1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 // This webpage shows layout of YV12 and other YUV formats 6 // http://www.fourcc.org/yuv.php 7 // The actual conversion is best described here 8 // http://en.wikipedia.org/wiki/YUV 9 // An article on optimizing YUV conversion using tables instead of multiplies 10 // http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf 11 // 12 // YV12 is a full plane of Y and a half height, half width chroma planes 13 // YV16 is a full plane of Y and a full height, half width chroma planes 14 // 15 // ARGB pixel format is output, which on little endian is stored as BGRA. 16 // The alpha is set to 255, allowing the application to use RGBA or RGB32. 17 18 #include "media/base/yuv_convert.h" 19 20 #include "base/cpu.h" 21 #include "base/logging.h" 22 #include "base/memory/scoped_ptr.h" 23 #include "base/third_party/dynamic_annotations/dynamic_annotations.h" 24 #include "build/build_config.h" 25 #include "media/base/simd/convert_rgb_to_yuv.h" 26 #include "media/base/simd/convert_yuv_to_rgb.h" 27 #include "media/base/simd/filter_yuv.h" 28 #include "media/base/simd/yuv_to_rgb_table.h" 29 30 #if defined(ARCH_CPU_X86_FAMILY) 31 #if defined(COMPILER_MSVC) 32 #include <intrin.h> 33 #else 34 #include <mmintrin.h> 35 #endif 36 #endif 37 38 // Assembly functions are declared without namespace. 39 extern "C" { void EmptyRegisterState_MMX(); } // extern "C" 40 41 namespace media { 42 43 typedef void (*FilterYUVRowsProc)(uint8*, const uint8*, const uint8*, int, int); 44 45 typedef void (*ConvertRGBToYUVProc)(const uint8*, 46 uint8*, 47 uint8*, 48 uint8*, 49 int, 50 int, 51 int, 52 int, 53 int); 54 55 typedef void (*ConvertYUVToRGB32Proc)(const uint8*, 56 const uint8*, 57 const uint8*, 58 uint8*, 59 int, 60 int, 61 int, 62 int, 63 int, 64 YUVType); 65 66 typedef void (*ConvertYUVAToARGBProc)(const uint8*, 67 const uint8*, 68 const uint8*, 69 const uint8*, 70 uint8*, 71 int, 72 int, 73 int, 74 int, 75 int, 76 int, 77 YUVType); 78 79 typedef void (*ConvertYUVToRGB32RowProc)(const uint8*, 80 const uint8*, 81 const uint8*, 82 uint8*, 83 ptrdiff_t, 84 const int16[1024][4]); 85 86 typedef void (*ConvertYUVAToARGBRowProc)(const uint8*, 87 const uint8*, 88 const uint8*, 89 const uint8*, 90 uint8*, 91 ptrdiff_t, 92 const int16[1024][4]); 93 94 typedef void (*ScaleYUVToRGB32RowProc)(const uint8*, 95 const uint8*, 96 const uint8*, 97 uint8*, 98 ptrdiff_t, 99 ptrdiff_t, 100 const int16[1024][4]); 101 102 static FilterYUVRowsProc g_filter_yuv_rows_proc_ = NULL; 103 static ConvertYUVToRGB32RowProc g_convert_yuv_to_rgb32_row_proc_ = NULL; 104 static ScaleYUVToRGB32RowProc g_scale_yuv_to_rgb32_row_proc_ = NULL; 105 static ScaleYUVToRGB32RowProc g_linear_scale_yuv_to_rgb32_row_proc_ = NULL; 106 static ConvertRGBToYUVProc g_convert_rgb32_to_yuv_proc_ = NULL; 107 static ConvertRGBToYUVProc g_convert_rgb24_to_yuv_proc_ = NULL; 108 static ConvertYUVToRGB32Proc g_convert_yuv_to_rgb32_proc_ = NULL; 109 static ConvertYUVAToARGBProc g_convert_yuva_to_argb_proc_ = NULL; 110 111 // Empty SIMD registers state after using them. 112 void EmptyRegisterStateStub() {} 113 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE) 114 void EmptyRegisterStateIntrinsic() { _mm_empty(); } 115 #endif 116 typedef void (*EmptyRegisterStateProc)(); 117 static EmptyRegisterStateProc g_empty_register_state_proc_ = NULL; 118 119 // Get the appropriate value to bitshift by for vertical indices. 