1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #define ATRACE_TAG ATRACE_TAG_DALVIK 18 19 #include "thread.h" 20 21 #include <cutils/trace.h> 22 #include <pthread.h> 23 #include <signal.h> 24 #include <sys/resource.h> 25 #include <sys/time.h> 26 27 #include <algorithm> 28 #include <bitset> 29 #include <cerrno> 30 #include <iostream> 31 #include <list> 32 33 #include "arch/context.h" 34 #include "base/mutex.h" 35 #include "class_linker-inl.h" 36 #include "class_linker.h" 37 #include "debugger.h" 38 #include "dex_file-inl.h" 39 #include "entrypoints/entrypoint_utils.h" 40 #include "entrypoints/quick/quick_alloc_entrypoints.h" 41 #include "gc_map.h" 42 #include "gc/accounting/card_table-inl.h" 43 #include "gc/allocator/rosalloc.h" 44 #include "gc/heap.h" 45 #include "gc/space/space.h" 46 #include "handle_scope-inl.h" 47 #include "handle_scope.h" 48 #include "indirect_reference_table-inl.h" 49 #include "jni_internal.h" 50 #include "mirror/art_field-inl.h" 51 #include "mirror/art_method-inl.h" 52 #include "mirror/class_loader.h" 53 #include "mirror/class-inl.h" 54 #include "mirror/object_array-inl.h" 55 #include "mirror/stack_trace_element.h" 56 #include "monitor.h" 57 #include "object_lock.h" 58 #include "quick_exception_handler.h" 59 #include "quick/quick_method_frame_info.h" 60 #include "reflection.h" 61 #include "runtime.h" 62 #include "scoped_thread_state_change.h" 63 #include "ScopedLocalRef.h" 64 #include "ScopedUtfChars.h" 65 #include "stack.h" 66 #include "thread_list.h" 67 #include "thread-inl.h" 68 #include "utils.h" 69 #include "verifier/dex_gc_map.h" 70 #include "verify_object-inl.h" 71 #include "vmap_table.h" 72 #include "well_known_classes.h" 73 74 namespace art { 75 76 bool Thread::is_started_ = false; 77 pthread_key_t Thread::pthread_key_self_; 78 ConditionVariable* Thread::resume_cond_ = nullptr; 79 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA); 80 81 static const char* kThreadNameDuringStartup = "<native thread without managed peer>"; 82 83 void Thread::InitCardTable() { 84 tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin(); 85 } 86 87 static void UnimplementedEntryPoint() { 88 UNIMPLEMENTED(FATAL); 89 } 90 91 void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints, 92 PortableEntryPoints* ppoints, QuickEntryPoints* qpoints); 93 94 void Thread::InitTlsEntryPoints() { 95 // Insert a placeholder so we can easily tell if we call an unimplemented entry point. 96 uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints); 97 uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + 98 sizeof(tlsPtr_.quick_entrypoints)); 99 for (uintptr_t* it = begin; it != end; ++it) { 100 *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint); 101 } 102 InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints, 103 &tlsPtr_.portable_entrypoints, &tlsPtr_.quick_entrypoints); 104 } 105 106 void Thread::ResetQuickAllocEntryPointsForThread() { 107 ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints); 108 } 109 110 void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) { 111 tlsPtr_.deoptimization_shadow_frame = sf; 112 } 113 114 void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) { 115 tls64_.deoptimization_return_value.SetJ(ret_val.GetJ()); 116 } 117 118 ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) { 119 ShadowFrame* sf = tlsPtr_.deoptimization_shadow_frame; 120 tlsPtr_.deoptimization_shadow_frame = nullptr; 121 ret_val->SetJ(tls64_.deoptimization_return_value.GetJ()); 122 return sf; 123 } 124 125 void Thread::SetShadowFrameUnderConstruction(ShadowFrame* sf) { 126 sf->SetLink(tlsPtr_.shadow_frame_under_construction); 127 tlsPtr_.shadow_frame_under_construction = sf; 128 } 129 130 void Thread::ClearShadowFrameUnderConstruction() { 131 CHECK_NE(static_cast<ShadowFrame*>(nullptr), tlsPtr_.shadow_frame_under_construction); 132 tlsPtr_.shadow_frame_under_construction = tlsPtr_.shadow_frame_under_construction->GetLink(); 133 } 134 135 void Thread::InitTid() { 136 tls32_.tid = ::art::GetTid(); 137 } 138 139 void Thread::InitAfterFork() { 140 // One thread (us) survived the fork, but we have a new tid so we need to 141 // update the value stashed in this Thread*. 142 InitTid(); 143 } 144 145 void* Thread::CreateCallback(void* arg) { 146 Thread* self = reinterpret_cast<Thread*>(arg); 147 Runtime* runtime = Runtime::Current(); 148 if (runtime == nullptr) { 149 LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self; 150 return nullptr; 151 } 152 { 153 // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true 154 // after self->Init(). 155 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_); 156 // Check that if we got here we cannot be shutting down (as shutdown should never have started 157 // while threads are being born). 158 CHECK(!runtime->IsShuttingDownLocked()); 159 self->Init(runtime->GetThreadList(), runtime->GetJavaVM()); 160 Runtime::Current()->EndThreadBirth(); 161 } 162 { 163 ScopedObjectAccess soa(self); 164 165 // Copy peer into self, deleting global reference when done. 166 CHECK(self->tlsPtr_.jpeer != nullptr); 167 self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer); 168 self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer); 169 self->tlsPtr_.jpeer = nullptr; 170 self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str()); 171 Dbg::PostThreadStart(self); 172 173 // Invoke the 'run' method of our java.lang.Thread. 174 mirror::Object* receiver = self->tlsPtr_.opeer; 175 jmethodID mid = WellKnownClasses::java_lang_Thread_run; 176 InvokeVirtualOrInterfaceWithJValues(soa, receiver, mid, nullptr); 177 } 178 // Detach and delete self. 179 Runtime::Current()->GetThreadList()->Unregister(self); 180 181 return nullptr; 182 } 183 184 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa, 185 mirror::Object* thread_peer) { 186 mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer); 187 Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer))); 188 // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_ 189 // to stop it from going away. 190 if (kIsDebugBuild) { 191 MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_); 192 if (result != nullptr && !result->IsSuspended()) { 193 Locks::thread_list_lock_->AssertHeld(soa.Self()); 194 } 195 } 196 return result; 197 } 198 199 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa, 200 jobject java_thread) { 201 return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread)); 202 } 203 204 static size_t FixStackSize(size_t stack_size) { 205 // A stack size of zero means "use the default". 206 if (stack_size == 0) { 207 stack_size = Runtime::Current()->GetDefaultStackSize(); 208 } 209 210 // Dalvik used the bionic pthread default stack size for native threads, 211 // so include that here to support apps that expect large native stacks. 212 stack_size += 1 * MB; 213 214 // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN. 215 if (stack_size < PTHREAD_STACK_MIN) { 216 stack_size = PTHREAD_STACK_MIN; 217 } 218 219 if (Runtime::Current()->ExplicitStackOverflowChecks()) { 220 // It's likely that callers are trying to ensure they have at least a certain amount of 221 // stack space, so we should add our reserved space on top of what they requested, rather 222 // than implicitly take it away from them. 223 stack_size += GetStackOverflowReservedBytes(kRuntimeISA); 224 } else { 225 // If we are going to use implicit stack checks, allocate space for the protected 226 // region at the bottom of the stack. 227 stack_size += Thread::kStackOverflowImplicitCheckSize + 228 GetStackOverflowReservedBytes(kRuntimeISA); 229 } 230 231 // Some systems require the stack size to be a multiple of the system page size, so round up. 232 stack_size = RoundUp(stack_size, kPageSize); 233 234 return stack_size; 235 } 236 237 // Global variable to prevent the compiler optimizing away the page reads for the stack. 238 byte dont_optimize_this; 239 240 // Install a protected region in the stack. This is used to trigger a SIGSEGV if a stack 241 // overflow is detected. It is located right below the stack_begin_. 242 // 243 // There is a little complexity here that deserves a special mention. On some 244 // architectures, the stack created using a VM_GROWSDOWN flag 245 // to prevent memory being allocated when it's not needed. This flag makes the 246 // kernel only allocate memory for the stack by growing down in memory. Because we 247 // want to put an mprotected region far away from that at the stack top, we need 248 // to make sure the pages for the stack are mapped in before we call mprotect. We do 249 // this by reading every page from the stack bottom (highest address) to the stack top. 250 // We then madvise this away. 251 void Thread::InstallImplicitProtection() { 252 byte* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize; 253 byte* stack_himem = tlsPtr_.stack_end; 254 byte* stack_top = reinterpret_cast<byte*>(reinterpret_cast<uintptr_t>(&stack_himem) & 255 ~(kPageSize - 1)); // Page containing current top of stack. 256 257 // First remove the protection on the protected region as will want to read and 258 // write it. This may fail (on the first attempt when the stack is not mapped) 259 // but we ignore that. 260 UnprotectStack(); 261 262 // Map in the stack. This must be done by reading from the 263 // current stack pointer downwards as the stack may be mapped using VM_GROWSDOWN 264 // in the kernel. Any access more than a page below the current SP might cause 265 // a segv. 266 267 // Read every page from the high address to the low. 268 for (byte* p = stack_top; p >= pregion; p -= kPageSize) { 269 dont_optimize_this = *p; 270 } 271 272 VLOG(threads) << "installing stack protected region at " << std::hex << 273 static_cast<void*>(pregion) << " to " << 274 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1); 275 276 // Protect the bottom of the stack to prevent read/write to it. 277 ProtectStack(); 278 279 // Tell the kernel that we won't be needing these pages any more. 280 // NB. madvise will probably write zeroes into the memory (on linux it does). 281 uint32_t unwanted_size = stack_top - pregion - kPageSize; 282 madvise(pregion, unwanted_size, MADV_DONTNEED); 283 } 284 285 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) { 286 CHECK(java_peer != nullptr); 287 Thread* self = static_cast<JNIEnvExt*>(env)->self; 288 Runtime* runtime = Runtime::Current(); 289 290 // Atomically start the birth of the thread ensuring the runtime isn't shutting down. 291 bool thread_start_during_shutdown = false; 292 { 293 MutexLock mu(self, *Locks::runtime_shutdown_lock_); 294 if (runtime->IsShuttingDownLocked()) { 295 thread_start_during_shutdown = true; 296 } else { 297 runtime->StartThreadBirth(); 298 } 299 } 300 if (thread_start_during_shutdown) { 301 ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError")); 302 env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown"); 303 return; 304 } 305 306 Thread* child_thread = new Thread(is_daemon); 307 // Use global JNI ref to hold peer live while child thread starts. 