Home | History | Annotate | Download | only in dfsan
      1 //===-- dfsan.cc ----------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of DataFlowSanitizer.
     11 //
     12 // DataFlowSanitizer runtime.  This file defines the public interface to
     13 // DataFlowSanitizer as well as the definition of certain runtime functions
     14 // called automatically by the compiler (specifically the instrumentation pass
     15 // in llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp).
     16 //
     17 // The public interface is defined in include/sanitizer/dfsan_interface.h whose
     18 // functions are prefixed dfsan_ while the compiler interface functions are
     19 // prefixed __dfsan_.
     20 //===----------------------------------------------------------------------===//
     21 
     22 #include "sanitizer_common/sanitizer_atomic.h"
     23 #include "sanitizer_common/sanitizer_common.h"
     24 #include "sanitizer_common/sanitizer_flags.h"
     25 #include "sanitizer_common/sanitizer_libc.h"
     26 
     27 #include "dfsan/dfsan.h"
     28 
     29 using namespace __dfsan;
     30 
     31 typedef atomic_uint16_t atomic_dfsan_label;
     32 static const dfsan_label kInitializingLabel = -1;
     33 
     34 static const uptr kNumLabels = 1 << (sizeof(dfsan_label) * 8);
     35 
     36 static atomic_dfsan_label __dfsan_last_label;
     37 static dfsan_label_info __dfsan_label_info[kNumLabels];
     38 
     39 Flags __dfsan::flags_data;
     40 
     41 SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL dfsan_label __dfsan_retval_tls;
     42 SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL dfsan_label __dfsan_arg_tls[64];
     43 
     44 // On Linux/x86_64, memory is laid out as follows:
     45 //
     46 // +--------------------+ 0x800000000000 (top of memory)
     47 // | application memory |
     48 // +--------------------+ 0x700000008000 (kAppAddr)
     49 // |                    |
     50 // |       unused       |
     51 // |                    |
     52 // +--------------------+ 0x200200000000 (kUnusedAddr)
     53 // |    union table     |
     54 // +--------------------+ 0x200000000000 (kUnionTableAddr)
     55 // |   shadow memory    |
     56 // +--------------------+ 0x000000010000 (kShadowAddr)
     57 // | reserved by kernel |
     58 // +--------------------+ 0x000000000000
     59 //
     60 // To derive a shadow memory address from an application memory address,
     61 // bits 44-46 are cleared to bring the address into the range
     62 // [0x000000008000,0x100000000000).  Then the address is shifted left by 1 to
     63 // account for the double byte representation of shadow labels and move the
     64 // address into the shadow memory range.  See the function shadow_for below.
     65 
     66 typedef atomic_dfsan_label dfsan_union_table_t[kNumLabels][kNumLabels];
     67 
     68 static const uptr kShadowAddr = 0x10000;
     69 static const uptr kUnionTableAddr = 0x200000000000;
     70 static const uptr kUnusedAddr = kUnionTableAddr + sizeof(dfsan_union_table_t);
     71 static const uptr kAppAddr = 0x700000008000;
     72 
     73 static atomic_dfsan_label *union_table(dfsan_label l1, dfsan_label l2) {
     74   return &(*(dfsan_union_table_t *) kUnionTableAddr)[l1][l2];
     75 }
     76 
     77 // Resolves the union of two unequal labels.  Nonequality is a precondition for
     78 // this function (the instrumentation pass inlines the equality test).
     79 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
     80 dfsan_label __dfsan_union(dfsan_label l1, dfsan_label l2) {
     81   DCHECK_NE(l1, l2);
     82 
     83   if (l1 == 0)
     84     return l2;
     85   if (l2 == 0)
     86     return l1;
     87 
     88   if (l1 > l2)
     89     Swap(l1, l2);
     90 
     91   atomic_dfsan_label *table_ent = union_table(l1, l2);
     92   // We need to deal with the case where two threads concurrently request
     93   // a union of the same pair of labels.  If the table entry is uninitialized,
     94   // (i.e. 0) use a compare-exchange to set the entry to kInitializingLabel
     95   // (i.e. -1) to mark that we are initializing it.