120 int GetVerticalShift(YUVType type) { 121 switch (type) { 122 case YV16: 123 return 0; 124 case YV12: 125 case YV12J: 126 return 1; 127 } 128 NOTREACHED(); 129 return 0; 130 } 131 132 const int16 (&GetLookupTable(YUVType type))[1024][4] { 133 switch (type) { 134 case YV12: 135 case YV16: 136 return kCoefficientsRgbY; 137 case YV12J: 138 return kCoefficientsRgbY_JPEG; 139 } 140 NOTREACHED(); 141 return kCoefficientsRgbY; 142 } 143 144 void InitializeCPUSpecificYUVConversions() { 145 CHECK(!g_filter_yuv_rows_proc_); 146 CHECK(!g_convert_yuv_to_rgb32_row_proc_); 147 CHECK(!g_scale_yuv_to_rgb32_row_proc_); 148 CHECK(!g_linear_scale_yuv_to_rgb32_row_proc_); 149 CHECK(!g_convert_rgb32_to_yuv_proc_); 150 CHECK(!g_convert_rgb24_to_yuv_proc_); 151 CHECK(!g_convert_yuv_to_rgb32_proc_); 152 CHECK(!g_convert_yuva_to_argb_proc_); 153 CHECK(!g_empty_register_state_proc_); 154 155 g_filter_yuv_rows_proc_ = FilterYUVRows_C; 156 g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_C; 157 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_C; 158 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_C; 159 g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_C; 160 g_convert_rgb24_to_yuv_proc_ = ConvertRGB24ToYUV_C; 161 g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_C; 162 g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_C; 163 g_empty_register_state_proc_ = EmptyRegisterStateStub; 164 165 // Assembly code confuses MemorySanitizer. 166 #if defined(ARCH_CPU_X86_FAMILY) && !defined(MEMORY_SANITIZER) 167 base::CPU cpu; 168 if (cpu.has_mmx()) { 169 g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_MMX; 170 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_MMX; 171 g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_MMX; 172 g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_MMX; 173 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX; 174 175 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE) 176 g_filter_yuv_rows_proc_ = FilterYUVRows_MMX; 177 g_empty_register_state_proc_ = EmptyRegisterStateIntrinsic; 178 #else 179 g_empty_register_state_proc_ = EmptyRegisterState_MMX; 180 #endif 181 } 182 183 if (cpu.has_sse()) { 184 g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_SSE; 185 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE; 186 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_SSE; 187 g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_SSE; 188 } 189 190 if (cpu.has_sse2()) { 191 g_filter_yuv_rows_proc_ = FilterYUVRows_SSE2; 192 g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_SSE2; 193 194 #if defined(ARCH_CPU_X86_64) 195 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE2_X64; 196 197 // Technically this should be in the MMX section, but MSVC will optimize out 198 // the export of LinearScaleYUVToRGB32Row_MMX, which is required by the unit 199 // tests, if that decision can be made at compile time. Since all X64 CPUs 200 // have SSE2, we can hack around this by making the selection here. 201 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX_X64; 202 #endif 203 } 204 205 if (cpu.has_ssse3()) { 206 g_convert_rgb24_to_yuv_proc_ = &ConvertRGB24ToYUV_SSSE3; 207 208 // TODO(hclam): Add ConvertRGB32ToYUV_SSSE3 when the cyan problem is solved. 