Home | History | Annotate | Download | only in platform
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/platform/time.h"
      6 
      7 #if V8_OS_POSIX
      8 #include <sys/time.h>
      9 #endif
     10 #if V8_OS_MACOSX
     11 #include <mach/mach_time.h>
     12 #endif
     13 
     14 #include <string.h>
     15 
     16 #if V8_OS_WIN
     17 #include "src/base/lazy-instance.h"
     18 #include "src/base/win32-headers.h"
     19 #endif
     20 #include "src/checks.h"
     21 #include "src/cpu.h"
     22 #include "src/platform.h"
     23 
     24 namespace v8 {
     25 namespace internal {
     26 
     27 TimeDelta TimeDelta::FromDays(int days) {
     28   return TimeDelta(days * Time::kMicrosecondsPerDay);
     29 }
     30 
     31 
     32 TimeDelta TimeDelta::FromHours(int hours) {
     33   return TimeDelta(hours * Time::kMicrosecondsPerHour);
     34 }
     35 
     36 
     37 TimeDelta TimeDelta::FromMinutes(int minutes) {
     38   return TimeDelta(minutes * Time::kMicrosecondsPerMinute);
     39 }
     40 
     41 
     42 TimeDelta TimeDelta::FromSeconds(int64_t seconds) {
     43   return TimeDelta(seconds * Time::kMicrosecondsPerSecond);
     44 }
     45 
     46 
     47 TimeDelta TimeDelta::FromMilliseconds(int64_t milliseconds) {
     48   return TimeDelta(milliseconds * Time::kMicrosecondsPerMillisecond);
     49 }
     50 
     51 
     52 TimeDelta TimeDelta::FromNanoseconds(int64_t nanoseconds) {
     53   return TimeDelta(nanoseconds / Time::kNanosecondsPerMicrosecond);
     54 }
     55 
     56 
     57 int TimeDelta::InDays() const {
     58   return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
     59 }
     60 
     61 
     62 int TimeDelta::InHours() const {
     63   return static_cast<int>(delta_ / Time::kMicrosecondsPerHour);
     64 }
     65 
     66 
     67 int TimeDelta::InMinutes() const {
     68   return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
     69 }
     70 
     71 
     72 double TimeDelta::InSecondsF() const {
     73   return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
     74 }
     75 
     76 
     77 int64_t TimeDelta::InSeconds() const {
     78   return delta_ / Time::kMicrosecondsPerSecond;
     79 }
     80 
     81 
     82 double TimeDelta::InMillisecondsF() const {
     83   return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
     84 }
     85 
     86 
     87 int64_t TimeDelta::InMilliseconds() const {
     88   return delta_ / Time::kMicrosecondsPerMillisecond;
     89 }
     90 
     91 
     92 int64_t TimeDelta::InNanoseconds() const {
     93   return delta_ * Time::kNanosecondsPerMicrosecond;
     94 }
     95 
     96 
     97 #if V8_OS_MACOSX
     98 
     99 TimeDelta TimeDelta::FromMachTimespec(struct mach_timespec ts) {
    100   ASSERT_GE(ts.tv_nsec, 0);
    101   ASSERT_LT(ts.tv_nsec,
    102             static_cast<long>(Time::kNanosecondsPerSecond));  // NOLINT
    103   return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond +
    104                    ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
    105 }
    106 
    107 
    108 struct mach_timespec TimeDelta::ToMachTimespec() const {
    109   struct mach_timespec ts;
    110   ASSERT(delta_ >= 0);
    111   ts.tv_sec = delta_ / Time::kMicrosecondsPerSecond;
    112   ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) *
    113       Time::kNanosecondsPerMicrosecond;
    114   return ts;
    115 }
    116 
    117 #endif  // V8_OS_MACOSX
    118 
    119 
    120 #if V8_OS_POSIX
    121 
    122 TimeDelta TimeDelta::FromTimespec(struct timespec ts) {
    123   ASSERT_GE(ts.tv_nsec, 0);
    124   ASSERT_LT(ts.tv_nsec,
    125             static_cast<long>(Time::kNanosecondsPerSecond));  // NOLINT
    126   return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond +
    127                    ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
    128 }
    129 
    130 
    131 struct timespec TimeDelta::ToTimespec() const {
    132   struct timespec ts;
    133   ts.tv_sec = delta_ / Time::kMicrosecondsPerSecond;
    134   ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) *
    135       Time::kNanosecondsPerMicrosecond;
    136   return ts;
    137 }
    138 
    139 #endif  // V8_OS_POSIX
    140 
    141 
    142 #if V8_OS_WIN
    143 
    144 // We implement time using the high-resolution timers so that we can get
    145 // timeouts which are smaller than 10-15ms. To avoid any drift, we
    146 // periodically resync the internal clock to the system clock.