308 child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer); 309 stack_size = FixStackSize(stack_size); 310 311 // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to 312 // assign it. 313 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 314 reinterpret_cast<jlong>(child_thread)); 315 316 pthread_t new_pthread; 317 pthread_attr_t attr; 318 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread"); 319 CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED"); 320 CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size); 321 int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread); 322 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread"); 323 324 if (pthread_create_result != 0) { 325 // pthread_create(3) failed, so clean up. 326 { 327 MutexLock mu(self, *Locks::runtime_shutdown_lock_); 328 runtime->EndThreadBirth(); 329 } 330 // Manually delete the global reference since Thread::Init will not have been run. 331 env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer); 332 child_thread->tlsPtr_.jpeer = nullptr; 333 delete child_thread; 334 child_thread = nullptr; 335 // TODO: remove from thread group? 336 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0); 337 { 338 std::string msg(StringPrintf("pthread_create (%s stack) failed: %s", 339 PrettySize(stack_size).c_str(), strerror(pthread_create_result))); 340 ScopedObjectAccess soa(env); 341 soa.Self()->ThrowOutOfMemoryError(msg.c_str()); 342 } 343 } 344 } 345 346 void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) { 347 // This function does all the initialization that must be run by the native thread it applies to. 348 // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so 349 // we can handshake with the corresponding native thread when it's ready.) Check this native 350 // thread hasn't been through here already... 351 CHECK(Thread::Current() == nullptr); 352 SetUpAlternateSignalStack(); 353 InitCpu(); 354 InitTlsEntryPoints(); 355 RemoveSuspendTrigger(); 356 InitCardTable(); 357 InitTid(); 358 // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this 359 // avoids pthread_self_ ever being invalid when discovered from Thread::Current(). 360 tlsPtr_.pthread_self = pthread_self(); 361 CHECK(is_started_); 362 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self"); 363 DCHECK_EQ(Thread::Current(), this); 364 365 tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this); 366 InitStackHwm(); 367 368 tlsPtr_.jni_env = new JNIEnvExt(this, java_vm); 369 thread_list->Register(this); 370 } 371 372 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group, 373 bool create_peer) { 374 Thread* self; 375 Runtime* runtime = Runtime::Current(); 376 if (runtime == nullptr) { 377 LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name; 378 return nullptr; 379 } 380 { 381 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_); 382 if (runtime->IsShuttingDownLocked()) { 383 LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name; 384 return nullptr; 385 } else { 386 Runtime::Current()->StartThreadBirth(); 387 self = new Thread(as_daemon); 388 self->Init(runtime->GetThreadList(), runtime->GetJavaVM()); 389 Runtime::Current()->EndThreadBirth(); 390 } 391 } 392 393 CHECK_NE(self->GetState(), kRunnable); 394 self->SetState(kNative); 395 396 // If we're the main thread, ClassLinker won't be created until after we're attached, 397 // so that thread needs a two-stage attach. Regular threads don't need this hack. 398 // In the compiler, all threads need this hack, because no-one's going to be getting 399 // a native peer! 400 if (create_peer) { 401 self->CreatePeer(thread_name, as_daemon, thread_group); 402 } else { 403 // These aren't necessary, but they improve diagnostics for unit tests & command-line tools. 404 if (thread_name != nullptr) { 405 self->tlsPtr_.name->assign(thread_name); 406 ::art::SetThreadName(thread_name); 407 } else if (self->GetJniEnv()->check_jni) { 408 LOG(WARNING) << *Thread::Current() << " attached without supplying a name"; 409 } 410 } 411 412 return self; 413 } 414 415 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) { 416 Runtime* runtime = Runtime::Current(); 417 CHECK(runtime->IsStarted()); 418 JNIEnv* env = tlsPtr_.jni_env; 419 420 if (thread_group == nullptr) { 421 thread_group = runtime->GetMainThreadGroup(); 422 } 423 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name)); 424 jint thread_priority = GetNativePriority(); 425 jboolean thread_is_daemon = as_daemon; 426 427 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread)); 428 if (peer.get() == nullptr) { 429 CHECK(IsExceptionPending()); 430 return; 431 } 432 { 433 ScopedObjectAccess soa(this); 434 tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get()); 435 } 436 env->CallNonvirtualVoidMethod(peer.get(), 437 WellKnownClasses::java_lang_Thread, 438 WellKnownClasses::java_lang_Thread_init, 439 thread_group, thread_name.get(), thread_priority, thread_is_daemon); 440 AssertNoPendingException(); 441 442 Thread* self = this; 443 DCHECK_EQ(self, Thread::Current()); 444 env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer, 445 reinterpret_cast<jlong>(self)); 446 447 ScopedObjectAccess soa(self); 448 StackHandleScope<1> hs(self); 449 Handle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa))); 450 if (peer_thread_name.Get() == nullptr) { 451 // The Thread constructor should have set the Thread.name to a 452 // non-null value. However, because we can run without code 453 // available (in the compiler, in tests), we manually assign the 454 // fields the constructor should have set. 455 if (runtime->IsActiveTransaction()) { 456 InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority); 457 } else { 458 InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority); 459 } 460 peer_thread_name.Assign(GetThreadName(soa)); 461 } 462 // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null. 463 if (peer_thread_name.Get() != nullptr) { 464 SetThreadName(peer_thread_name->ToModifiedUtf8().c_str()); 465 } 466 } 467 468 template<bool kTransactionActive> 469 void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group, 470 jobject thread_name, jint thread_priority) { 471 soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)-> 472 SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon); 473 soa.DecodeField(WellKnownClasses::java_lang_Thread_group)-> 474 SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group)); 475 soa.DecodeField(WellKnownClasses::java_lang_Thread_name)-> 476 SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name)); 477 soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)-> 478 SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority); 479 } 480 481 void Thread::SetThreadName(const char* name) { 482 tlsPtr_.name->assign(name); 483 ::art::SetThreadName(name); 484 Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM")); 485 } 486 487 void Thread::InitStackHwm() { 488 void* read_stack_base; 489 size_t read_stack_size; 490 size_t read_guard_size; 491 GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size); 492 493 // This is included in the SIGQUIT output, but it's useful here for thread debugging. 494 VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)", 495 read_stack_base, 496 PrettySize(read_stack_size).c_str(), 497 PrettySize(read_guard_size).c_str()); 498 499 tlsPtr_.stack_begin = reinterpret_cast<byte*>(read_stack_base); 500 tlsPtr_.stack_size = read_stack_size; 501 502 // The minimum stack size we can cope with is the overflow reserved bytes (typically 503 // 8K) + the protected region size (4K) + another page (4K). Typically this will 504 // be 8+4+4 = 16K. The thread won't be able to do much with this stack even the GC takes 505 // between 8K and 12K. 506 uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize 507 + 4 * KB; 508 if (read_stack_size <= min_stack) { 509 LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << read_stack_size 510 << " bytes)"; 511 } 512 513 // TODO: move this into the Linux GetThreadStack implementation. 514 #if !defined(__APPLE__) 515 // If we're the main thread, check whether we were run with an unlimited stack. In that case, 516 // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection 517 // will be broken because we'll die long before we get close to 2GB. 518 bool is_main_thread = (::art::GetTid() == getpid()); 519 if (is_main_thread) { 520 rlimit stack_limit; 521 if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) { 522 PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed"; 523 } 524 if (stack_limit.rlim_cur == RLIM_INFINITY) { 525 // Find the default stack size for new threads... 526 pthread_attr_t default_attributes; 527 size_t default_stack_size; 528 CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query"); 529 CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size), 530 "default stack size query"); 531 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query"); 532 533 // ...and use that as our limit. 534 size_t old_stack_size = read_stack_size; 535 tlsPtr_.stack_size = default_stack_size; 536 tlsPtr_.stack_begin += (old_stack_size - default_stack_size); 537 VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")" 538 << " to " << PrettySize(default_stack_size) 539 << " with base " << reinterpret_cast<void*>(tlsPtr_.stack_begin); 540 } 541 } 542 #endif 543 544 // Set stack_end_ to the bottom of the stack saving space of stack overflows 545 546 Runtime* runtime = Runtime::Current(); 547 bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsCompiler(); 548 ResetDefaultStackEnd(); 549 550 // Install the protected region if we are doing implicit overflow checks. 551 if (implicit_stack_check) { 552 // The thread might have protected region at the bottom. We need 553 // to install our own region so we need to move the limits 554 // of the stack to make room for it. 555 556 tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize; 557 tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize; 558 tlsPtr_.stack_size -= read_guard_size; 559 560 InstallImplicitProtection(); 561 } 562 563 // Sanity check. 