209 // See: crbug.com/100462 210 } 211 #endif 212 } 213 214 // Empty SIMD registers state after using them. 215 void EmptyRegisterState() { g_empty_register_state_proc_(); } 216 217 // 16.16 fixed point arithmetic 218 const int kFractionBits = 16; 219 const int kFractionMax = 1 << kFractionBits; 220 const int kFractionMask = ((1 << kFractionBits) - 1); 221 222 // Scale a frame of YUV to 32 bit ARGB. 223 void ScaleYUVToRGB32(const uint8* y_buf, 224 const uint8* u_buf, 225 const uint8* v_buf, 226 uint8* rgb_buf, 227 int source_width, 228 int source_height, 229 int width, 230 int height, 231 int y_pitch, 232 int uv_pitch, 233 int rgb_pitch, 234 YUVType yuv_type, 235 Rotate view_rotate, 236 ScaleFilter filter) { 237 // Handle zero sized sources and destinations. 238 if ((yuv_type == YV12 && (source_width < 2 || source_height < 2)) || 239 (yuv_type == YV16 && (source_width < 2 || source_height < 1)) || 240 width == 0 || height == 0) 241 return; 242 243 // 4096 allows 3 buffers to fit in 12k. 244 // Helps performance on CPU with 16K L1 cache. 245 // Large enough for 3830x2160 and 30" displays which are 2560x1600. 246 const int kFilterBufferSize = 4096; 247 // Disable filtering if the screen is too big (to avoid buffer overflows). 248 // This should never happen to regular users: they don't have monitors 249 // wider than 4096 pixels. 250 // TODO(fbarchard): Allow rotated videos to filter. 251 if (source_width > kFilterBufferSize || view_rotate) 252 filter = FILTER_NONE; 253 254 unsigned int y_shift = GetVerticalShift(yuv_type); 255 // Diagram showing origin and direction of source sampling. 256 // ->0 4<- 257 // 7 3 258 // 259 // 6 5 260 // ->1 2<- 261 // Rotations that start at right side of image. 262 if ((view_rotate == ROTATE_180) || (view_rotate == ROTATE_270) || 263 (view_rotate == MIRROR_ROTATE_0) || (view_rotate == MIRROR_ROTATE_90)) { 264 y_buf += source_width - 1; 265 u_buf += source_width / 2 - 1; 266 v_buf += source_width / 2 - 1; 267 source_width = -source_width; 268 } 269 // Rotations that start at bottom of image. 270 if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_180) || 271 (view_rotate == MIRROR_ROTATE_90) || (view_rotate == MIRROR_ROTATE_180)) { 272 y_buf += (source_height - 1) * y_pitch; 273 u_buf += ((source_height >> y_shift) - 1) * uv_pitch; 274 v_buf += ((source_height >> y_shift) - 1) * uv_pitch; 275 source_height = -source_height; 276 } 277 278 int source_dx = source_width * kFractionMax / width; 279 280 if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_270)) { 281 int tmp = height; 282 height = width; 283 width = tmp; 284 tmp = source_height; 285 source_height = source_width; 286 source_width = tmp; 287 int source_dy = source_height * kFractionMax / height; 288 source_dx = ((source_dy >> kFractionBits) * y_pitch) << kFractionBits; 289 if (view_rotate == ROTATE_90) { 290 y_pitch = -1; 291 uv_pitch = -1; 292 source_height = -source_height; 293 } else { 294 y_pitch = 1; 295 uv_pitch = 1; 296 } 297 } 298 299 // Need padding because FilterRows() will write 1 to 16 extra pixels 300 // after the end for SSE2 version. 