1 // Copyright 2009 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 // Flags: --allow-natives-syntax 29 30 // Test fast div and mod. 31 32 function divmod(div_func, mod_func, x, y) { 33 var div_answer = (div_func)(x); 34 assertEquals(x / y, div_answer, x + "/" + y); 35 var mod_answer = (mod_func)(x); 36 assertEquals(x % y, mod_answer, x + "%" + y); 37 var minus_div_answer = (div_func)(-x); 38 assertEquals(-x / y, minus_div_answer, "-" + x + "/" + y); 39 var minus_mod_answer = (mod_func)(-x); 40 assertEquals(-x % y, minus_mod_answer, "-" + x + "%" + y); 41 } 42 43 44 function run_tests_for(divisor) { 45 print("(function(left) { return left / " + divisor + "; })"); 46 var div_func = this.eval("(function(left) { return left / " + divisor + "; })"); 47 var mod_func = this.eval("(function(left) { return left % " + divisor + "; })"); 48 var exp; 49 // Strange number test. 50 divmod(div_func, mod_func, 0, divisor); 51 divmod(div_func, mod_func, 1 / 0, divisor); 52 // Floating point number test. 53 for (exp = -1024; exp <= 1024; exp += 8) { 54 divmod(div_func, mod_func, Math.pow(2, exp), divisor); 55 divmod(div_func, mod_func, 0.9999999 * Math.pow(2, exp), divisor); 56 divmod(div_func, mod_func, 1.0000001 * Math.pow(2, exp), divisor); 57 } 58 // Integer number test. 59 for (exp = 0; exp <= 32; exp++) { 60 divmod(div_func, mod_func, 1 << exp, divisor); 61 divmod(div_func, mod_func, (1 << exp) + 1, divisor); 62 divmod(div_func, mod_func, (1 << exp) - 1, divisor); 63 } 64 divmod(div_func, mod_func, Math.floor(0x1fffffff / 3), divisor); 65 divmod(div_func, mod_func, Math.floor(-0x20000000 / 3), divisor); 66 } 67 68 69 var divisors = [ 70 0, 71 1, 72 2, 73 3, 74 4, 75 5, 76 6, 77 7, 78 8, 79 9, 80 10, 81 0x1000000, 82 0x40000000, 83 12, 84 60, 85 100, 86 1000 * 60 * 60 * 24]; 87 88 for (var i = 0; i < divisors.length; i++) { 89 run_tests_for(divisors[i]); 90 } 91 92 // Test extreme corner cases of modulo. 93 94 // Computes the modulo by slow but lossless operations. 95 function compute_mod(dividend, divisor) { 96 // Return NaN if either operand is NaN, if divisor is 0 or 97 // dividend is an infinity. Return dividend if divisor is an infinity. 98 if (isNaN(dividend) || isNaN(divisor) || divisor == 0) { return NaN; } 99 var sign = 1; 100 if (dividend < 0) { dividend = -dividend; sign = -1; } 101 if (dividend == Infinity) { return NaN; } 102 if (divisor < 0) { divisor = -divisor; } 103 if (divisor == Infinity) { return sign * dividend; } 104 function rec_mod(a, b) { 105 // Subtracts maximal possible multiplum of b from a. 106 if (a >= b) { 107 a = rec_mod(a, 2 * b); 108 if (a >= b) { a -= b; } 109 } 110 return a; 111 } 112 return sign * rec_mod(dividend, divisor); 113 } 114 115 (function () { 116 var large_non_smi = 1234567891234.12245; 117 var small_non_smi = 43.2367243; 118 var repeating_decimal = 0.3; 119 var finite_decimal = 0.5; 120 var smi = 43; 121 var power_of_two = 64; 122 var min_normal = Number.MIN_VALUE * Math.pow(2, 52); 123 var max_denormal = Number.MIN_VALUE * (Math.pow(2, 52) - 1); 124 125 // All combinations of NaN, Infinity, normal, denormal and zero. 126 var example_numbers = [ 127 NaN, 128 0, 129 130 // Due to a bug in fmod(), modulos involving denormals 131 // return the wrong result for glibc <= 2.16. 132 // Details: http://sourceware.org/bugzilla/show_bug.cgi?id=14048 133 134 Number.MIN_VALUE, 135 3 * Number.MIN_VALUE, 136 max_denormal, 137 138 min_normal, 139 repeating_decimal, 140 finite_decimal, 141 smi, 142 power_of_two, 143 small_non_smi, 144 large_non_smi, 145 Number.MAX_VALUE, 146 Infinity 147 ]; 148 149 function doTest(a, b) { 150 var exp = compute_mod(a, b); 151 var act = a % b; 152 assertEquals(exp, act, a + " % " + b); 153 } 154 155 for (var i = 0; i < example_numbers.length; i++) { 156 for (var j = 0; j < example_numbers.length; j++) { 157 var a = example_numbers[i]; 158 var b = example_numbers[j]; 159 doTest(a,b); 160 