Home | History | Annotate | Download | only in IR
      1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the BasicBlock class for the IR library.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/IR/BasicBlock.h"
     15 #include "SymbolTableListTraitsImpl.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/IR/CFG.h"
     18 #include "llvm/IR/Constants.h"
     19 #include "llvm/IR/Instructions.h"
     20 #include "llvm/IR/IntrinsicInst.h"
     21 #include "llvm/IR/LLVMContext.h"
     22 #include "llvm/IR/LeakDetector.h"
     23 #include "llvm/IR/Type.h"
     24 #include <algorithm>
     25 using namespace llvm;
     26 
     27 ValueSymbolTable *BasicBlock::getValueSymbolTable() {
     28   if (Function *F = getParent())
     29     return &F->getValueSymbolTable();
     30   return nullptr;
     31 }
     32 
     33 const DataLayout *BasicBlock::getDataLayout() const {
     34   return getParent()->getDataLayout();
     35 }
     36 
     37 LLVMContext &BasicBlock::getContext() const {
     38   return getType()->getContext();
     39 }
     40 
     41 // Explicit instantiation of SymbolTableListTraits since some of the methods
     42 // are not in the public header file...
     43 template class llvm::SymbolTableListTraits<Instruction, BasicBlock>;
     44 
     45 
     46 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
     47                        BasicBlock *InsertBefore)
     48   : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) {
     49 
     50   // Make sure that we get added to a function
     51   LeakDetector::addGarbageObject(this);
     52 
     53   if (InsertBefore) {
     54     assert(NewParent &&
     55            "Cannot insert block before another block with no function!");
     56     NewParent->getBasicBlockList().insert(InsertBefore, this);
     57   } else if (NewParent) {
     58     NewParent->getBasicBlockList().push_back(this);
     59   }
     60 
     61   setName(Name);
     62 }
     63 
     64 
     65 BasicBlock::~BasicBlock() {
     66   // If the address of the block is taken and it is being deleted (e.g. because
     67   // it is dead), this means that there is either a dangling constant expr
     68   // hanging off the block, or an undefined use of the block (source code
     69   // expecting the address of a label to keep the block alive even though there
     70   // is no indirect branch).  Handle these cases by zapping the BlockAddress
     71   // nodes.  There are no other possible uses at this point.
     72   if (hasAddressTaken()) {
     73     assert(!use_empty() && "There should be at least one blockaddress!");
     74     Constant *Replacement =
     75       ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
     76     while (!use_empty()) {
     77       BlockAddress *BA = cast<BlockAddress>(user_back());
     78       BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
     79                                                        BA->getType()));
     80       BA->destroyConstant();
     81     }
     82   }
     83 
     84   assert(getParent() == nullptr && "BasicBlock still linked into the program!");
     85   dropAllReferences();
     86   InstList.clear();
     87 }
     88 
     89 void BasicBlock::setParent(Function *parent) {
     90   if (getParent())
     91     LeakDetector::addGarbageObject(this);
     92 
     93   // Set Parent=parent, updating instruction symtab entries as appropriate.
     94   InstList.setSymTabObject(&Parent, parent);
     95 
     96   if (getParent())
     97     LeakDetector::removeGarbageObject(this);
     98 }
     99 
    100 void BasicBlock::removeFromParent() {
    101   getParent()->getBasicBlockList().remove(this);
    102 }
    103 
    104 void BasicBlock::eraseFromParent() {
    105   getParent()->getBasicBlockList().erase(this);
    106 }
    107 
    108 /// moveBefore - Unlink this basic block from its current function and
    109 /// insert it into the function that MovePos lives in, right before MovePos.
    110 void BasicBlock::moveBefore(BasicBlock *MovePos) {
    111   MovePos->getParent()->getBasicBlockList().splice(MovePos,
    112                        getParent()->getBasicBlockList(), this);
    113 }
    114 
    115 /// moveAfter - Unlink this basic block from its current function and
    116 /// insert it into the function that MovePos lives in, right after MovePos.
    117 void BasicBlock::moveAfter(BasicBlock *MovePos) {
    118   Function::iterator I = MovePos;
    119   MovePos->getParent()->getBasicBlockList().splice(++I,
    120                                        getParent()->getBasicBlockList(), this);
    121 }
    122 
    123 
    124 TerminatorInst *BasicBlock::getTerminator() {
    125   if (InstList.empty()) return nullptr;
    126   return dyn_cast<TerminatorInst>(&InstList.back());
    127 }
    128 
    129 const TerminatorInst *BasicBlock::getTerminator() const {
    130   if (InstList.empty()) return nullptr;
    131   return dyn_cast<TerminatorInst>(&InstList.back());
    132 }
    133 
    134 Instruction* BasicBlock::getFirstNonPHI() {
    135   BasicBlock::iterator i = begin();
    136   // All valid basic blocks should have a terminator,
    137   // which is not a PHINode. If we have an invalid basic
    138   // block we'll get an assertion failure when dereferencing
    139   // a past-the-end iterator.