301 uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16]; 302 uint8* ybuf = 303 reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15); 304 uint8* ubuf = ybuf + kFilterBufferSize; 305 uint8* vbuf = ubuf + kFilterBufferSize; 306 307 // TODO(fbarchard): Fixed point math is off by 1 on negatives. 308 309 // We take a y-coordinate in [0,1] space in the source image space, and 310 // transform to a y-coordinate in [0,1] space in the destination image space. 311 // Note that the coordinate endpoints lie on pixel boundaries, not on pixel 312 // centers: e.g. a two-pixel-high image will have pixel centers at 0.25 and 313 // 0.75. The formula is as follows (in fixed-point arithmetic): 314 // y_dst = dst_height * ((y_src + 0.5) / src_height) 315 // dst_pixel = clamp([0, dst_height - 1], floor(y_dst - 0.5)) 316 // Implement this here as an accumulator + delta, to avoid expensive math 317 // in the loop. 318 int source_y_subpixel_accum = 319 ((kFractionMax / 2) * source_height) / height - (kFractionMax / 2); 320 int source_y_subpixel_delta = ((1 << kFractionBits) * source_height) / height; 321 322 // TODO(fbarchard): Split this into separate function for better efficiency. 323 for (int y = 0; y < height; ++y) { 324 uint8* dest_pixel = rgb_buf + y * rgb_pitch; 325 int source_y_subpixel = source_y_subpixel_accum; 326 source_y_subpixel_accum += source_y_subpixel_delta; 327 if (source_y_subpixel < 0) 328 source_y_subpixel = 0; 329 else if (source_y_subpixel > ((source_height - 1) << kFractionBits)) 330 source_y_subpixel = (source_height - 1) << kFractionBits; 331 332 const uint8* y_ptr = NULL; 333 const uint8* u_ptr = NULL; 334 const uint8* v_ptr = NULL; 335 // Apply vertical filtering if necessary. 336 // TODO(fbarchard): Remove memcpy when not necessary. 337 if (filter & media::FILTER_BILINEAR_V) { 338 int source_y = source_y_subpixel >> kFractionBits; 339 y_ptr = y_buf + source_y * y_pitch; 340 u_ptr = u_buf + (source_y >> y_shift) * uv_pitch; 341 v_ptr = v_buf + (source_y >> y_shift) * uv_pitch; 342 343 // Vertical scaler uses 16.8 fixed point. 344 int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8; 345 if (source_y_fraction != 0) { 346 g_filter_yuv_rows_proc_( 347 ybuf, y_ptr, y_ptr + y_pitch, source_width, source_y_fraction); 348 } else { 349 memcpy(ybuf, y_ptr, source_width); 350 } 351 y_ptr = ybuf; 352 ybuf[source_width] = ybuf[source_width - 1]; 353 354 int uv_source_width = (source_width + 1) / 2; 355 int source_uv_fraction; 356 357 // For formats with half-height UV planes, each even-numbered pixel row 358 // should not interpolate, since the next row to interpolate from should 359 // be a duplicate of the current row. 360 if (y_shift && (source_y & 0x1) == 0) 361 source_uv_fraction = 0; 362 else 363 source_uv_fraction = source_y_fraction; 364 365 if (source_uv_fraction != 0) { 366 g_filter_yuv_rows_proc_( 367 ubuf, u_ptr, u_ptr + uv_pitch, uv_source_width, source_uv_fraction); 368 g_filter_yuv_rows_proc_( 369 vbuf, v_ptr, v_ptr + uv_pitch, uv_source_width, source_uv_fraction); 370 } else { 371 memcpy(ubuf, u_ptr, uv_source_width); 372 memcpy(vbuf, v_ptr, uv_source_width); 373 } 374 u_ptr = ubuf; 375 v_ptr = vbuf; 376 ubuf[uv_source_width] = ubuf[uv_source_width - 1]; 377 vbuf[uv_source_width] = vbuf[uv_source_width - 1]; 378 } else { 379 // Offset by 1/2 pixel for center sampling. 