    147 class Clock V8_FINAL {
    148  public:
    149   Clock() : initial_ticks_(GetSystemTicks()), initial_time_(GetSystemTime()) {}
    150 
    151   Time Now() {
    152     // Time between resampling the un-granular clock for this API (1 minute).
    153     const TimeDelta kMaxElapsedTime = TimeDelta::FromMinutes(1);
    154 
    155     LockGuard<Mutex> lock_guard(&mutex_);
    156 
    157     // Determine current time and ticks.
    158     TimeTicks ticks = GetSystemTicks();
    159     Time time = GetSystemTime();
    160 
    161     // Check if we need to synchronize with the system clock due to a backwards
    162     // time change or the amount of time elapsed.
    163     TimeDelta elapsed = ticks - initial_ticks_;
    164     if (time < initial_time_ || elapsed > kMaxElapsedTime) {
    165       initial_ticks_ = ticks;
    166       initial_time_ = time;
    167       return time;
    168     }
    169 
    170     return initial_time_ + elapsed;
    171   }
    172 
    173   Time NowFromSystemTime() {
    174     LockGuard<Mutex> lock_guard(&mutex_);
    175     initial_ticks_ = GetSystemTicks();
    176     initial_time_ = GetSystemTime();
    177     return initial_time_;
    178   }
    179 
    180  private:
    181   static TimeTicks GetSystemTicks() {
    182     return TimeTicks::Now();
    183   }
    184 
    185   static Time GetSystemTime() {
    186     FILETIME ft;
    187     ::GetSystemTimeAsFileTime(&ft);
    188     return Time::FromFiletime(ft);
    189   }
    190 
    191   TimeTicks initial_ticks_;
    192   Time initial_time_;
    193   Mutex mutex_;
    194 };
    195 
    196 
    197 static base::LazyStaticInstance<Clock, base::DefaultConstructTrait<Clock>,
    198                                 base::ThreadSafeInitOnceTrait>::type clock =
    199     LAZY_STATIC_INSTANCE_INITIALIZER;
    200 
    201 
    202 Time Time::Now() {
    203   return clock.Pointer()->Now();
    204 }
    205 
    206 
    207 Time Time::NowFromSystemTime() {
    208   return clock.Pointer()->NowFromSystemTime();
    209 }
    210 
    211 
    212 // Time between windows epoch and standard epoch.
    213 static const int64_t kTimeToEpochInMicroseconds = V8_INT64_C(11644473600000000);
    214 
    215 
    216 Time Time::FromFiletime(FILETIME ft) {
    217   if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) {
    218     return Time();
    219   }
    220   if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() &&
    221       ft.dwHighDateTime == std::numeric_limits<DWORD>::max()) {
    222     return Max();
    223   }
    224   int64_t us = (static_cast<uint64_t>(ft.dwLowDateTime) +
    225                 (static_cast<uint64_t>(ft.dwHighDateTime) << 32)) / 10;
    226   return Time(us - kTimeToEpochInMicroseconds);
    227 }
    228 
    229 
    230 FILETIME Time::ToFiletime() const {
    231   ASSERT(us_ >= 0);
    232   FILETIME ft;
    233   if (IsNull()) {
    234     ft.dwLowDateTime = 0;
    235     ft.dwHighDateTime = 0;
    236     return ft;
    237   }
    238   if (IsMax()) {
    239     ft.dwLowDateTime = std::numeric_limits<DWORD>::max();
    240     ft.dwHighDateTime = std::numeric_limits<DWORD>::max();
    241     return ft;
    242   }
    243   uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10;
    244   ft.dwLowDateTime = static_cast<DWORD>(us);
    245   ft.dwHighDateTime = static_cast<DWORD>(us >> 32);
    246   return ft;
    247 }
    248 
    249 #elif V8_OS_POSIX
    250 
    251 Time Time::Now() {
    252   struct timeval tv;
    253   int result = gettimeofday(&tv, NULL);
    254   ASSERT_EQ(0, result);
    255   USE(result);
    256   return FromTimeval(tv);
    257 }
    258 
    259 
    260 Time Time::NowFromSystemTime() {
    261   return Now();
    262 }
    263 
    264 
    265 Time Time::FromTimespec(struct timespec ts) {
