/external/eigen/unsupported/Eigen/src/LevenbergMarquardt/ |
LMonestep.h | 70 m_wa4 = qrfac.matrixQ().adjoint() * m_fvec;
|
/external/eigen/unsupported/Eigen/src/Eigenvalues/ |
ArpackSelfAdjointEigenSolver.h | 81 * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will 84 * \param[in] B Self-adjoint matrix for the generalized eigenvalue problem. 116 * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will 273 return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint(); 298 return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
|
/external/eigen/Eigen/src/Core/products/ |
GeneralMatrixMatrixTriangular.h | 23 * This is more general version of self adjoint product (C += A A^T) 91 // note that the actual rhs is the transpose/adjoint of mat
|
/external/eigen/Eigen/src/Eigenvalues/ |
ComplexSchur.h | 431 m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint()); 439 m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
|
SelfAdjointEigenSolver.h | 36 * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real 278 return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint(); 303 return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
|
/external/eigen/Eigen/src/SparseCore/ |
SparseMatrixBase.h | 101 /** \internal the return type of MatrixBase::adjoint() */ 397 const AdjointReturnType adjoint() const { return transpose(); } function in class:Eigen::SparseMatrixBase
|
/external/eigen/unsupported/Eigen/src/MatrixFunctions/ |
MatrixPower.h | 432 { res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); } 440 { res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
|
MatrixFunction.h | 212 result = m_U * (m_fT.template triangularView<Upper>() * m_U.adjoint()); 355 m_T.applyOnTheLeft(index, index+1, rotation.adjoint());
|
/external/chromium-trace/trace-viewer/third_party/gl-matrix/src/gl-matrix/ |
mat2.js | 143 mat2.adjoint = function(out, a) {
|
/external/eigen/Eigen/src/Eigen2Support/ |
LeastSquares.h | 154 covMat += diff * diff.adjoint();
|
/external/eigen/Eigen/src/IterativeLinearSolvers/ |
ConjugateGradient.h | 110 * \brief A conjugate gradient solver for sparse self-adjoint problems
|
/external/eigen/doc/ |
UsingIntelMKL.dox | 84 m1.adjoint()*b;
|
TopicAliasing.dox | 118 <tr> <td> MatrixBase::adjoint() </td> <td> MatrixBase::adjointInPlace() </td> </tr>
|
TutorialLinearAlgebra.dox | 132 Make sure to check if your matrix is self-adjoint, as is often the case in these problems. Here's an example using
|
/external/eigen/Eigen/src/Cholesky/ |
LDLT.h | 314 temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint(); 419 static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } 426 static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
|
/external/eigen/Eigen/src/Core/ |
TriangularMatrix.h | 263 /** \sa MatrixBase::adjoint() const */ 264 inline const TriangularView<const typename MatrixType::AdjointReturnType,TransposeMode> adjoint() const function in class:Eigen::TriangularView 265 { return m_matrix.adjoint(); }
|
MatrixBase.h | 120 /** \internal the return type of MatrixBase::adjoint() */ 213 const AdjointReturnType adjoint() const;
|
/external/eigen/unsupported/Eigen/src/IterativeSolvers/ |
DGMRES.h | 346 m_H.col(it).applyOnTheLeft(i-1,i,gr[i-1].adjoint()); 351 m_H.col(it).applyOnTheLeft(it,it+1,gr[it].adjoint()); 352 g.applyOnTheLeft(it,it+1, gr[it].adjoint());
|
IncompleteCholesky.h | 101 x = m_L.adjoint().template triangularView<Upper>().solve(x);
|
/external/eigen/Eigen/src/Geometry/ |
Transform.h | [all...] |
/external/eigen/Eigen/src/SPQRSupport/ |
SuiteSparseQRSupport.h | 273 SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const function in struct:Eigen::SPQRMatrixQReturnType
|
/external/eigen/bench/ |
eig33.cpp | 179 A = A.adjoint() * A;
|
/external/eigen/Eigen/src/SparseCholesky/ |
SimplicialCholesky.h | 261 static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } 275 static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
|
/external/eigen/blas/ |
level2_impl.h | 253 actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint() * vector(actual_x+start,len) ).value(); 311 actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint() * vector(actual_x+start,len) ).value();
|
/external/eigen/test/ |
sparse_basic.cpp | 294 VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
|