     96   dfsan_label label = 0;
     97   if (atomic_compare_exchange_strong(table_ent, &label, kInitializingLabel,
     98                                      memory_order_acquire)) {
     99     // Check whether l2 subsumes l1.  We don't need to check whether l1
    100     // subsumes l2 because we are guaranteed here that l1 < l2, and (at least
    101     // in the cases we are interested in) a label may only subsume labels
    102     // created earlier (i.e. with a lower numerical value).
    103     if (__dfsan_label_info[l2].l1 == l1 ||
    104         __dfsan_label_info[l2].l2 == l1) {
    105       label = l2;
    106     } else {
    107       label =
    108         atomic_fetch_add(&__dfsan_last_label, 1, memory_order_relaxed) + 1;
    109       CHECK_NE(label, kInitializingLabel);
    110       __dfsan_label_info[label].l1 = l1;
    111       __dfsan_label_info[label].l2 = l2;
    112     }
    113     atomic_store(table_ent, label, memory_order_release);
    114   } else if (label == kInitializingLabel) {
    115     // Another thread is initializing the entry.  Wait until it is finished.
    116     do {
    117       internal_sched_yield();
    118       label = atomic_load(table_ent, memory_order_acquire);
    119     } while (label == kInitializingLabel);
    120   }
    121   return label;
    122 }
    123 
    124 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    125 dfsan_label __dfsan_union_load(const dfsan_label *ls, uptr n) {
    126   dfsan_label label = ls[0];
    127   for (uptr i = 1; i != n; ++i) {
    128     dfsan_label next_label = ls[i];
    129     if (label != next_label)
    130       label = __dfsan_union(label, next_label);
    131   }
    132   return label;
    133 }
    134 
    135 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    136 void __dfsan_unimplemented(char *fname) {
    137   if (flags().warn_unimplemented)
    138     Report("WARNING: DataFlowSanitizer: call to uninstrumented function %s\n",
    139            fname);
    140 }
    141 
    142 // Use '-mllvm -dfsan-debug-nonzero-labels' and break on this function
    143 // to try to figure out where labels are being introduced in a nominally
    144 // label-free program.
    145 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_nonzero_label() {
    146   if (flags().warn_nonzero_labels)
    147     Report("WARNING: DataFlowSanitizer: saw nonzero label\n");
    148 }
    149 
    150 // Like __dfsan_union, but for use from the client or custom functions.  Hence
    151 // the equality comparison is done here before calling __dfsan_union.
    152 SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
    153 dfsan_union(dfsan_label l1, dfsan_label l2) {
    154   if (l1 == l2)
    155     return l1;
    156   return __dfsan_union(l1, l2);
    157 }
    158 
    159 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    160 dfsan_label dfsan_create_label(const char *desc, void *userdata) {
    161   dfsan_label label =
    162     atomic_fetch_add(&__dfsan_last_label, 1, memory_order_relaxed) + 1;
    163   CHECK_NE(label, kInitializingLabel);
    164   __dfsan_label_info[label].l1 = __dfsan_label_info[label].l2 = 0;
    165   __dfsan_label_info[label].desc = desc;
    166   __dfsan_label_info[label].userdata = userdata;
    167   return label;
    168 }
    169 
    170 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    171 void __dfsan_set_label(dfsan_label label, void *addr, uptr size) {
    172   for (dfsan_label *labelp = shadow_for(addr); size != 0; --size, ++labelp)
    173     *labelp = label;
    174 }
    175 
    176 SANITIZER_INTERFACE_ATTRIBUTE
    177 void dfsan_set_label(dfsan_label label, void *addr, uptr size) {
    178   __dfsan_set_label(label, addr, size);
    179 }
    180 
    181 SANITIZER_INTERFACE_ATTRIBUTE
    182 void dfsan_add_label(dfsan_label label, void *addr, uptr size) {
    183   for (dfsan_label *labelp = shadow_for(addr); size != 0; --size, ++labelp)
    184     if (*labelp != label)
    185       *labelp = __dfsan_union(*labelp, label);
    186 }
    187 
    188 // Unlike the other dfsan interface functions the behavior of this function
    189 // depends on the label of one of its arguments.  Hence it is implemented as a
    190 // custom function.