    266   ASSERT(ts.tv_nsec >= 0);
    267   ASSERT(ts.tv_nsec < static_cast<long>(kNanosecondsPerSecond));  // NOLINT
    268   if (ts.tv_nsec == 0 && ts.tv_sec == 0) {
    269     return Time();
    270   }
    271   if (ts.tv_nsec == static_cast<long>(kNanosecondsPerSecond - 1) &&  // NOLINT
    272       ts.tv_sec == std::numeric_limits<time_t>::max()) {
    273     return Max();
    274   }
    275   return Time(ts.tv_sec * kMicrosecondsPerSecond +
    276               ts.tv_nsec / kNanosecondsPerMicrosecond);
    277 }
    278 
    279 
    280 struct timespec Time::ToTimespec() const {
    281   struct timespec ts;
    282   if (IsNull()) {
    283     ts.tv_sec = 0;
    284     ts.tv_nsec = 0;
    285     return ts;
    286   }
    287   if (IsMax()) {
    288     ts.tv_sec = std::numeric_limits<time_t>::max();
    289     ts.tv_nsec = static_cast<long>(kNanosecondsPerSecond - 1);  // NOLINT
    290     return ts;
    291   }
    292   ts.tv_sec = us_ / kMicrosecondsPerSecond;
    293   ts.tv_nsec = (us_ % kMicrosecondsPerSecond) * kNanosecondsPerMicrosecond;
    294   return ts;
    295 }
    296 
    297 
    298 Time Time::FromTimeval(struct timeval tv) {
    299   ASSERT(tv.tv_usec >= 0);
    300   ASSERT(tv.tv_usec < static_cast<suseconds_t>(kMicrosecondsPerSecond));
    301   if (tv.tv_usec == 0 && tv.tv_sec == 0) {
    302     return Time();
    303   }
    304   if (tv.tv_usec == static_cast<suseconds_t>(kMicrosecondsPerSecond - 1) &&
    305       tv.tv_sec == std::numeric_limits<time_t>::max()) {
    306     return Max();
    307   }
    308   return Time(tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec);
    309 }
    310 
    311 
    312 struct timeval Time::ToTimeval() const {
    313   struct timeval tv;
    314   if (IsNull()) {
    315     tv.tv_sec = 0;
    316     tv.tv_usec = 0;
    317     return tv;
    318   }
    319   if (IsMax()) {
    320     tv.tv_sec = std::numeric_limits<time_t>::max();
    321     tv.tv_usec = static_cast<suseconds_t>(kMicrosecondsPerSecond - 1);
    322     return tv;
    323   }
    324   tv.tv_sec = us_ / kMicrosecondsPerSecond;
    325   tv.tv_usec = us_ % kMicrosecondsPerSecond;
    326   return tv;
    327 }
    328 
    329 #endif  // V8_OS_WIN
    330 
    331 
    332 Time Time::FromJsTime(double ms_since_epoch) {
    333   // The epoch is a valid time, so this constructor doesn't interpret
    334   // 0 as the null time.
    335   if (ms_since_epoch == std::numeric_limits<double>::max()) {
    336     return Max();
    337   }
    338   return Time(
    339       static_cast<int64_t>(ms_since_epoch * kMicrosecondsPerMillisecond));
    340 }
    341 
    342 
    343 double Time::ToJsTime() const {
    344   if (IsNull()) {
    345     // Preserve 0 so the invalid result doesn't depend on the platform.
    346     return 0;
    347   }
    348   if (IsMax()) {
    349     // Preserve max without offset to prevent overflow.
    350     return std::numeric_limits<double>::max();
    351   }
    352   return static_cast<double>(us_) / kMicrosecondsPerMillisecond;
    353 }
    354 
    355 
    356 #if V8_OS_WIN
    357 
    358 class TickClock {
    359  public:
    360   virtual ~TickClock() {}
    361   virtual int64_t Now() = 0;
    362   virtual bool IsHighResolution() = 0;
    363 };
    364 
    365 
    366 // Overview of time counters:
    367 // (1) CPU cycle counter. (Retrieved via RDTSC)
    368 // The CPU counter provides the highest resolution time stamp and is the least
    369 // expensive to retrieve. However, the CPU counter is unreliable and should not
    370 // be used in production. Its biggest issue is that it is per processor and it
    371 // is not synchronized between processors. Also, on some computers, the counters
    372 // will change frequency due to thermal and power changes, and stop in some
    373 // states.