564 int stack_variable; 565 CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end)); 566 } 567 568 void Thread::ShortDump(std::ostream& os) const { 569 os << "Thread["; 570 if (GetThreadId() != 0) { 571 // If we're in kStarting, we won't have a thin lock id or tid yet. 572 os << GetThreadId() 573 << ",tid=" << GetTid() << ','; 574 } 575 os << GetState() 576 << ",Thread*=" << this 577 << ",peer=" << tlsPtr_.opeer 578 << ",\"" << *tlsPtr_.name << "\"" 579 << "]"; 580 } 581 582 void Thread::Dump(std::ostream& os) const { 583 DumpState(os); 584 DumpStack(os); 585 } 586 587 mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const { 588 mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name); 589 return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr; 590 } 591 592 void Thread::GetThreadName(std::string& name) const { 593 name.assign(*tlsPtr_.name); 594 } 595 596 uint64_t Thread::GetCpuMicroTime() const { 597 #if defined(HAVE_POSIX_CLOCKS) 598 clockid_t cpu_clock_id; 599 pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id); 600 timespec now; 601 clock_gettime(cpu_clock_id, &now); 602 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000); 603 #else 604 UNIMPLEMENTED(WARNING); 605 return -1; 606 #endif 607 } 608 609 // Attempt to rectify locks so that we dump thread list with required locks before exiting. 610 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS { 611 LOG(ERROR) << *thread << " suspend count already zero."; 612 Locks::thread_suspend_count_lock_->Unlock(self); 613 if (!Locks::mutator_lock_->IsSharedHeld(self)) { 614 Locks::mutator_lock_->SharedTryLock(self); 615 if (!Locks::mutator_lock_->IsSharedHeld(self)) { 616 LOG(WARNING) << "Dumping thread list without holding mutator_lock_"; 617 } 618 } 619 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { 620 Locks::thread_list_lock_->TryLock(self); 621 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { 622 LOG(WARNING) << "Dumping thread list without holding thread_list_lock_"; 623 } 624 } 625 std::ostringstream ss; 626 Runtime::Current()->GetThreadList()->DumpLocked(ss); 627 LOG(FATAL) << ss.str(); 628 } 629 630 void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) { 631 if (kIsDebugBuild) { 632 DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count) 633 << delta << " " << tls32_.debug_suspend_count << " " << this; 634 DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this; 635 Locks::thread_suspend_count_lock_->AssertHeld(self); 636 if (this != self && !IsSuspended()) { 637 Locks::thread_list_lock_->AssertHeld(self); 638 } 639 } 640 if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) { 641 UnsafeLogFatalForSuspendCount(self, this); 642 return; 643 } 644 645 tls32_.suspend_count += delta; 646 if (for_debugger) { 647 tls32_.debug_suspend_count += delta; 648 } 649 650 if (tls32_.suspend_count == 0) { 651 AtomicClearFlag(kSuspendRequest); 652 } else { 653 AtomicSetFlag(kSuspendRequest); 654 TriggerSuspend(); 655 } 656 } 657 658 void Thread::RunCheckpointFunction() { 659 Closure *checkpoints[kMaxCheckpoints]; 660 661 // Grab the suspend_count lock and copy the current set of 662 // checkpoints. Then clear the list and the flag. The RequestCheckpoint 663 // function will also grab this lock so we prevent a race between setting 664 // the kCheckpointRequest flag and clearing it. 665 { 666 MutexLock mu(this, *Locks::thread_suspend_count_lock_); 667 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) { 668 checkpoints[i] = tlsPtr_.checkpoint_functions[i]; 669 tlsPtr_.checkpoint_functions[i] = nullptr; 670 } 671 AtomicClearFlag(kCheckpointRequest); 672 } 673 674 // Outside the lock, run all the checkpoint functions that 675 // we collected. 676 bool found_checkpoint = false; 677 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) { 678 if (checkpoints[i] != nullptr) { 679 ATRACE_BEGIN("Checkpoint function"); 680 checkpoints[i]->Run(this); 681 ATRACE_END(); 682 found_checkpoint = true; 683 } 684 } 685 CHECK(found_checkpoint); 686 } 687 688 bool Thread::RequestCheckpoint(Closure* function) { 689 union StateAndFlags old_state_and_flags; 690 old_state_and_flags.as_int = tls32_.state_and_flags.as_int; 691 if (old_state_and_flags.as_struct.state != kRunnable) { 692 return false; // Fail, thread is suspended and so can't run a checkpoint. 693 } 694 695 uint32_t available_checkpoint = kMaxCheckpoints; 696 for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) { 697 if (tlsPtr_.checkpoint_functions[i] == nullptr) { 698 available_checkpoint = i; 699 break; 700 } 701 } 702 if (available_checkpoint == kMaxCheckpoints) { 703 // No checkpoint functions available, we can't run a checkpoint 704 return false; 705 } 706 tlsPtr_.checkpoint_functions[available_checkpoint] = function; 707 708 // Checkpoint function installed now install flag bit. 709 // We must be runnable to request a checkpoint. 710 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable); 711 union StateAndFlags new_state_and_flags; 712 new_state_and_flags.as_int = old_state_and_flags.as_int; 713 new_state_and_flags.as_struct.flags |= kCheckpointRequest; 714 bool success = 715 tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(old_state_and_flags.as_int, 716 new_state_and_flags.as_int); 717 if (UNLIKELY(!success)) { 718 // The thread changed state before the checkpoint was installed. 719 CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function); 720 tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr; 721 } else { 722 CHECK_EQ(ReadFlag(kCheckpointRequest), true); 723 TriggerSuspend(); 724 } 725 return success; 726 } 727 728 void Thread::FullSuspendCheck() { 729 VLOG(threads) << this << " self-suspending"; 730 ATRACE_BEGIN("Full suspend check"); 731 // Make thread appear suspended to other threads, release mutator_lock_. 732 TransitionFromRunnableToSuspended(kSuspended); 733 // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_. 734 TransitionFromSuspendedToRunnable(); 735 ATRACE_END(); 736 VLOG(threads) << this << " self-reviving"; 737 } 738 739 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) { 740 std::string group_name; 741 int priority; 742 bool is_daemon = false; 743 Thread* self = Thread::Current(); 744 745 // Don't do this if we are aborting since the GC may have all the threads suspended. This will 746 // cause ScopedObjectAccessUnchecked to deadlock. 747 if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) { 748 ScopedObjectAccessUnchecked soa(self); 749 priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority) 750 ->GetInt(thread->tlsPtr_.opeer); 751 is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon) 752 ->GetBoolean(thread->tlsPtr_.opeer); 753 754 mirror::Object* thread_group = 755 soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer); 756 757 if (thread_group != nullptr) { 758 mirror::ArtField* group_name_field = 759 soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name); 760 mirror::String* group_name_string = 761 reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group)); 762 group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>"; 763 } 764 } else { 765 priority = GetNativePriority(); 766 } 767 768 std::string scheduler_group_name(GetSchedulerGroupName(tid)); 769 if (scheduler_group_name.empty()) { 770 scheduler_group_name = "default"; 771 } 772 773 if (thread != nullptr) { 774 os << '"' << *thread->tlsPtr_.name << '"'; 775 if (is_daemon) { 776 os << " daemon"; 777 } 778 os << " prio=" << priority 779 << " tid=" << thread->GetThreadId() 780 << " " << thread->GetState(); 781 if (thread->IsStillStarting()) { 782 os << " (still starting up)"; 783 } 784 os << "\n"; 785 } else { 786 os << '"' << ::art::GetThreadName(tid) << '"' 787 << " prio=" << priority 788 << " (not attached)\n"; 789 } 790 791 if (thread != nullptr) { 792 MutexLock mu(self, *Locks::thread_suspend_count_lock_); 793 os << " | group=\"" << group_name << "\"" 794 << " sCount=" << thread->tls32_.suspend_count 795 << " dsCount=" << thread->tls32_.debug_suspend_count 796 << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer) 797 << " self=" << reinterpret_cast<const void*>(thread) << "\n"; 798 } 799 800 os << " | sysTid=" << tid 801 << " nice=" << getpriority(PRIO_PROCESS, tid) 802 << " cgrp=" << scheduler_group_name; 803 if (thread != nullptr) { 804 int policy; 805 sched_param sp; 806 CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp), 807 __FUNCTION__); 808 os << " sched=" << policy << "/" << sp.sched_priority 809 << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self); 810 } 811 os << "\n"; 812 813 // Grab the scheduler stats for this thread. 814 std::string scheduler_stats; 815 if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) { 816 scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'. 817 } else { 818 scheduler_stats = "0 0 0"; 819 } 820 821 char native_thread_state = '?'; 822 int utime = 0; 823 int stime = 0; 824 int task_cpu = 0; 825 GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu); 826 827 os << " | state=" << native_thread_state 828 << " schedstat=( " << scheduler_stats << " )" 829 << " utm=" << utime 830 << " stm=" << stime 831 << " core=" << task_cpu 832 << " HZ=" << sysconf(_SC_CLK_TCK) << "\n"; 833 if (thread != nullptr) { 834 os << " | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-" 835 << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize=" 836 << PrettySize(thread->tlsPtr_.stack_size) << "\n"; 837 // Dump the held mutexes. 838 os << " | held mutexes="; 839 for (size_t i = 0; i < kLockLevelCount; ++i) { 840 if (i != kMonitorLock) { 841 BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i)); 842 if (mutex != nullptr) { 843 os << " \"" << mutex->GetName() << "\""; 844 if (mutex->IsReaderWriterMutex()) { 845 ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex); 846 if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) { 847 os << "(exclusive held)"; 848 } else { 849 os << "(shared held)"; 850 } 851 } 852 } 853 } 854 } 855 os << "\n"; 856 } 857 } 858 859 void Thread::DumpState(std::ostream& os) const { 860 Thread::DumpState(os, this, GetTid()); 861 } 862 863 struct StackDumpVisitor : public StackVisitor { 864 StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate) 865 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 866 : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate), 867 last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) { 868 } 869 870 virtual ~StackDumpVisitor() { 871 if (frame_count == 0) { 872 os << " (no managed stack frames)\n"; 873 } 874 } 875 876 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 877 mirror::ArtMethod* m = GetMethod(); 878 if (m->IsRuntimeMethod()) { 879 return true; 880 } 881 const int kMaxRepetition = 3; 882 mirror::Class* c = m->GetDeclaringClass(); 883 mirror::DexCache* dex_cache = c->GetDexCache(); 884 int line_number = -1; 885 if (dex_cache != nullptr) { // be tolerant of bad input 886 const DexFile& dex_file = *dex_cache->GetDexFile(); 887 line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false)); 888 } 889 if (line_number == last_line_number && last_method == m) { 890 ++repetition_count; 891 } else { 892 if (repetition_count >= kMaxRepetition) { 893 os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n"; 894 } 895 repetition_count = 0; 896 last_line_number = line_number; 897 last_method = m; 898 } 899 if (repetition_count < kMaxRepetition) { 900 os << " at " << PrettyMethod(m, false); 901 if (m->IsNative()) { 902 os << "(Native method)"; 903 } else { 904 const char* source_file(m->GetDeclaringClassSourceFile()); 905 os << "(" << (source_file != nullptr ? source_file : "unavailable") 906 << ":" << line_number << ")"; 907 } 908 os << "\n"; 909 if (frame_count == 0) { 910 Monitor::DescribeWait(os, thread); 911 } 912 if (can_allocate) { 913 // Visit locks, but do not abort on errors. This would trigger a nested abort. 