    191 extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
    192 __dfsw_dfsan_get_label(long data, dfsan_label data_label,
    193                        dfsan_label *ret_label) {
    194   *ret_label = 0;
    195   return data_label;
    196 }
    197 
    198 SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
    199 dfsan_read_label(const void *addr, uptr size) {
    200   if (size == 0)
    201     return 0;
    202   return __dfsan_union_load(shadow_for(addr), size);
    203 }
    204 
    205 SANITIZER_INTERFACE_ATTRIBUTE
    206 const struct dfsan_label_info *dfsan_get_label_info(dfsan_label label) {
    207   return &__dfsan_label_info[label];
    208 }
    209 
    210 extern "C" SANITIZER_INTERFACE_ATTRIBUTE int
    211 dfsan_has_label(dfsan_label label, dfsan_label elem) {
    212   if (label == elem)
    213     return true;
    214   const dfsan_label_info *info = dfsan_get_label_info(label);
    215   if (info->l1 != 0) {
    216     return dfsan_has_label(info->l1, elem) || dfsan_has_label(info->l2, elem);
    217   } else {
    218     return false;
    219   }
    220 }
    221 
    222 extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
    223 dfsan_has_label_with_desc(dfsan_label label, const char *desc) {
    224   const dfsan_label_info *info = dfsan_get_label_info(label);
    225   if (info->l1 != 0) {
    226     return dfsan_has_label_with_desc(info->l1, desc) ||
    227            dfsan_has_label_with_desc(info->l2, desc);
    228   } else {
    229     return internal_strcmp(desc, info->desc) == 0;
    230   }
    231 }
    232 
    233 extern "C" SANITIZER_INTERFACE_ATTRIBUTE uptr
    234 dfsan_get_label_count(void) {
    235   dfsan_label max_label_allocated =
    236       atomic_load(&__dfsan_last_label, memory_order_relaxed);
    237 
    238   return static_cast<uptr>(max_label_allocated);
    239 }
    240 
    241 static void InitializeFlags(Flags &f, const char *env) {
    242   f.warn_unimplemented = true;
    243   f.warn_nonzero_labels = false;
    244   f.strict_data_dependencies = true;
    245 
    246   ParseFlag(env, &f.warn_unimplemented, "warn_unimplemented", "");
    247   ParseFlag(env, &f.warn_nonzero_labels, "warn_nonzero_labels", "");
    248   ParseFlag(env, &f.strict_data_dependencies, "strict_data_dependencies", "");
    249 }
    250 
    251 #ifdef DFSAN_NOLIBC
    252 extern "C" void dfsan_init() {
    253 #else
    254 static void dfsan_init(int argc, char **argv, char **envp) {
    255 #endif
    256   MmapFixedNoReserve(kShadowAddr, kUnusedAddr - kShadowAddr);
    257 
    258   // Protect the region of memory we don't use, to preserve the one-to-one
    259   // mapping from application to shadow memory. But if ASLR is disabled, Linux
    260   // will load our executable in the middle of our unused region. This mostly
    261   // works so long as the program doesn't use too much memory. We support this
    262   // case by disabling memory protection when ASLR is disabled.
    263   uptr init_addr = (uptr)&dfsan_init;
    264   if (!(init_addr >= kUnusedAddr && init_addr < kAppAddr))
    265     Mprotect(kUnusedAddr, kAppAddr - kUnusedAddr);
    266 
    267   InitializeFlags(flags(), GetEnv("DFSAN_OPTIONS"));
    268 
    269   InitializeInterceptors();
    270 }
    271 
    272 #ifndef DFSAN_NOLIBC
    273 __attribute__((section(".preinit_array"), used))
    274 static void (*dfsan_init_ptr)(int, char **, char **) = dfsan_init;
    275 #endif
    276