380 int source_y = (source_y_subpixel + (kFractionMax / 2)) >> kFractionBits; 381 y_ptr = y_buf + source_y * y_pitch; 382 u_ptr = u_buf + (source_y >> y_shift) * uv_pitch; 383 v_ptr = v_buf + (source_y >> y_shift) * uv_pitch; 384 } 385 if (source_dx == kFractionMax) { // Not scaled 386 g_convert_yuv_to_rgb32_row_proc_( 387 y_ptr, u_ptr, v_ptr, dest_pixel, width, kCoefficientsRgbY); 388 } else { 389 if (filter & FILTER_BILINEAR_H) { 390 g_linear_scale_yuv_to_rgb32_row_proc_(y_ptr, 391 u_ptr, 392 v_ptr, 393 dest_pixel, 394 width, 395 source_dx, 396 kCoefficientsRgbY); 397 } else { 398 g_scale_yuv_to_rgb32_row_proc_(y_ptr, 399 u_ptr, 400 v_ptr, 401 dest_pixel, 402 width, 403 source_dx, 404 kCoefficientsRgbY); 405 } 406 } 407 } 408 409 g_empty_register_state_proc_(); 410 } 411 412 // Scale a frame of YV12 to 32 bit ARGB for a specific rectangle. 413 void ScaleYUVToRGB32WithRect(const uint8* y_buf, 414 const uint8* u_buf, 415 const uint8* v_buf, 416 uint8* rgb_buf, 417 int source_width, 418 int source_height, 419 int dest_width, 420 int dest_height, 421 int dest_rect_left, 422 int dest_rect_top, 423 int dest_rect_right, 424 int dest_rect_bottom, 425 int y_pitch, 426 int uv_pitch, 427 int rgb_pitch) { 428 // This routine doesn't currently support up-scaling. 429 CHECK_LE(dest_width, source_width); 430 CHECK_LE(dest_height, source_height); 431 432 // Sanity-check the destination rectangle. 433 DCHECK(dest_rect_left >= 0 && dest_rect_right <= dest_width); 434 DCHECK(dest_rect_top >= 0 && dest_rect_bottom <= dest_height); 435 DCHECK(dest_rect_right > dest_rect_left); 436 DCHECK(dest_rect_bottom > dest_rect_top); 437 438 // Fixed-point value of vertical and horizontal scale down factor. 439 // Values are in the format 16.16. 440 int y_step = kFractionMax * source_height / dest_height; 441 int x_step = kFractionMax * source_width / dest_width; 442 443 // Determine the coordinates of the rectangle in 16.16 coords. 444 // NB: Our origin is the *center* of the top/left pixel, NOT its top/left. 445 // If we're down-scaling by more than a factor of two, we start with a 50% 446 // fraction to avoid degenerating to point-sampling - we should really just 447 // fix the fraction at 50% for all pixels in that case. 448 int source_left = dest_rect_left * x_step; 449 int source_right = (dest_rect_right - 1) * x_step; 450 if (x_step < kFractionMax * 2) { 451 source_left += ((x_step - kFractionMax) / 2); 452 source_right += ((x_step - kFractionMax) / 2); 453 } else { 454 source_left += kFractionMax / 2; 455 source_right += kFractionMax / 2; 456 } 457 int source_top = dest_rect_top * y_step; 458 if (y_step < kFractionMax * 2) { 459 source_top += ((y_step - kFractionMax) / 2); 460 } else { 461 source_top += kFractionMax / 2; 462 } 463 464 // Determine the parts of the Y, U and V buffers to interpolate. 