    374 //
    375 // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
    376 // resolution (100 nanoseconds) time stamp but is comparatively more expensive
    377 // to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
    378 // (with some help from ACPI).
    379 // According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
    380 // in the worst case, it gets the counter from the rollover interrupt on the
    381 // programmable interrupt timer. In best cases, the HAL may conclude that the
    382 // RDTSC counter runs at a constant frequency, then it uses that instead. On
    383 // multiprocessor machines, it will try to verify the values returned from
    384 // RDTSC on each processor are consistent with each other, and apply a handful
    385 // of workarounds for known buggy hardware. In other words, QPC is supposed to
    386 // give consistent result on a multiprocessor computer, but it is unreliable in
    387 // reality due to bugs in BIOS or HAL on some, especially old computers.
    388 // With recent updates on HAL and newer BIOS, QPC is getting more reliable but
    389 // it should be used with caution.
    390 //
    391 // (3) System time. The system time provides a low-resolution (typically 10ms
    392 // to 55 milliseconds) time stamp but is comparatively less expensive to
    393 // retrieve and more reliable.
    394 class HighResolutionTickClock V8_FINAL : public TickClock {
    395  public:
    396   explicit HighResolutionTickClock(int64_t ticks_per_second)
    397       : ticks_per_second_(ticks_per_second) {
    398     ASSERT_LT(0, ticks_per_second);
    399   }
    400   virtual ~HighResolutionTickClock() {}
    401 
    402   virtual int64_t Now() V8_OVERRIDE {
    403     LARGE_INTEGER now;
    404     BOOL result = QueryPerformanceCounter(&now);
    405     ASSERT(result);
    406     USE(result);
    407 
    408     // Intentionally calculate microseconds in a round about manner to avoid
    409     // overflow and precision issues. Think twice before simplifying!
    410     int64_t whole_seconds = now.QuadPart / ticks_per_second_;
    411     int64_t leftover_ticks = now.QuadPart % ticks_per_second_;
    412     int64_t ticks = (whole_seconds * Time::kMicrosecondsPerSecond) +
    413         ((leftover_ticks * Time::kMicrosecondsPerSecond) / ticks_per_second_);
    414 
    415     // Make sure we never return 0 here, so that TimeTicks::HighResolutionNow()
    416     // will never return 0.
    417     return ticks + 1;
    418   }
    419 
    420   virtual bool IsHighResolution() V8_OVERRIDE {
    421     return true;
    422   }
    423 
    424  private:
    425   int64_t ticks_per_second_;
    426 };
    427 
    428 
    429 class RolloverProtectedTickClock V8_FINAL : public TickClock {
    430  public:
    431   // We initialize rollover_ms_ to 1 to ensure that we will never
    432   // return 0 from TimeTicks::HighResolutionNow() and TimeTicks::Now() below.
    433   RolloverProtectedTickClock() : last_seen_now_(0), rollover_ms_(1) {}
    434   virtual ~RolloverProtectedTickClock() {}
    435 
    436   virtual int64_t Now() V8_OVERRIDE {
    437     LockGuard<Mutex> lock_guard(&mutex_);
    438     // We use timeGetTime() to implement TimeTicks::Now(), which rolls over
    439     // every ~49.7 days. We try to track rollover ourselves, which works if
    440     // TimeTicks::Now() is called at least every 49 days.
    441     // Note that we do not use GetTickCount() here, since timeGetTime() gives
    442     // more predictable delta values, as described here:
    443     // http://blogs.msdn.com/b/larryosterman/archive/2009/09/02/what-s-the-difference-between-gettickcount-and-timegettime.aspx
    444     // timeGetTime() provides 1ms granularity when combined with
    445     // timeBeginPeriod(). If the host application for V8 wants fast timers, it
    446     // can use timeBeginPeriod() to increase the resolution.
    447     DWORD now = timeGetTime();
    448     if (now < last_seen_now_) {
    449       rollover_ms_ += V8_INT64_C(0x100000000);  // ~49.7 days.