914 Monitor::VisitLocks(this, DumpLockedObject, &os, false); 915 } 916 } 917 918 ++frame_count; 919 return true; 920 } 921 922 static void DumpLockedObject(mirror::Object* o, void* context) 923 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 924 std::ostream& os = *reinterpret_cast<std::ostream*>(context); 925 os << " - locked "; 926 if (o == nullptr) { 927 os << "an unknown object"; 928 } else { 929 if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) && 930 Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) { 931 // Getting the identity hashcode here would result in lock inflation and suspension of the 932 // current thread, which isn't safe if this is the only runnable thread. 933 os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o), 934 PrettyTypeOf(o).c_str()); 935 } else { 936 os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), PrettyTypeOf(o).c_str()); 937 } 938 } 939 os << "\n"; 940 } 941 942 std::ostream& os; 943 const Thread* thread; 944 const bool can_allocate; 945 mirror::ArtMethod* last_method; 946 int last_line_number; 947 int repetition_count; 948 int frame_count; 949 }; 950 951 static bool ShouldShowNativeStack(const Thread* thread) 952 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 953 ThreadState state = thread->GetState(); 954 955 // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting. 956 if (state > kWaiting && state < kStarting) { 957 return true; 958 } 959 960 // In an Object.wait variant or Thread.sleep? That's not interesting. 961 if (state == kTimedWaiting || state == kSleeping || state == kWaiting) { 962 return false; 963 } 964 965 // Threads with no managed stack frames should be shown. 966 const ManagedStack* managed_stack = thread->GetManagedStack(); 967 if (managed_stack == NULL || (managed_stack->GetTopQuickFrame() == NULL && 968 managed_stack->GetTopShadowFrame() == NULL)) { 969 return true; 970 } 971 972 // In some other native method? That's interesting. 973 // We don't just check kNative because native methods will be in state kSuspended if they're 974 // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the 975 // thread-startup states if it's early enough in their life cycle (http://b/7432159). 976 mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr); 977 return current_method != nullptr && current_method->IsNative(); 978 } 979 980 void Thread::DumpJavaStack(std::ostream& os) const { 981 std::unique_ptr<Context> context(Context::Create()); 982 StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(), 983 !tls32_.throwing_OutOfMemoryError); 984 dumper.WalkStack(); 985 } 986 987 void Thread::DumpStack(std::ostream& os) const { 988 // TODO: we call this code when dying but may not have suspended the thread ourself. The 989 // IsSuspended check is therefore racy with the use for dumping (normally we inhibit 990 // the race with the thread_suspend_count_lock_). 991 bool dump_for_abort = (gAborting > 0); 992 bool safe_to_dump = (this == Thread::Current() || IsSuspended()); 993 if (!kIsDebugBuild) { 994 // We always want to dump the stack for an abort, however, there is no point dumping another 995 // thread's stack in debug builds where we'll hit the not suspended check in the stack walk. 996 safe_to_dump = (safe_to_dump || dump_for_abort); 997 } 998 if (safe_to_dump) { 999 // If we're currently in native code, dump that stack before dumping the managed stack. 1000 if (dump_for_abort || ShouldShowNativeStack(this)) { 1001 DumpKernelStack(os, GetTid(), " kernel: ", false); 1002 DumpNativeStack(os, GetTid(), " native: ", GetCurrentMethod(nullptr, !dump_for_abort)); 1003 } 1004 DumpJavaStack(os); 1005 } else { 1006 os << "Not able to dump stack of thread that isn't suspended"; 1007 } 1008 } 1009 1010 void Thread::ThreadExitCallback(void* arg) { 1011 Thread* self = reinterpret_cast<Thread*>(arg); 1012 if (self->tls32_.thread_exit_check_count == 0) { 1013 LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's " 1014 "going to use a pthread_key_create destructor?): " << *self; 1015 CHECK(is_started_); 1016 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self"); 1017 self->tls32_.thread_exit_check_count = 1; 1018 } else { 1019 LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self; 1020 } 1021 } 1022 1023 void Thread::Startup() { 1024 CHECK(!is_started_); 1025 is_started_ = true; 1026 { 1027 // MutexLock to keep annotalysis happy. 1028 // 1029 // Note we use nullptr for the thread because Thread::Current can 1030 // return garbage since (is_started_ == true) and 1031 // Thread::pthread_key_self_ is not yet initialized. 1032 // This was seen on glibc. 1033 MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_); 1034 resume_cond_ = new ConditionVariable("Thread resumption condition variable", 1035 *Locks::thread_suspend_count_lock_); 1036 } 1037 1038 // Allocate a TLS slot. 1039 CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key"); 1040 1041 // Double-check the TLS slot allocation. 1042 if (pthread_getspecific(pthread_key_self_) != nullptr) { 1043 LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr"; 1044 } 1045 } 1046 1047 void Thread::FinishStartup() { 1048 Runtime* runtime = Runtime::Current(); 1049 CHECK(runtime->IsStarted()); 1050 1051 // Finish attaching the main thread. 1052 ScopedObjectAccess soa(Thread::Current()); 1053 Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup()); 1054 1055 Runtime::Current()->GetClassLinker()->RunRootClinits(); 1056 } 1057 1058 void Thread::Shutdown() { 1059 CHECK(is_started_); 1060 is_started_ = false; 1061 CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key"); 1062 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_); 1063 if (resume_cond_ != nullptr) { 1064 delete resume_cond_; 1065 resume_cond_ = nullptr; 1066 } 1067 } 1068 1069 Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) { 1070 wait_mutex_ = new Mutex("a thread wait mutex"); 1071 wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_); 1072 tlsPtr_.debug_invoke_req = new DebugInvokeReq; 1073 tlsPtr_.single_step_control = new SingleStepControl; 1074 tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>; 1075 tlsPtr_.name = new std::string(kThreadNameDuringStartup); 1076 tlsPtr_.nested_signal_state = static_cast<jmp_buf*>(malloc(sizeof(jmp_buf))); 1077 1078 CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread); 1079 tls32_.state_and_flags.as_struct.flags = 0; 1080 tls32_.state_and_flags.as_struct.state = kNative; 1081 memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes)); 1082 std::fill(tlsPtr_.rosalloc_runs, 1083 tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets, 1084 gc::allocator::RosAlloc::GetDedicatedFullRun()); 1085 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) { 1086 tlsPtr_.checkpoint_functions[i] = nullptr; 1087 } 1088 } 1089 1090 bool Thread::IsStillStarting() const { 1091 // You might think you can check whether the state is kStarting, but for much of thread startup, 1092 // the thread is in kNative; it might also be in kVmWait. 1093 // You might think you can check whether the peer is nullptr, but the peer is actually created and 1094 // assigned fairly early on, and needs to be. 1095 // It turns out that the last thing to change is the thread name; that's a good proxy for "has 1096 // this thread _ever_ entered kRunnable". 1097 return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) || 1098 (*tlsPtr_.name == kThreadNameDuringStartup); 1099 } 1100 1101 void Thread::AssertNoPendingException() const { 1102 if (UNLIKELY(IsExceptionPending())) { 1103 ScopedObjectAccess soa(Thread::Current()); 1104 mirror::Throwable* exception = GetException(nullptr); 1105 LOG(FATAL) << "No pending exception expected: " << exception->Dump(); 1106 } 1107 } 1108 1109 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const { 1110 if (UNLIKELY(IsExceptionPending())) { 1111 ScopedObjectAccess soa(Thread::Current()); 1112 mirror::Throwable* exception = GetException(nullptr); 1113 LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: " 1114 << exception->Dump(); 1115 } 1116 } 1117 1118 static void MonitorExitVisitor(mirror::Object** object, void* arg, uint32_t /*thread_id*/, 1119 RootType /*root_type*/) 1120 NO_THREAD_SAFETY_ANALYSIS { 1121 Thread* self = reinterpret_cast<Thread*>(arg); 1122 mirror::Object* entered_monitor = *object; 1123 if (self->HoldsLock(entered_monitor)) { 1124 LOG(WARNING) << "Calling MonitorExit on object " 1125 << object << " (" << PrettyTypeOf(entered_monitor) << ")" 1126 << " left locked by native thread " 1127 << *Thread::Current() << " which is detaching"; 1128 entered_monitor->MonitorExit(self); 1129 } 1130 } 1131 1132 void Thread::Destroy() { 1133 Thread* self = this; 1134 DCHECK_EQ(self, Thread::Current()); 1135 1136 if (tlsPtr_.opeer != nullptr) { 1137 ScopedObjectAccess soa(self); 1138 // We may need to call user-supplied managed code, do this before final clean-up. 1139 HandleUncaughtExceptions(soa); 1140 RemoveFromThreadGroup(soa); 1141 1142 // this.nativePeer = 0; 1143 if (Runtime::Current()->IsActiveTransaction()) { 1144 soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer) 1145 ->SetLong<true>(tlsPtr_.opeer, 0); 1146 } else { 1147 soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer) 1148 ->SetLong<false>(tlsPtr_.opeer, 0); 1149 } 1150 Dbg::PostThreadDeath(self); 1151 1152 // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone 1153 // who is waiting. 