465 int source_y_left = source_left >> kFractionBits; 466 int source_y_right = 467 std::min((source_right >> kFractionBits) + 2, source_width + 1); 468 469 int source_uv_left = source_y_left / 2; 470 int source_uv_right = std::min((source_right >> (kFractionBits + 1)) + 2, 471 (source_width + 1) / 2); 472 473 int source_y_width = source_y_right - source_y_left; 474 int source_uv_width = source_uv_right - source_uv_left; 475 476 // Determine number of pixels in each output row. 477 int dest_rect_width = dest_rect_right - dest_rect_left; 478 479 // Intermediate buffer for vertical interpolation. 480 // 4096 bytes allows 3 buffers to fit in 12k, which fits in a 16K L1 cache, 481 // and is bigger than most users will generally need. 482 // The buffer is 16-byte aligned and padded with 16 extra bytes; some of the 483 // FilterYUVRowProcs have alignment requirements, and the SSE version can 484 // write up to 16 bytes past the end of the buffer. 485 const int kFilterBufferSize = 4096; 486 const bool kAvoidUsingOptimizedFilter = source_width > kFilterBufferSize; 487 uint8 yuv_temp[16 + kFilterBufferSize * 3 + 16]; 488 // memset() yuv_temp to 0 to avoid bogus warnings when running on Valgrind. 489 if (RunningOnValgrind()) 490 memset(yuv_temp, 0, sizeof(yuv_temp)); 491 uint8* y_temp = reinterpret_cast<uint8*>( 492 reinterpret_cast<uintptr_t>(yuv_temp + 15) & ~15); 493 uint8* u_temp = y_temp + kFilterBufferSize; 494 uint8* v_temp = u_temp + kFilterBufferSize; 495 496 // Move to the top-left pixel of output. 497 rgb_buf += dest_rect_top * rgb_pitch; 498 rgb_buf += dest_rect_left * 4; 499 500 // For each destination row perform interpolation and color space 501 // conversion to produce the output. 502 for (int row = dest_rect_top; row < dest_rect_bottom; ++row) { 503 // Round the fixed-point y position to get the current row. 504 int source_row = source_top >> kFractionBits; 505 int source_uv_row = source_row / 2; 506 DCHECK(source_row < source_height); 507 508 // Locate the first row for each plane for interpolation. 509 const uint8* y0_ptr = y_buf + y_pitch * source_row + source_y_left; 510 const uint8* u0_ptr = u_buf + uv_pitch * source_uv_row + source_uv_left; 511 const uint8* v0_ptr = v_buf + uv_pitch * source_uv_row + source_uv_left; 512 const uint8* y1_ptr = NULL; 513 const uint8* u1_ptr = NULL; 514 const uint8* v1_ptr = NULL; 515 516 // Locate the second row for interpolation, being careful not to overrun. 517 if (source_row + 1 >= source_height) { 518 y1_ptr = y0_ptr; 519 } else { 520 y1_ptr = y0_ptr + y_pitch; 521 } 522 if (source_uv_row + 1 >= (source_height + 1) / 2) { 523 u1_ptr = u0_ptr; 524 v1_ptr = v0_ptr; 525 } else { 526 u1_ptr = u0_ptr + uv_pitch; 527 v1_ptr = v0_ptr + uv_pitch; 528 } 529 530 if (!kAvoidUsingOptimizedFilter) { 531 // Vertical scaler uses 16.8 fixed point. 532 int fraction = (source_top & kFractionMask) >> 8; 533 g_filter_yuv_rows_proc_( 534 y_temp + source_y_left, y0_ptr, y1_ptr, source_y_width, fraction); 535 g_filter_yuv_rows_proc_( 536 u_temp + source_uv_left, u0_ptr, u1_ptr, source_uv_width, fraction); 537 g_filter_yuv_rows_proc_( 538 v_temp + source_uv_left, v0_ptr, v1_ptr, source_uv_width, fraction); 539 540 // Perform horizontal interpolation and color space conversion. 