the lock/unlock thread 283 sp<GraphicBuffer> mLockedBuffer; 284 sp<GraphicBuffer> mPostedBuffer; 285 bool mConnectedToCpu; 286 287 // must be accessed from lock/unlock thread only 288 Region mDirtyRegion; 289 }; 290 291 }; // namespace android 292 293 #endif // ANDROID_GUI_SURFACE_H 294