1154 mirror::Object* lock = 1155 soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer); 1156 // (This conditional is only needed for tests, where Thread.lock won't have been set.) 1157 if (lock != nullptr) { 1158 StackHandleScope<1> hs(self); 1159 Handle<mirror::Object> h_obj(hs.NewHandle(lock)); 1160 ObjectLock<mirror::Object> locker(self, h_obj); 1161 locker.NotifyAll(); 1162 } 1163 } 1164 1165 // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited. 1166 if (tlsPtr_.jni_env != nullptr) { 1167 tlsPtr_.jni_env->monitors.VisitRoots(MonitorExitVisitor, self, 0, kRootVMInternal); 1168 } 1169 } 1170 1171 Thread::~Thread() { 1172 if (tlsPtr_.jni_env != nullptr && tlsPtr_.jpeer != nullptr) { 1173 // If pthread_create fails we don't have a jni env here. 1174 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer); 1175 tlsPtr_.jpeer = nullptr; 1176 } 1177 tlsPtr_.opeer = nullptr; 1178 1179 bool initialized = (tlsPtr_.jni_env != nullptr); // Did Thread::Init run? 1180 if (initialized) { 1181 delete tlsPtr_.jni_env; 1182 tlsPtr_.jni_env = nullptr; 1183 } 1184 CHECK_NE(GetState(), kRunnable); 1185 CHECK_NE(ReadFlag(kCheckpointRequest), true); 1186 CHECK(tlsPtr_.checkpoint_functions[0] == nullptr); 1187 CHECK(tlsPtr_.checkpoint_functions[1] == nullptr); 1188 CHECK(tlsPtr_.checkpoint_functions[2] == nullptr); 1189 1190 // We may be deleting a still born thread. 1191 SetStateUnsafe(kTerminated); 1192 1193 delete wait_cond_; 1194 delete wait_mutex_; 1195 1196 if (tlsPtr_.long_jump_context != nullptr) { 1197 delete tlsPtr_.long_jump_context; 1198 } 1199 1200 if (initialized) { 1201 CleanupCpu(); 1202 } 1203 1204 delete tlsPtr_.debug_invoke_req; 1205 delete tlsPtr_.single_step_control; 1206 delete tlsPtr_.instrumentation_stack; 1207 delete tlsPtr_.name; 1208 delete tlsPtr_.stack_trace_sample; 1209 free(tlsPtr_.nested_signal_state); 1210 1211 Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this); 1212 1213 TearDownAlternateSignalStack(); 1214 } 1215 1216 void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) { 1217 if (!IsExceptionPending()) { 1218 return; 1219 } 1220 ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer)); 1221 ScopedThreadStateChange tsc(this, kNative); 1222 1223 // Get and clear the exception. 1224 ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred()); 1225 tlsPtr_.jni_env->ExceptionClear(); 1226 1227 // If the thread has its own handler, use that. 1228 ScopedLocalRef<jobject> handler(tlsPtr_.jni_env, 1229 tlsPtr_.jni_env->GetObjectField(peer.get(), 1230 WellKnownClasses::java_lang_Thread_uncaughtHandler)); 1231 if (handler.get() == nullptr) { 1232 // Otherwise use the thread group's default handler. 1233 handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(), 1234 WellKnownClasses::java_lang_Thread_group)); 1235 } 1236 1237 // Call the handler. 1238 tlsPtr_.jni_env->CallVoidMethod(handler.get(), 1239 WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException, 1240 peer.get(), exception.get()); 1241 1242 // If the handler threw, clear that exception too. 1243 tlsPtr_.jni_env->ExceptionClear(); 1244 } 1245 1246 void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) { 1247 // this.group.removeThread(this); 1248 // group can be null if we're in the compiler or a test. 1249 mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group) 1250 ->GetObject(tlsPtr_.opeer); 1251 if (ogroup != nullptr) { 1252 ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup)); 1253 ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer)); 1254 ScopedThreadStateChange tsc(soa.Self(), kNative); 1255 tlsPtr_.jni_env->CallVoidMethod(group.get(), 1256 WellKnownClasses::java_lang_ThreadGroup_removeThread, 1257 peer.get()); 1258 } 1259 } 1260 1261 size_t Thread::NumHandleReferences() { 1262 size_t count = 0; 1263 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) { 1264 count += cur->NumberOfReferences(); 1265 } 1266 return count; 1267 } 1268 1269 bool Thread::HandleScopeContains(jobject obj) const { 1270 StackReference<mirror::Object>* hs_entry = 1271 reinterpret_cast<StackReference<mirror::Object>*>(obj); 1272 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) { 1273 if (cur->Contains(hs_entry)) { 1274 return true; 1275 } 1276 } 1277 // JNI code invoked from portable code uses shadow frames rather than the handle scope. 1278 return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry); 1279 } 1280 1281 void Thread::HandleScopeVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) { 1282 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) { 1283 size_t num_refs = cur->NumberOfReferences(); 1284 for (size_t j = 0; j < num_refs; ++j) { 1285 mirror::Object* object = cur->GetReference(j); 1286 if (object != nullptr) { 1287 mirror::Object* old_obj = object; 1288 visitor(&object, arg, thread_id, kRootNativeStack); 1289 if (old_obj != object) { 1290 cur->SetReference(j, object); 1291 } 1292 } 1293 } 1294 } 1295 } 1296 1297 mirror::Object* Thread::DecodeJObject(jobject obj) const { 1298 Locks::mutator_lock_->AssertSharedHeld(this); 1299 if (obj == nullptr) { 1300 return nullptr; 1301 } 1302 IndirectRef ref = reinterpret_cast<IndirectRef>(obj); 1303 IndirectRefKind kind = GetIndirectRefKind(ref); 1304 mirror::Object* result; 1305 // The "kinds" below are sorted by the frequency we expect to encounter them. 1306 if (kind == kLocal) { 1307 IndirectReferenceTable& locals = tlsPtr_.jni_env->locals; 1308 // Local references do not need a read barrier. 1309 result = locals.Get<kWithoutReadBarrier>(ref); 1310 } else if (kind == kHandleScopeOrInvalid) { 1311 // TODO: make stack indirect reference table lookup more efficient. 1312 // Check if this is a local reference in the handle scope. 1313 if (LIKELY(HandleScopeContains(obj))) { 1314 // Read from handle scope. 1315 result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr(); 1316 VerifyObject(result); 1317 } else { 1318 result = kInvalidIndirectRefObject; 1319 } 1320 } else if (kind == kGlobal) { 1321 JavaVMExt* const vm = Runtime::Current()->GetJavaVM(); 1322 result = vm->globals.SynchronizedGet(const_cast<Thread*>(this), &vm->globals_lock, ref); 1323 } else { 1324 DCHECK_EQ(kind, kWeakGlobal); 1325 result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref); 1326 if (result == kClearedJniWeakGlobal) { 1327 // This is a special case where it's okay to return nullptr. 1328 return nullptr; 1329 } 1330 } 1331 1332 if (UNLIKELY(result == nullptr)) { 1333 JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj); 1334 } 1335 return result; 1336 } 1337 1338 // Implements java.lang.Thread.interrupted. 1339 bool Thread::Interrupted() { 1340 MutexLock mu(Thread::Current(), *wait_mutex_); 1341 bool interrupted = IsInterruptedLocked(); 1342 SetInterruptedLocked(false); 1343 return interrupted; 1344 } 1345 1346 // Implements java.lang.Thread.isInterrupted. 1347 bool Thread::IsInterrupted() { 1348 MutexLock mu(Thread::Current(), *wait_mutex_); 1349 return IsInterruptedLocked(); 1350 } 1351 1352 void Thread::Interrupt(Thread* self) { 1353 MutexLock mu(self, *wait_mutex_); 1354 if (interrupted_) { 1355 return; 1356 } 1357 interrupted_ = true; 1358 NotifyLocked(self); 1359 } 1360 1361 void Thread::Notify() { 1362 Thread* self = Thread::Current(); 1363 MutexLock mu(self, *wait_mutex_); 1364 NotifyLocked(self); 1365 } 1366 1367 void Thread::NotifyLocked(Thread* self) { 1368 if (wait_monitor_ != nullptr) { 1369 wait_cond_->Signal(self); 1370 } 1371 } 1372 1373 class CountStackDepthVisitor : public StackVisitor { 1374 public: 1375 explicit CountStackDepthVisitor(Thread* thread) 1376 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 1377 : StackVisitor(thread, nullptr), 1378 depth_(0), skip_depth_(0), skipping_(true) {} 1379 1380 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1381 // We want to skip frames up to and including the exception's constructor. 1382 // Note we also skip the frame if it doesn't have a method (namely the callee 1383 // save frame) 1384 mirror::ArtMethod* m = GetMethod(); 1385 if (skipping_ && !m->IsRuntimeMethod() && 1386 !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) { 1387 skipping_ = false; 1388 } 1389 if (!skipping_) { 1390 if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save). 1391 ++depth_; 1392 } 1393 } else { 1394 ++skip_depth_; 1395 } 1396 return true; 1397 } 1398 1399 int GetDepth() const { 1400 return depth_; 1401 } 1402 1403 int GetSkipDepth() const { 1404 return skip_depth_; 1405 } 1406 1407 private: 1408 uint32_t depth_; 1409 uint32_t skip_depth_; 1410 bool skipping_; 1411 }; 1412 1413 template<bool kTransactionActive> 1414 class BuildInternalStackTraceVisitor : public StackVisitor { 1415 public: 1416 explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth) 1417 : StackVisitor(thread, nullptr), self_(self), 1418 skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {} 1419 1420 bool Init(int depth) 1421 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1422 // Allocate method trace with an extra slot that will hold the PC trace 1423 StackHandleScope<1> hs(self_); 1424 ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); 1425 Handle<mirror::ObjectArray<mirror::Object>> method_trace( 1426 hs.NewHandle(class_linker->AllocObjectArray<mirror::Object>(self_, depth + 1))); 1427 if (method_trace.Get() == nullptr) { 1428 return false; 1429 } 1430 mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth); 1431 if (dex_pc_trace == nullptr) { 1432 return false; 1433 } 1434 // Save PC trace in last element of method trace, also places it into the 1435 // object graph. 1436 // We are called from native: use non-transactional mode. 1437 method_trace->Set<kTransactionActive>(depth, dex_pc_trace); 1438 // Set the Object*s and assert that no thread suspension is now possible. 1439 const char* last_no_suspend_cause = 1440 self_->StartAssertNoThreadSuspension("Building internal stack trace"); 1441 CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause; 1442 method_trace_ = method_trace.Get(); 1443 dex_pc_trace_ = dex_pc_trace; 1444 return true; 1445 } 1446 1447 virtual ~BuildInternalStackTraceVisitor() { 1448 if (method_trace_ != nullptr) { 1449 self_->EndAssertNoThreadSuspension(nullptr); 1450 } 1451 } 1452 1453 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1454 if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) { 1455 return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError. 1456 } 1457 if (skip_depth_ > 0) { 1458 skip_depth_--; 1459 return true; 1460 } 1461 mirror::ArtMethod* m = GetMethod(); 1462 if (m->IsRuntimeMethod()) { 1463 return true; // Ignore runtime frames (in particular callee save). 1464 } 1465 method_trace_->Set<kTransactionActive>(count_, m); 1466 dex_pc_trace_->Set<kTransactionActive>(count_, 1467 m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc()); 1468 ++count_; 1469 return true; 1470 } 1471 1472 mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const { 1473 return method_trace_; 1474 } 1475 1476 private: 1477 Thread* const self_; 1478 // How many more frames to skip. 1479 int32_t skip_depth_; 1480 // Current position down stack trace. 