    140   while (isa<PHINode>(i)) ++i;
    141   return &*i;
    142 }
    143 
    144 Instruction* BasicBlock::getFirstNonPHIOrDbg() {
    145   BasicBlock::iterator i = begin();
    146   // All valid basic blocks should have a terminator,
    147   // which is not a PHINode. If we have an invalid basic
    148   // block we'll get an assertion failure when dereferencing
    149   // a past-the-end iterator.
    150   while (isa<PHINode>(i) || isa<DbgInfoIntrinsic>(i)) ++i;
    151   return &*i;
    152 }
    153 
    154 Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() {
    155   // All valid basic blocks should have a terminator,
    156   // which is not a PHINode. If we have an invalid basic
    157   // block we'll get an assertion failure when dereferencing
    158   // a past-the-end iterator.
    159   BasicBlock::iterator i = begin();
    160   for (;; ++i) {
    161     if (isa<PHINode>(i) || isa<DbgInfoIntrinsic>(i))
    162       continue;
    163 
    164     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(i);
    165     if (!II)
    166       break;
    167     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
    168         II->getIntrinsicID() != Intrinsic::lifetime_end)
    169       break;
    170   }
    171   return &*i;
    172 }
    173 
    174 BasicBlock::iterator BasicBlock::getFirstInsertionPt() {
    175   iterator InsertPt = getFirstNonPHI();
    176   if (isa<LandingPadInst>(InsertPt)) ++InsertPt;
    177   return InsertPt;
    178 }
    179 
    180 void BasicBlock::dropAllReferences() {
    181   for(iterator I = begin(), E = end(); I != E; ++I)
    182     I->dropAllReferences();
    183 }
    184 
    185 /// getSinglePredecessor - If this basic block has a single predecessor block,
    186 /// return the block, otherwise return a null pointer.
    187 BasicBlock *BasicBlock::getSinglePredecessor() {
    188   pred_iterator PI = pred_begin(this), E = pred_end(this);
    189   if (PI == E) return nullptr;         // No preds.
    190   BasicBlock *ThePred = *PI;
    191   ++PI;
    192   return (PI == E) ? ThePred : nullptr /*multiple preds*/;
    193 }
    194 
    195 /// getUniquePredecessor - If this basic block has a unique predecessor block,
    196 /// return the block, otherwise return a null pointer.
    197 /// Note that unique predecessor doesn't mean single edge, there can be
    198 /// multiple edges from the unique predecessor to this block (for example
    199 /// a switch statement with multiple cases having the same destination).
    200 BasicBlock *BasicBlock::getUniquePredecessor() {
    201   pred_iterator PI = pred_begin(this), E = pred_end(this);
    202   if (PI == E) return nullptr; // No preds.
    203   BasicBlock *PredBB = *PI;
    204   ++PI;
    205   for (;PI != E; ++PI) {
    206     if (*PI != PredBB)
    207       return nullptr;
    208     // The same predecessor appears multiple times in the predecessor list.
    209     // This is OK.
    210   }
    211   return PredBB;
    212 }
    213 
    214 /// removePredecessor - This method is used to notify a BasicBlock that the
    215 /// specified Predecessor of the block is no longer able to reach it.  This is
    216 /// actually not used to update the Predecessor list, but is actually used to
    217 /// update the PHI nodes that reside in the block.  Note that this should be
    218 /// called while the predecessor still refers to this block.
    219 ///
    220 void BasicBlock::removePredecessor(BasicBlock *Pred,
    221                                    bool DontDeleteUselessPHIs) {
    222   assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
    223           find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
    224          "removePredecessor: BB is not a predecessor!");
    225 
    226   if (InstList.empty()) return;
    227   PHINode *APN = dyn_cast<PHINode>(&front());
    228   if (!APN) return;   // Quick exit.
    229 
    230   // If there are exactly two predecessors, then we want to nuke the PHI nodes
    231   // altogether.  However, we cannot do this, if this in this case:
    232   //
    233   //  Loop:
    234   //    %x = phi [X, Loop]
    235   //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1
    236   //    br Loop                 ;; %x2 does not dominate all uses
    237   //
    238   // This is because the PHI node input is actually taken from the predecessor
    239   // basic block.  The only case this can happen is with a self loop, so we
    240   // check for this case explicitly now.
    241   //
    242   unsigned max_idx = APN->getNumIncomingValues();
    243   assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
    244   if (max_idx == 2) {
    245     BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
    246 
    247     // Disable PHI elimination!
    248     if (this == Other) max_idx = 3;
    249   }
    250 
    251   // <= Two predecessors BEFORE I remove one?
    252   if (max_idx <= 2 && !DontDeleteUselessPHIs) {
    253     // Yup, loop through and nuke the PHI nodes
    254     while (PHINode *PN = dyn_cast<PHINode>(&front())) {
    255       // Remove the predecessor first.