    450     }
    451     last_seen_now_ = now;
    452     return (now + rollover_ms_) * Time::kMicrosecondsPerMillisecond;
    453   }
    454 
    455   virtual bool IsHighResolution() V8_OVERRIDE {
    456     return false;
    457   }
    458 
    459  private:
    460   Mutex mutex_;
    461   DWORD last_seen_now_;
    462   int64_t rollover_ms_;
    463 };
    464 
    465 
    466 static base::LazyStaticInstance<
    467     RolloverProtectedTickClock,
    468     base::DefaultConstructTrait<RolloverProtectedTickClock>,
    469     base::ThreadSafeInitOnceTrait>::type tick_clock =
    470     LAZY_STATIC_INSTANCE_INITIALIZER;
    471 
    472 
    473 struct CreateHighResTickClockTrait {
    474   static TickClock* Create() {
    475     // Check if the installed hardware supports a high-resolution performance
    476     // counter, and if not fallback to the low-resolution tick clock.
    477     LARGE_INTEGER ticks_per_second;
    478     if (!QueryPerformanceFrequency(&ticks_per_second)) {
    479       return tick_clock.Pointer();
    480     }
    481 
    482     // On Athlon X2 CPUs (e.g. model 15) the QueryPerformanceCounter
    483     // is unreliable, fallback to the low-resolution tick clock.
    484     CPU cpu;
    485     if (strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15) {
    486       return tick_clock.Pointer();
    487     }
    488 
    489     return new HighResolutionTickClock(ticks_per_second.QuadPart);
    490   }
    491 };
    492 
    493 
    494 static base::LazyDynamicInstance<TickClock,
    495     CreateHighResTickClockTrait,
    496     base::ThreadSafeInitOnceTrait>::type high_res_tick_clock =
    497         LAZY_DYNAMIC_INSTANCE_INITIALIZER;
    498 
    499 
    500 TimeTicks TimeTicks::Now() {
    501   // Make sure we never return 0 here.
    502   TimeTicks ticks(tick_clock.Pointer()->Now());
    503   ASSERT(!ticks.IsNull());
    504   return ticks;
    505 }
    506 
    507 
    508 TimeTicks TimeTicks::HighResolutionNow() {
    509   // Make sure we never return 0 here.
    510   TimeTicks ticks(high_res_tick_clock.Pointer()->Now());
    511   ASSERT(!ticks.IsNull());
    512   return ticks;
    513 }
    514 
    515 
    516 // static
    517 bool TimeTicks::IsHighResolutionClockWorking() {
    518   return high_res_tick_clock.Pointer()->IsHighResolution();
    519 }
    520 
    521 #else  // V8_OS_WIN
    522 
    523 TimeTicks TimeTicks::Now() {
    524   return HighResolutionNow();
    525 }
    526 
    527 
    528 TimeTicks TimeTicks::HighResolutionNow() {
    529   int64_t ticks;
    530 #if V8_OS_MACOSX
    531   static struct mach_timebase_info info;
    532   if (info.denom == 0) {
    533     kern_return_t result = mach_timebase_info(&info);
    534     ASSERT_EQ(KERN_SUCCESS, result);
    535     USE(result);
    536   }
    537   ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond *
    538            info.numer / info.denom);
    539 #elif V8_OS_SOLARIS
    540   ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond);
    541 #elif V8_LIBRT_NOT_AVAILABLE
    542   // TODO(bmeurer): This is a temporary hack to support cross-compiling
    543   // Chrome for Android in AOSP. Remove this once AOSP is fixed, also
    544   // cleanup the tools/gyp/v8.gyp file.
    545   struct timeval tv;
    546   int result = gettimeofday(&tv, NULL);
    547   ASSERT_EQ(0, result);
    548   USE(result);
    549   ticks = (tv.tv_sec * Time::kMicrosecondsPerSecond + tv.tv_usec);
    550 #elif V8_OS_POSIX
    551   struct timespec ts;
    552   int result = clock_gettime(CLOCK_MONOTONIC, &ts);
    553   ASSERT_EQ(0, result);
    554   USE(result);
    555   ticks = (ts.tv_sec * Time::kMicrosecondsPerSecond +
    556            ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
    557 #endif  // V8_OS_MACOSX
    558   // Make sure we never return 0 here.
    559   return TimeTicks(ticks + 1);
    560 }
    561 
    562 
    563 // static
    564 bool TimeTicks::IsHighResolutionClockWorking() {
    565   return true;
    566 }
    567 
    568 #endif  // V8_OS_WIN
    569 
    570 } }  // namespace v8::internal
    571