1481 uint32_t count_; 1482 // Array of dex PC values. 1483 mirror::IntArray* dex_pc_trace_; 1484 // An array of the methods on the stack, the last entry is a reference to the PC trace. 1485 mirror::ObjectArray<mirror::Object>* method_trace_; 1486 }; 1487 1488 template<bool kTransactionActive> 1489 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const { 1490 // Compute depth of stack 1491 CountStackDepthVisitor count_visitor(const_cast<Thread*>(this)); 1492 count_visitor.WalkStack(); 1493 int32_t depth = count_visitor.GetDepth(); 1494 int32_t skip_depth = count_visitor.GetSkipDepth(); 1495 1496 // Build internal stack trace. 1497 BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(), 1498 const_cast<Thread*>(this), 1499 skip_depth); 1500 if (!build_trace_visitor.Init(depth)) { 1501 return nullptr; // Allocation failed. 1502 } 1503 build_trace_visitor.WalkStack(); 1504 mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace(); 1505 if (kIsDebugBuild) { 1506 for (int32_t i = 0; i < trace->GetLength(); ++i) { 1507 CHECK(trace->Get(i) != nullptr); 1508 } 1509 } 1510 return soa.AddLocalReference<jobjectArray>(trace); 1511 } 1512 template jobject Thread::CreateInternalStackTrace<false>( 1513 const ScopedObjectAccessAlreadyRunnable& soa) const; 1514 template jobject Thread::CreateInternalStackTrace<true>( 1515 const ScopedObjectAccessAlreadyRunnable& soa) const; 1516 1517 jobjectArray Thread::InternalStackTraceToStackTraceElementArray( 1518 const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array, 1519 int* stack_depth) { 1520 // Decode the internal stack trace into the depth, method trace and PC trace 1521 int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1; 1522 1523 ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); 1524 1525 jobjectArray result; 1526 1527 if (output_array != nullptr) { 1528 // Reuse the array we were given. 1529 result = output_array; 1530 // ...adjusting the number of frames we'll write to not exceed the array length. 1531 const int32_t traces_length = 1532 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength(); 1533 depth = std::min(depth, traces_length); 1534 } else { 1535 // Create java_trace array and place in local reference table 1536 mirror::ObjectArray<mirror::StackTraceElement>* java_traces = 1537 class_linker->AllocStackTraceElementArray(soa.Self(), depth); 1538 if (java_traces == nullptr) { 1539 return nullptr; 1540 } 1541 result = soa.AddLocalReference<jobjectArray>(java_traces); 1542 } 1543 1544 if (stack_depth != nullptr) { 1545 *stack_depth = depth; 1546 } 1547 1548 for (int32_t i = 0; i < depth; ++i) { 1549 mirror::ObjectArray<mirror::Object>* method_trace = 1550 soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal); 1551 // Prepare parameters for StackTraceElement(String cls, String method, String file, int line) 1552 mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i)); 1553 int32_t line_number; 1554 StackHandleScope<3> hs(soa.Self()); 1555 auto class_name_object(hs.NewHandle<mirror::String>(nullptr)); 1556 auto source_name_object(hs.NewHandle<mirror::String>(nullptr)); 1557 if (method->IsProxyMethod()) { 1558 line_number = -1; 1559 class_name_object.Assign(method->GetDeclaringClass()->GetName()); 1560 // source_name_object intentionally left null for proxy methods 1561 } else { 1562 mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth)); 1563 uint32_t dex_pc = pc_trace->Get(i); 1564 line_number = method->GetLineNumFromDexPC(dex_pc); 1565 // Allocate element, potentially triggering GC 1566 // TODO: reuse class_name_object via Class::name_? 1567 const char* descriptor = method->GetDeclaringClassDescriptor(); 1568 CHECK(descriptor != nullptr); 1569 std::string class_name(PrettyDescriptor(descriptor)); 1570 class_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str())); 1571 if (class_name_object.Get() == nullptr) { 1572 return nullptr; 1573 } 1574 const char* source_file = method->GetDeclaringClassSourceFile(); 1575 if (source_file != nullptr) { 1576 source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file)); 1577 if (source_name_object.Get() == nullptr) { 1578 return nullptr; 1579 } 1580 } 1581 } 1582 const char* method_name = method->GetName(); 1583 CHECK(method_name != nullptr); 1584 Handle<mirror::String> method_name_object( 1585 hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name))); 1586 if (method_name_object.Get() == nullptr) { 1587 return nullptr; 1588 } 1589 mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc( 1590 soa.Self(), class_name_object, method_name_object, source_name_object, line_number); 1591 if (obj == nullptr) { 1592 return nullptr; 1593 } 1594 // We are called from native: use non-transactional mode. 1595 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj); 1596 } 1597 return result; 1598 } 1599 1600 void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location, 1601 const char* exception_class_descriptor, const char* fmt, ...) { 1602 va_list args; 1603 va_start(args, fmt); 1604 ThrowNewExceptionV(throw_location, exception_class_descriptor, 1605 fmt, args); 1606 va_end(args); 1607 } 1608 1609 void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location, 1610 const char* exception_class_descriptor, 1611 const char* fmt, va_list ap) { 1612 std::string msg; 1613 StringAppendV(&msg, fmt, ap); 1614 ThrowNewException(throw_location, exception_class_descriptor, msg.c_str()); 1615 } 1616 1617 void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor, 1618 const char* msg) { 1619 // Callers should either clear or call ThrowNewWrappedException. 1620 AssertNoPendingExceptionForNewException(msg); 1621 ThrowNewWrappedException(throw_location, exception_class_descriptor, msg); 1622 } 1623 1624 void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location, 1625 const char* exception_class_descriptor, 1626 const char* msg) { 1627 DCHECK_EQ(this, Thread::Current()); 1628 ScopedObjectAccessUnchecked soa(this); 1629 StackHandleScope<5> hs(soa.Self()); 1630 // Ensure we don't forget arguments over object allocation. 1631 Handle<mirror::Object> saved_throw_this(hs.NewHandle(throw_location.GetThis())); 1632 Handle<mirror::ArtMethod> saved_throw_method(hs.NewHandle(throw_location.GetMethod())); 1633 // Ignore the cause throw location. TODO: should we report this as a re-throw? 1634 ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException(nullptr))); 1635 bool is_exception_reported = IsExceptionReportedToInstrumentation(); 1636 ClearException(); 1637 Runtime* runtime = Runtime::Current(); 1638 1639 mirror::ClassLoader* cl = nullptr; 1640 if (saved_throw_method.Get() != nullptr) { 1641 cl = saved_throw_method.Get()->GetDeclaringClass()->GetClassLoader(); 1642 } 1643 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(cl)); 1644 Handle<mirror::Class> exception_class( 1645 hs.NewHandle(runtime->GetClassLinker()->FindClass(this, exception_class_descriptor, 1646 class_loader))); 1647 if (UNLIKELY(exception_class.Get() == nullptr)) { 1648 CHECK(IsExceptionPending()); 1649 LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor); 1650 return; 1651 } 1652 1653 if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) { 1654 DCHECK(IsExceptionPending()); 1655 return; 1656 } 1657 DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass()); 1658 Handle<mirror::Throwable> exception( 1659 hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this)))); 1660 1661 // If we couldn't allocate the exception, throw the pre-allocated out of memory exception. 1662 if (exception.Get() == nullptr) { 1663 ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(), 1664 throw_location.GetDexPc()); 1665 SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError()); 1666 SetExceptionReportedToInstrumentation(is_exception_reported); 1667 return; 1668 } 1669 1670 // Choose an appropriate constructor and set up the arguments. 1671 const char* signature; 1672 ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr); 1673 if (msg != nullptr) { 1674 // Ensure we remember this and the method over the String allocation. 1675 msg_string.reset( 1676 soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg))); 1677 if (UNLIKELY(msg_string.get() == nullptr)) { 1678 CHECK(IsExceptionPending()); // OOME. 1679 return; 1680 } 1681 if (cause.get() == nullptr) { 1682 signature = "(Ljava/lang/String;)V"; 1683 } else { 1684 signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V"; 1685 } 1686 } else { 1687 if (cause.get() == nullptr) { 1688 signature = "()V"; 1689 } else { 1690 signature = "(Ljava/lang/Throwable;)V"; 1691 } 1692 } 1693 mirror::ArtMethod* exception_init_method = 1694 exception_class->FindDeclaredDirectMethod("<init>", signature); 1695 1696 CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in " 1697 << PrettyDescriptor(exception_class_descriptor); 1698 1699 if (UNLIKELY(!runtime->IsStarted())) { 1700 // Something is trying to throw an exception without a started runtime, which is the common 1701 // case in the compiler. We won't be able to invoke the constructor of the exception, so set 1702 // the exception fields directly. 1703 if (msg != nullptr) { 1704 exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get()))); 1705 } 1706 if (cause.get() != nullptr) { 1707 exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get()))); 1708 } 1709 ScopedLocalRef<jobject> trace(GetJniEnv(), 1710 Runtime::Current()->IsActiveTransaction() 1711 ? CreateInternalStackTrace<true>(soa) 1712 : CreateInternalStackTrace<false>(soa)); 1713 if (trace.get() != nullptr) { 1714 exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get()))); 1715 } 1716 ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(), 1717 throw_location.GetDexPc()); 1718 SetException(gc_safe_throw_location, exception.Get()); 1719 SetExceptionReportedToInstrumentation(is_exception_reported); 1720 } else { 1721 jvalue jv_args[2]; 1722 size_t i = 0; 1723 1724 if (msg != nullptr) { 1725 jv_args[i].l = msg_string.get(); 1726 ++i; 1727 } 1728 if (cause.get() != nullptr) { 1729 jv_args[i].l = cause.get(); 1730 ++i; 1731 } 1732 InvokeWithJValues(soa, exception.Get(), soa.EncodeMethod(exception_init_method), jv_args); 1733 if (LIKELY(!IsExceptionPending())) { 1734 ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(), 1735 throw_location.GetDexPc()); 1736 SetException(gc_safe_throw_location, exception.Get()); 1737 SetExceptionReportedToInstrumentation(is_exception_reported); 1738 } 1739 } 1740 } 1741 1742 void Thread::ThrowOutOfMemoryError(const char* msg) { 1743 LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s", 1744 msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : "")); 1745 ThrowLocation throw_location = GetCurrentLocationForThrow(); 1746 if (!tls32_.throwing_OutOfMemoryError) { 1747 tls32_.throwing_OutOfMemoryError = true; 1748 ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg); 1749 tls32_.throwing_OutOfMemoryError = false; 1750 } else { 1751 Dump(LOG(ERROR)); // The pre-allocated OOME has no stack, so help out and log one. 1752 SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError()); 1753 } 1754 } 1755 1756 Thread* Thread::CurrentFromGdb() { 1757 return Thread::Current(); 1758 } 1759 1760 void Thread::DumpFromGdb() const { 1761 std::ostringstream ss; 1762 Dump(ss); 1763 std::string str(ss.str()); 1764 // log to stderr for debugging command line processes 1765 std::cerr << str; 1766 #ifdef HAVE_ANDROID_OS 1767 // log to logcat for debugging frameworks processes 1768 LOG(INFO) << str; 1769 #endif 1770 } 1771 1772 // Explicitly instantiate 32 and 64bit thread offset dumping support. 