541 // TODO(hclam): Use the MMX version after more testing. 542 LinearScaleYUVToRGB32RowWithRange_C(y_temp, 543 u_temp, 544 v_temp, 545 rgb_buf, 546 dest_rect_width, 547 source_left, 548 x_step, 549 kCoefficientsRgbY); 550 } else { 551 // If the frame is too large then we linear scale a single row. 552 LinearScaleYUVToRGB32RowWithRange_C(y0_ptr, 553 u0_ptr, 554 v0_ptr, 555 rgb_buf, 556 dest_rect_width, 557 source_left, 558 x_step, 559 kCoefficientsRgbY); 560 } 561 562 // Advance vertically in the source and destination image. 563 source_top += y_step; 564 rgb_buf += rgb_pitch; 565 } 566 567 g_empty_register_state_proc_(); 568 } 569 570 void ConvertRGB32ToYUV(const uint8* rgbframe, 571 uint8* yplane, 572 uint8* uplane, 573 uint8* vplane, 574 int width, 575 int height, 576 int rgbstride, 577 int ystride, 578 int uvstride) { 579 g_convert_rgb32_to_yuv_proc_(rgbframe, 580 yplane, 581 uplane, 582 vplane, 583 width, 584 height, 585 rgbstride, 586 ystride, 587 uvstride); 588 } 589 590 void ConvertRGB24ToYUV(const uint8* rgbframe, 591 uint8* yplane, 592 uint8* uplane, 593 uint8* vplane, 594 int width, 595 int height, 596 int rgbstride, 597 int ystride, 598 int uvstride) { 599 g_convert_rgb24_to_yuv_proc_(rgbframe, 600 yplane, 601 uplane, 602 vplane, 603 width, 604 height, 605 rgbstride, 606 ystride, 607 uvstride); 608 } 609 610 void ConvertYUY2ToYUV(const uint8* src, 611 uint8* yplane, 612 uint8* uplane, 613 uint8* vplane, 614 int width, 615 int height) { 616 for (int i = 0; i < height / 2; ++i) { 617 for (int j = 0; j < (width / 2); ++j) { 618 yplane[0] = src[0]; 619 *uplane = src[1]; 620 yplane[1] = src[2]; 621 *vplane = src[3]; 622 src += 4; 623 yplane += 2; 624 uplane++; 625 vplane++; 626 } 627 for (int j = 0; j < (width / 2); ++j) { 628 yplane[0] = src[0]; 629 yplane[1] = src[2]; 630 src += 4; 631 yplane += 2; 632 } 633 } 634 } 635 636 void ConvertNV21ToYUV(const uint8* src, 637 uint8* yplane, 638 uint8* uplane, 639 uint8* vplane, 640 int width, 641 int height) { 642 int y_plane_size = width * height; 643 memcpy(yplane, src, y_plane_size); 644 645 src += y_plane_size; 646 int u_plane_size = y_plane_size >> 2; 647 for (int i = 0; i < u_plane_size; ++i) { 648 *vplane++ = *src++; 649 *uplane++ = *src++; 650 } 651 } 652 653 void ConvertYUVToRGB32(const uint8* yplane, 654 const uint8* uplane, 655 const uint8* vplane, 656 uint8* rgbframe, 657 int width, 658 int height, 659 int ystride, 660 int uvstride, 661 int rgbstride, 662 YUVType yuv_type) { 663 g_convert_yuv_to_rgb32_proc_(yplane, 664 uplane, 665 vplane, 666 rgbframe, 667 width, 668 height, 669 ystride, 670 uvstride, 671 rgbstride, 672 yuv_type); 673 } 674 675 void ConvertYUVAToARGB(const uint8* yplane, 676 const uint8* uplane, 677 const uint8* vplane, 678 const uint8* aplane, 679 uint8* rgbframe, 680 int width, 681 int height, 682 int ystride, 683 int uvstride, 684 int astride, 685 int rgbstride, 686 YUVType yuv_type) { 687 g_convert_yuva_to_argb_proc_(yplane, 688 uplane, 689 vplane, 690 aplane, 691 rgbframe, 692 width, 693 height, 694 ystride, 695 uvstride, 696 astride, 697 rgbstride, 698 yuv_type); 699 } 700 701 } // namespace media 702