doTest(-a,b); 161 doTest(a,-b); 162 doTest(-a,-b); 163 } 164 } 165 })(); 166 167 168 (function () { 169 // Edge cases 170 var zero = 0; 171 var minsmi32 = -0x40000000; 172 var minsmi64 = -0x80000000; 173 var somenum = 3532; 174 assertEquals(-0, zero / -1, "0 / -1"); 175 assertEquals(1, minsmi32 / -0x40000000, "minsmi/minsmi-32"); 176 assertEquals(1, minsmi64 / -0x80000000, "minsmi/minsmi-64"); 177 assertEquals(somenum, somenum % -0x40000000, "%minsmi-32"); 178 assertEquals(somenum, somenum % -0x80000000, "%minsmi-64"); 179 })(); 180 181 182 // Side-effect-free expressions containing bit operations use 183 // an optimized compiler with int32 values. Ensure that modulus 184 // produces negative zeros correctly. 185 function negative_zero_modulus_test() { 186 var x = 4; 187 var y = -4; 188 x = x + x - x; 189 y = y + y - y; 190 var z = (y | y | y | y) % x; 191 assertEquals(-1 / 0, 1 / z); 192 z = (x | x | x | x) % x; 193 assertEquals(1 / 0, 1 / z); 194 z = (y | y | y | y) % y; 195 assertEquals(-1 / 0, 1 / z); 196 z = (x | x | x | x) % y; 197 assertEquals(1 / 0, 1 / z); 198 } 199 200 negative_zero_modulus_test(); 201 202 203 function lithium_integer_mod() { 204 var left_operands = [ 205 0, 206 305419896, // 0x12345678 207 ]; 208 209 // Test the standard lithium code for modulo opeartions. 210 var mod_func; 211 for (var i = 0; i < left_operands.length; i++) { 212 for (var j = 0; j < divisors.length; j++) { 213 mod_func = this.eval("(function(left) { return left % " + divisors[j]+ "; })"); 214 assertEquals((mod_func)(left_operands[i]), left_operands[i] % divisors[j]); 215 assertEquals((mod_func)(-left_operands[i]), -left_operands[i] % divisors[j]); 216 } 217 } 218 219 var results_powers_of_two = [ 220 // 0 221 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 222 // 305419896 == 0x12345678 223 [0, 0, 0, 8, 24, 56, 120, 120, 120, 632, 1656, 1656, 5752, 5752, 22136, 22136, 22136, 22136, 284280, 284280, 1332856, 3430008, 3430008, 3430008, 3430008, 36984440, 36984440, 36984440, 305419896, 305419896, 305419896], 224 ]; 225 226 // Test the lithium code for modulo operations with a variable power of two 227 // right hand side operand. 228 for (var i = 0; i < left_operands.length; i++) { 229 for (var j = 0; j < 31; j++) { 230 assertEquals(results_powers_of_two[i][j], left_operands[i] % (2 << j)); 231 assertEquals(results_powers_of_two[i][j], left_operands[i] % -(2 << j)); 232 assertEquals(-results_powers_of_two[i][j], -left_operands[i] % (2 << j)); 233 assertEquals(-results_powers_of_two[i][j], -left_operands[i] % -(2 << j)); 234 } 235 } 236 237 // Test the lithium code for modulo operations with a constant power of two 238 // right hand side operand. 239 for (var i = 0; i < left_operands.length; i++) { 240 // With positive left hand side operand. 241 assertEquals(results_powers_of_two[i][0], left_operands[i] % -(2 << 0)); 242 assertEquals(results_powers_of_two[i][1], left_operands[i] % (2 << 1)); 243 assertEquals(results_powers_of_two[i][2], left_operands[i] % -(2 << 2)); 244 assertEquals(results_powers_of_two[i][3], left_operands[i] % (2 << 3)); 245 assertEquals(results_powers_of_two[i][4], left_operands[i] % -(2 << 4)); 246 assertEquals(results_powers_of_two[i][5], left_operands[i] % (2 << 5)); 247 assertEquals(results_powers_of_two[i][6], left_operands[i] % -(2 << 6)); 248 assertEquals(results_powers_of_two[i][7], left_operands[i] % (2 << 7)); 249 assertEquals(results_powers_of_two[i][8], left_operands[i] % -(2 << 8)); 250 assertEquals(results_powers_of_two[i][9], left_operands[i] % (2 << 9)); 251 assertEquals(results_powers_of_two[i][10], left_operands[i] % -(2 << 10)); 252 assertEquals(results_powers_of_two[i][11], left_operands[i] % (2 << 11)); 253 assertEquals(results_powers_of_two[i][12], left_operands[i] % -(2 << 12)); 254 assertEquals(results_powers_of_two[i][13], left_operands[i] % (2 << 13)); 255 assertEquals(results_powers_of_two[i][14], left_operands[i] % -(2 << 14)); 256 assertEquals(results_powers_of_two[i][15], left_operands[i] % (2 << 15)); 257 assertEquals(results_powers_of_two[i][16], left_operands[i] % -(2 << 16)); 258 assertEquals(results_powers_of_two[i][17], left_operands[i] % (2 << 17)); 259 assertEquals(results_powers_of_two[i][18], left_operands[i] % -(2 << 18)); 260 assertEquals(results_powers_of_two[i][19], left_operands[i] % (2 << 19)); 261 assertEquals(results_powers_of_two[i][20], left_operands[i] % -(2 << 20)); 262 assertEquals(results_powers_of_two[i][21], left_operands[i] % (2 << 21)); 263 assertEquals(results_powers_of_two[i][22], left_operands[i] % -(2 << 22)); 264 assertEquals(results_powers_of_two[i][23], left_operands[i] % (2 << 23)); 265 assertEquals(results_powers_of_two[i][24], left_operands[i] % -(2 << 24)); 266 assertEquals(results_powers_of_two[i][25], left_operands[i] % (2 << 25)); 267 assertEquals(results_powers_of_two[i][26], left_operands[i] % -(2 << 26)); 268 assertEquals(results_powers_of_two[i][27], left_operands[i] % (2 << 27)); 269 assertEquals(results_powers_of_two[i][28], left_operands[i] % -(2 << 28)); 270 assertEquals(results_powers_of_two[i][29], left_operands[i] % (2 << 29)); 271 assertEquals(results_powers_of_two[i][30], left_operands[i] % -(2 << 30)); 272 // With negative left hand side operand. 273 assertEquals(-results_powers_of_two[i][0], -left_operands[i] % -(2 << 0)); 274 assertEquals(-results_powers_of_two[i][1], -left_operands[i] % (2 << 1)); 275 assertEquals(-results_powers_of_two[i][2], -left_operands[i] % -(2 << 2)); 276 assertEquals(-results_powers_of_two[i][3], -left_operands[i] % (2 << 3)); 277 assertEquals(-results_powers_of_two[i][4], -left_operands[i] % -(2 << 4)); 278 assertEquals(-results_powers_of_two[i][5], -left_operands[i] % (2 << 5)); 279 assertEquals(-results_powers_of_two[i][6], -left_operands[i] % -(2 << 6)); 280 assertEquals(-results_powers_of_two[i][7], -left_operands[i] % (2 << 7)); 281 assertEquals(-results_powers_of_two[i][8], -left_operands[i] % -(2 << 8)); 282 assertEquals(-results_powers_of_two[i][9], -left_operands[i] % (2 << 9)); 283 assertEquals(-results_powers_of_two[i][10], -left_operands[i] % -(2 << 10)); 284 assertEquals(-results_powers_of_two[i][11], -left_operands[i] % (2 << 11)); 285 assertEquals(-results_powers_of_two[i][12], -left_operands[i] % -(2 << 12)); 286 assertEquals(-results_powers_of_two[i][13], -left_operands[i] % (2 << 13)); 287 assertEquals(-results_powers_of_two[i][14], -left_operands[i] % -(2 << 14)); 288 assertEquals(-results_powers_of_two[i][15], -left_operands[i] % (2 << 15)); 289 assertEquals(-results_powers_of_two[i][16], -left_operands[i] % -(2 << 16)); 290 assertEquals(-results_powers_of_two[i][17], -left_operands[i] % (2 << 17)); 291 assertEquals(-results_powers_of_two[i][18], -left_operands[i] % -(2 << 18)); 292 assertEquals(-results_powers_of_two[i][19], -left_operands[i] % (2 << 19)); 293 assertEquals(-results_powers_of_two[i][20], -left_operands[i] % -(2 << 20)); 294 assertEquals(-results_powers_of_two[i][21], -left_operands[i] % (2 << 21)); 295 assertEquals(-results_powers_of_two[i][22], -left_operands[i] % -(2 << 22)); 296 assertEquals(-results_powers_of_two[i][23], -left_operands[i] % (2 << 23)); 297 assertEquals(-results_powers_of_two[i][24], -left_operands[i] % -(2 << 24)); 298 assertEquals(-results_powers_of_two[i][25], -left_operands[i] % (2 << 25)); 299 assertEquals(-results_powers_of_two[i][26], -left_operands[i] % -(2 << 26)); 300 assertEquals(-results_powers_of_two[i][27], -left_operands[i] % (2 << 27)); 301 assertEquals(-results_powers_of_two[i][28], -left_operands[i] % -(2 << 28)); 302 assertEquals(-results_powers_of_two[i][29], -left_operands[i] % (2 << 29)); 303 assertEquals(-results_powers_of_two[i][30], -left_operands[i] % -(2 << 30)); 304 } 305 306 } 307 308 lithium_integer_mod(); 309 %OptimizeFunctionOnNextCall(lithium_integer_mod) 310 lithium_integer_mod(); 311