1773 template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset); 1774 template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset); 1775 1776 template<size_t ptr_size> 1777 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) { 1778 #define DO_THREAD_OFFSET(x, y) \ 1779 if (offset == x.Uint32Value()) { \ 1780 os << y; \ 1781 return; \ 1782 } 1783 DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags") 1784 DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table") 1785 DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception") 1786 DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer"); 1787 DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env") 1788 DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self") 1789 DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end") 1790 DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id") 1791 DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method") 1792 DO_THREAD_OFFSET(TopOfManagedStackPcOffset<ptr_size>(), "top_quick_frame_pc") 1793 DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame") 1794 DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope") 1795 DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger") 1796 #undef DO_THREAD_OFFSET 1797 1798 #define INTERPRETER_ENTRY_POINT_INFO(x) \ 1799 if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ 1800 os << #x; \ 1801 return; \ 1802 } 1803 INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge) 1804 INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge) 1805 #undef INTERPRETER_ENTRY_POINT_INFO 1806 1807 #define JNI_ENTRY_POINT_INFO(x) \ 1808 if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ 1809 os << #x; \ 1810 return; \ 1811 } 1812 JNI_ENTRY_POINT_INFO(pDlsymLookup) 1813 #undef JNI_ENTRY_POINT_INFO 1814 1815 #define PORTABLE_ENTRY_POINT_INFO(x) \ 1816 if (PORTABLE_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ 1817 os << #x; \ 1818 return; \ 1819 } 1820 PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline) 1821 PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline) 1822 PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge) 1823 #undef PORTABLE_ENTRY_POINT_INFO 1824 1825 #define QUICK_ENTRY_POINT_INFO(x) \ 1826 if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ 1827 os << #x; \ 1828 return; \ 1829 } 1830 QUICK_ENTRY_POINT_INFO(pAllocArray) 1831 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved) 1832 QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck) 1833 QUICK_ENTRY_POINT_INFO(pAllocObject) 1834 QUICK_ENTRY_POINT_INFO(pAllocObjectResolved) 1835 QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized) 1836 QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck) 1837 QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray) 1838 QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck) 1839 QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial) 1840 QUICK_ENTRY_POINT_INFO(pCheckCast) 1841 QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage) 1842 QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess) 1843 QUICK_ENTRY_POINT_INFO(pInitializeType) 1844 QUICK_ENTRY_POINT_INFO(pResolveString) 1845 QUICK_ENTRY_POINT_INFO(pSet32Instance) 1846 QUICK_ENTRY_POINT_INFO(pSet32Static) 1847 QUICK_ENTRY_POINT_INFO(pSet64Instance) 1848 QUICK_ENTRY_POINT_INFO(pSet64Static) 1849 QUICK_ENTRY_POINT_INFO(pSetObjInstance) 1850 QUICK_ENTRY_POINT_INFO(pSetObjStatic) 1851 QUICK_ENTRY_POINT_INFO(pGet32Instance) 1852 QUICK_ENTRY_POINT_INFO(pGet32Static) 1853 QUICK_ENTRY_POINT_INFO(pGet64Instance) 1854 QUICK_ENTRY_POINT_INFO(pGet64Static) 1855 QUICK_ENTRY_POINT_INFO(pGetObjInstance) 1856 QUICK_ENTRY_POINT_INFO(pGetObjStatic) 1857 QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck) 1858 QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck) 1859 QUICK_ENTRY_POINT_INFO(pAputObject) 1860 QUICK_ENTRY_POINT_INFO(pHandleFillArrayData) 1861 QUICK_ENTRY_POINT_INFO(pJniMethodStart) 1862 QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized) 1863 QUICK_ENTRY_POINT_INFO(pJniMethodEnd) 1864 QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized) 1865 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference) 1866 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized) 1867 QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline) 1868 QUICK_ENTRY_POINT_INFO(pLockObject) 1869 QUICK_ENTRY_POINT_INFO(pUnlockObject) 1870 QUICK_ENTRY_POINT_INFO(pCmpgDouble) 1871 QUICK_ENTRY_POINT_INFO(pCmpgFloat) 1872 QUICK_ENTRY_POINT_INFO(pCmplDouble) 1873 QUICK_ENTRY_POINT_INFO(pCmplFloat) 1874 QUICK_ENTRY_POINT_INFO(pFmod) 1875 QUICK_ENTRY_POINT_INFO(pL2d) 1876 QUICK_ENTRY_POINT_INFO(pFmodf) 1877 QUICK_ENTRY_POINT_INFO(pL2f) 1878 QUICK_ENTRY_POINT_INFO(pD2iz) 1879 QUICK_ENTRY_POINT_INFO(pF2iz) 1880 QUICK_ENTRY_POINT_INFO(pIdivmod) 1881 QUICK_ENTRY_POINT_INFO(pD2l) 1882 QUICK_ENTRY_POINT_INFO(pF2l) 1883 QUICK_ENTRY_POINT_INFO(pLdiv) 1884 QUICK_ENTRY_POINT_INFO(pLmod) 1885 QUICK_ENTRY_POINT_INFO(pLmul) 1886 QUICK_ENTRY_POINT_INFO(pShlLong) 1887 QUICK_ENTRY_POINT_INFO(pShrLong) 1888 QUICK_ENTRY_POINT_INFO(pUshrLong) 1889 QUICK_ENTRY_POINT_INFO(pIndexOf) 1890 QUICK_ENTRY_POINT_INFO(pStringCompareTo) 1891 QUICK_ENTRY_POINT_INFO(pMemcpy) 1892 QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline) 1893 QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline) 1894 QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge) 1895 QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck) 1896 QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck) 1897 QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck) 1898 QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck) 1899 QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck) 1900 QUICK_ENTRY_POINT_INFO(pTestSuspend) 1901 QUICK_ENTRY_POINT_INFO(pDeliverException) 1902 QUICK_ENTRY_POINT_INFO(pThrowArrayBounds) 1903 QUICK_ENTRY_POINT_INFO(pThrowDivZero) 1904 QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod) 1905 QUICK_ENTRY_POINT_INFO(pThrowNullPointer) 1906 QUICK_ENTRY_POINT_INFO(pThrowStackOverflow) 1907 QUICK_ENTRY_POINT_INFO(pA64Load) 1908 QUICK_ENTRY_POINT_INFO(pA64Store) 1909 #undef QUICK_ENTRY_POINT_INFO 1910 1911 os << offset; 1912 } 1913 1914 void Thread::QuickDeliverException() { 1915 // Get exception from thread. 1916 ThrowLocation throw_location; 1917 mirror::Throwable* exception = GetException(&throw_location); 1918 CHECK(exception != nullptr); 1919 // Don't leave exception visible while we try to find the handler, which may cause class 1920 // resolution. 1921 bool is_exception_reported = IsExceptionReportedToInstrumentation(); 1922 ClearException(); 1923 bool is_deoptimization = (exception == GetDeoptimizationException()); 1924 QuickExceptionHandler exception_handler(this, is_deoptimization); 1925 if (is_deoptimization) { 1926 exception_handler.DeoptimizeStack(); 1927 } else { 1928 exception_handler.FindCatch(throw_location, exception, is_exception_reported); 1929 } 1930 exception_handler.UpdateInstrumentationStack(); 1931 exception_handler.DoLongJump(); 1932 LOG(FATAL) << "UNREACHABLE"; 1933 } 1934 1935 Context* Thread::GetLongJumpContext() { 1936 Context* result = tlsPtr_.long_jump_context; 1937 if (result == nullptr) { 1938 result = Context::Create(); 1939 } else { 1940 tlsPtr_.long_jump_context = nullptr; // Avoid context being shared. 1941 result->Reset(); 1942 } 1943 return result; 1944 } 1945 1946 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is 1947 // so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack. 1948 struct CurrentMethodVisitor FINAL : public StackVisitor { 1949 CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error) 1950 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 1951 : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0), 1952 abort_on_error_(abort_on_error) {} 1953 bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1954 mirror::ArtMethod* m = GetMethod(); 1955 if (m->IsRuntimeMethod()) { 1956 // Continue if this is a runtime method. 1957 return true; 1958 } 1959 if (context_ != nullptr) { 1960 this_object_ = GetThisObject(); 1961 } 1962 method_ = m; 1963 dex_pc_ = GetDexPc(abort_on_error_); 1964 return false; 1965 } 1966 mirror::Object* this_object_; 1967 mirror::ArtMethod* method_; 1968 uint32_t dex_pc_; 1969 const bool abort_on_error_; 1970 }; 1971 1972 mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const { 1973 CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error); 1974 visitor.WalkStack(false); 1975 if (dex_pc != nullptr) { 1976 *dex_pc = visitor.dex_pc_; 1977 } 1978 return visitor.method_; 1979 } 1980 1981 ThrowLocation Thread::GetCurrentLocationForThrow() { 1982 Context* context = GetLongJumpContext(); 1983 CurrentMethodVisitor visitor(this, context, true); 1984 visitor.WalkStack(false); 1985 ReleaseLongJumpContext(context); 1986 return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_); 1987 } 1988 1989 bool Thread::HoldsLock(mirror::Object* object) const { 1990 if (object == nullptr) { 1991 return false; 1992 } 1993 return object->GetLockOwnerThreadId() == GetThreadId(); 1994 } 1995 1996 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor). 1997 template <typename RootVisitor> 1998 class ReferenceMapVisitor : public StackVisitor { 1999 public: 2000 ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor) 2001 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 2002 : StackVisitor(thread, context), visitor_(visitor) {} 2003 2004 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 2005 if (false) { 2006 LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod()) 2007 << StringPrintf("@ PC:%04x", GetDexPc()); 2008 } 2009 ShadowFrame* shadow_frame = GetCurrentShadowFrame(); 2010 if (shadow_frame != nullptr) { 2011 VisitShadowFrame(shadow_frame); 2012 } else { 2013 VisitQuickFrame(); 2014 } 2015 return true; 2016 } 2017 2018 void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 2019 mirror::ArtMethod** method_addr = shadow_frame->GetMethodAddress(); 2020 visitor_(reinterpret_cast<mirror::Object**>(method_addr), 0 /*ignored*/, this); 2021 mirror::ArtMethod* m = *method_addr; 2022 DCHECK(m != nullptr); 2023 size_t num_regs = shadow_frame->NumberOfVRegs(); 2024 if (m->IsNative() || shadow_frame->HasReferenceArray()) { 2025 // handle scope for JNI or References for interpreter. 