    256       PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs);
    257 
    258       // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
    259       if (max_idx == 2) {
    260         if (PN->getIncomingValue(0) != PN)
    261           PN->replaceAllUsesWith(PN->getIncomingValue(0));
    262         else
    263           // We are left with an infinite loop with no entries: kill the PHI.
    264           PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
    265         getInstList().pop_front();    // Remove the PHI node
    266       }
    267 
    268       // If the PHI node already only had one entry, it got deleted by
    269       // removeIncomingValue.
    270     }
    271   } else {
    272     // Okay, now we know that we need to remove predecessor #pred_idx from all
    273     // PHI nodes.  Iterate over each PHI node fixing them up
    274     PHINode *PN;
    275     for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
    276       ++II;
    277       PN->removeIncomingValue(Pred, false);
    278       // If all incoming values to the Phi are the same, we can replace the Phi
    279       // with that value.
    280       Value* PNV = nullptr;
    281       if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue()))
    282         if (PNV != PN) {
    283           PN->replaceAllUsesWith(PNV);
    284           PN->eraseFromParent();
    285         }
    286     }
    287   }
    288 }
    289 
    290 
    291 /// splitBasicBlock - This splits a basic block into two at the specified
    292 /// instruction.  Note that all instructions BEFORE the specified iterator stay
    293 /// as part of the original basic block, an unconditional branch is added to
    294 /// the new BB, and the rest of the instructions in the BB are moved to the new
    295 /// BB, including the old terminator.  This invalidates the iterator.
    296 ///
    297 /// Note that this only works on well formed basic blocks (must have a
    298 /// terminator), and 'I' must not be the end of instruction list (which would
    299 /// cause a degenerate basic block to be formed, having a terminator inside of
    300 /// the basic block).
    301 ///
    302 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
    303   assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
    304   assert(I != InstList.end() &&
    305          "Trying to get me to create degenerate basic block!");
    306 
    307   BasicBlock *InsertBefore = std::next(Function::iterator(this))
    308                                .getNodePtrUnchecked();
    309   BasicBlock *New = BasicBlock::Create(getContext(), BBName,
    310                                        getParent(), InsertBefore);
    311 
    312   // Move all of the specified instructions from the original basic block into
    313   // the new basic block.
    314   New->getInstList().splice(New->end(), this->getInstList(), I, end());
    315 
    316   // Add a branch instruction to the newly formed basic block.
    317   BranchInst::Create(New, this);
    318 
    319   // Now we must loop through all of the successors of the New block (which
    320   // _were_ the successors of the 'this' block), and update any PHI nodes in
    321   // successors.  If there were PHI nodes in the successors, then they need to
    322   // know that incoming branches will be from New, not from Old.
    323   //
    324   for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
    325     // Loop over any phi nodes in the basic block, updating the BB field of
    326     // incoming values...
    327     BasicBlock *Successor = *I;
    328     PHINode *PN;
    329     for (BasicBlock::iterator II = Successor->begin();
    330          (PN = dyn_cast<PHINode>(II)); ++II) {
    331       int IDX = PN->getBasicBlockIndex(this);
    332       while (IDX != -1) {
    333         PN->setIncomingBlock((unsigned)IDX, New);
    334         IDX = PN->getBasicBlockIndex(this);
    335       }
    336     }
    337   }
    338   return New;
    339 }
    340 
    341 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) {
    342   TerminatorInst *TI = getTerminator();
    343   if (!TI)
    344     // Cope with being called on a BasicBlock that doesn't have a terminator
    345     // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
    346     return;
    347   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
    348     BasicBlock *Succ = TI->getSuccessor(i);
    349     // N.B. Succ might not be a complete BasicBlock, so don't assume
    350     // that it ends with a non-phi instruction.
    351     for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) {
    352       PHINode *PN = dyn_cast<PHINode>(II);
    353       if (!PN)
    354         break;
    355       int i;
    356       while ((i = PN->getBasicBlockIndex(this)) >= 0)
    357         PN->setIncomingBlock(i, New);
    358     }
    359   }
    360 }
    361 
    362 /// isLandingPad - Return true if this basic block is a landing pad. I.e., it's
    363 /// the destination of the 'unwind' edge of an invoke instruction.
    364 bool BasicBlock::isLandingPad() const {
    365   return isa<LandingPadInst>(getFirstNonPHI());
    366 }
    367 
    368 /// getLandingPadInst() - Return the landingpad instruction associated with
    369 /// the landing pad.
    370 LandingPadInst *BasicBlock::getLandingPadInst() {
    371   return dyn_cast<LandingPadInst>(getFirstNonPHI());
    372 }
    373 const LandingPadInst *BasicBlock::getLandingPadInst() const {
    374   return dyn_cast<LandingPadInst>(getFirstNonPHI());
    375 }
    376