2026 for (size_t reg = 0; reg < num_regs; ++reg) { 2027 mirror::Object* ref = shadow_frame->GetVRegReference(reg); 2028 if (ref != nullptr) { 2029 mirror::Object* new_ref = ref; 2030 visitor_(&new_ref, reg, this); 2031 if (new_ref != ref) { 2032 shadow_frame->SetVRegReference(reg, new_ref); 2033 } 2034 } 2035 } 2036 } else { 2037 // Java method. 2038 // Portable path use DexGcMap and store in Method.native_gc_map_. 2039 const uint8_t* gc_map = m->GetNativeGcMap(); 2040 CHECK(gc_map != nullptr) << PrettyMethod(m); 2041 verifier::DexPcToReferenceMap dex_gc_map(gc_map); 2042 uint32_t dex_pc = shadow_frame->GetDexPC(); 2043 const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc); 2044 DCHECK(reg_bitmap != nullptr); 2045 num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs); 2046 for (size_t reg = 0; reg < num_regs; ++reg) { 2047 if (TestBitmap(reg, reg_bitmap)) { 2048 mirror::Object* ref = shadow_frame->GetVRegReference(reg); 2049 if (ref != nullptr) { 2050 mirror::Object* new_ref = ref; 2051 visitor_(&new_ref, reg, this); 2052 if (new_ref != ref) { 2053 shadow_frame->SetVRegReference(reg, new_ref); 2054 } 2055 } 2056 } 2057 } 2058 } 2059 } 2060 2061 private: 2062 void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 2063 StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame(); 2064 mirror::ArtMethod* m = cur_quick_frame->AsMirrorPtr(); 2065 mirror::ArtMethod* old_method = m; 2066 visitor_(reinterpret_cast<mirror::Object**>(&m), 0 /*ignored*/, this); 2067 if (m != old_method) { 2068 cur_quick_frame->Assign(m); 2069 } 2070 2071 // Process register map (which native and runtime methods don't have) 2072 if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) { 2073 const uint8_t* native_gc_map = m->GetNativeGcMap(); 2074 CHECK(native_gc_map != nullptr) << PrettyMethod(m); 2075 const DexFile::CodeItem* code_item = m->GetCodeItem(); 2076 DCHECK(code_item != nullptr) << PrettyMethod(m); // Can't be nullptr or how would we compile its instructions? 2077 NativePcOffsetToReferenceMap map(native_gc_map); 2078 size_t num_regs = std::min(map.RegWidth() * 8, 2079 static_cast<size_t>(code_item->registers_size_)); 2080 if (num_regs > 0) { 2081 Runtime* runtime = Runtime::Current(); 2082 const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m); 2083 uintptr_t native_pc_offset = m->NativePcOffset(GetCurrentQuickFramePc(), entry_point); 2084 const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset); 2085 DCHECK(reg_bitmap != nullptr); 2086 const void* code_pointer = mirror::ArtMethod::EntryPointToCodePointer(entry_point); 2087 const VmapTable vmap_table(m->GetVmapTable(code_pointer)); 2088 QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer); 2089 // For all dex registers in the bitmap 2090 StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame(); 2091 DCHECK(cur_quick_frame != nullptr); 2092 for (size_t reg = 0; reg < num_regs; ++reg) { 2093 // Does this register hold a reference? 2094 if (TestBitmap(reg, reg_bitmap)) { 2095 uint32_t vmap_offset; 2096 if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) { 2097 int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset, 2098 kReferenceVReg); 2099 // This is sound as spilled GPRs will be word sized (ie 32 or 64bit). 2100 mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg)); 2101 if (*ref_addr != nullptr) { 2102 visitor_(ref_addr, reg, this); 2103 } 2104 } else { 2105 StackReference<mirror::Object>* ref_addr = 2106 reinterpret_cast<StackReference<mirror::Object>*>( 2107 GetVRegAddr(cur_quick_frame, code_item, frame_info.CoreSpillMask(), 2108 frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg)); 2109 mirror::Object* ref = ref_addr->AsMirrorPtr(); 2110 if (ref != nullptr) { 2111 mirror::Object* new_ref = ref; 2112 visitor_(&new_ref, reg, this); 2113 if (ref != new_ref) { 2114 ref_addr->Assign(new_ref); 2115 } 2116 } 2117 } 2118 } 2119 } 2120 } 2121 } 2122 } 2123 2124 static bool TestBitmap(size_t reg, const uint8_t* reg_vector) { 2125 return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0; 2126 } 2127 2128 // Visitor for when we visit a root. 2129 const RootVisitor& visitor_; 2130 }; 2131 2132 class RootCallbackVisitor { 2133 public: 2134 RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid) 2135 : callback_(callback), arg_(arg), tid_(tid) {} 2136 2137 void operator()(mirror::Object** obj, size_t, const StackVisitor*) const { 2138 callback_(obj, arg_, tid_, kRootJavaFrame); 2139 } 2140 2141 private: 2142 RootCallback* const callback_; 2143 void* const arg_; 2144 const uint32_t tid_; 2145 }; 2146 2147 void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) { 2148 VerifyObject(class_loader_override); 2149 tlsPtr_.class_loader_override = class_loader_override; 2150 } 2151 2152 void Thread::VisitRoots(RootCallback* visitor, void* arg) { 2153 uint32_t thread_id = GetThreadId(); 2154 if (tlsPtr_.opeer != nullptr) { 2155 visitor(&tlsPtr_.opeer, arg, thread_id, kRootThreadObject); 2156 } 2157 if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) { 2158 visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), arg, thread_id, kRootNativeStack); 2159 } 2160 tlsPtr_.throw_location.VisitRoots(visitor, arg); 2161 if (tlsPtr_.class_loader_override != nullptr) { 2162 visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.class_loader_override), arg, thread_id, 2163 kRootNativeStack); 2164 } 2165 if (tlsPtr_.monitor_enter_object != nullptr) { 2166 visitor(&tlsPtr_.monitor_enter_object, arg, thread_id, kRootNativeStack); 2167 } 2168 tlsPtr_.jni_env->locals.VisitRoots(visitor, arg, thread_id, kRootJNILocal); 2169 tlsPtr_.jni_env->monitors.VisitRoots(visitor, arg, thread_id, kRootJNIMonitor); 2170 HandleScopeVisitRoots(visitor, arg, thread_id); 2171 if (tlsPtr_.debug_invoke_req != nullptr) { 2172 tlsPtr_.debug_invoke_req->VisitRoots(visitor, arg, thread_id, kRootDebugger); 2173 } 2174 if (tlsPtr_.single_step_control != nullptr) { 2175 tlsPtr_.single_step_control->VisitRoots(visitor, arg, thread_id, kRootDebugger); 2176 } 2177 if (tlsPtr_.deoptimization_shadow_frame != nullptr) { 2178 RootCallbackVisitor visitorToCallback(visitor, arg, thread_id); 2179 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback); 2180 for (ShadowFrame* shadow_frame = tlsPtr_.deoptimization_shadow_frame; shadow_frame != nullptr; 2181 shadow_frame = shadow_frame->GetLink()) { 2182 mapper.VisitShadowFrame(shadow_frame); 2183 } 2184 } 2185 if (tlsPtr_.shadow_frame_under_construction != nullptr) { 2186 RootCallbackVisitor visitorToCallback(visitor, arg, thread_id); 2187 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback); 2188 for (ShadowFrame* shadow_frame = tlsPtr_.shadow_frame_under_construction; 2189 shadow_frame != nullptr; 2190 shadow_frame = shadow_frame->GetLink()) { 2191 mapper.VisitShadowFrame(shadow_frame); 2192 } 2193 } 2194 // Visit roots on this thread's stack 2195 Context* context = GetLongJumpContext(); 2196 RootCallbackVisitor visitorToCallback(visitor, arg, thread_id); 2197 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback); 2198 mapper.WalkStack(); 2199 ReleaseLongJumpContext(context); 2200 for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) { 2201 if (frame.this_object_ != nullptr) { 2202 visitor(&frame.this_object_, arg, thread_id, kRootJavaFrame); 2203 } 2204 DCHECK(frame.method_ != nullptr); 2205 visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg, thread_id, kRootJavaFrame); 2206 } 2207 } 2208 2209 static void VerifyRoot(mirror::Object** root, void* /*arg*/, uint32_t /*thread_id*/, 2210 RootType /*root_type*/) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 2211 VerifyObject(*root); 2212 } 2213 2214 void Thread::VerifyStackImpl() { 2215 std::unique_ptr<Context> context(Context::Create()); 2216 RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId()); 2217 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback); 2218 mapper.WalkStack(); 2219 } 2220 2221 // Set the stack end to that to be used during a stack overflow 2222 void Thread::SetStackEndForStackOverflow() { 2223 // During stack overflow we allow use of the full stack. 2224 if (tlsPtr_.stack_end == tlsPtr_.stack_begin) { 2225 // However, we seem to have already extended to use the full stack. 2226 LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently " 2227 << GetStackOverflowReservedBytes(kRuntimeISA) << ")?"; 2228 DumpStack(LOG(ERROR)); 2229 LOG(FATAL) << "Recursive stack overflow."; 2230 } 2231 2232 tlsPtr_.stack_end = tlsPtr_.stack_begin; 2233 2234 // Remove the stack overflow protection if is it set up. 2235 bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks(); 2236 if (implicit_stack_check) { 2237 if (!UnprotectStack()) { 2238 LOG(ERROR) << "Unable to remove stack protection for stack overflow"; 2239 } 2240 } 2241 } 2242 2243 void Thread::SetTlab(byte* start, byte* end) { 2244 DCHECK_LE(start, end); 2245 tlsPtr_.thread_local_start = start; 2246 tlsPtr_.thread_local_pos = tlsPtr_.thread_local_start; 2247 tlsPtr_.thread_local_end = end; 2248 tlsPtr_.thread_local_objects = 0; 2249 } 2250 2251 bool Thread::HasTlab() const { 2252 bool has_tlab = tlsPtr_.thread_local_pos != nullptr; 2253 if (has_tlab) { 2254 DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr); 2255 } else { 2256 DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr); 2257 } 2258 return has_tlab; 2259 } 2260 2261 std::ostream& operator<<(std::ostream& os, const Thread& thread) { 2262 thread.ShortDump(os); 2263 return os; 2264 } 2265 2266 void Thread::ProtectStack() { 2267 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize; 2268 VLOG(threads) << "Protecting stack at " << pregion; 2269 if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) { 2270 LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. " 2271 "Reason: " 2272 << strerror(errno) << " size: " << kStackOverflowProtectedSize; 2273 } 2274 } 2275 2276 bool Thread::UnprotectStack() { 2277 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize; 2278 VLOG(threads) << "Unprotecting stack at " << pregion; 2279 return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0; 2280 } 2281 2282 2283 } // namespace art 2284