HomeSort by relevance Sort by last modified time
    Searched full:adjoint (Results 51 - 75 of 139) sorted by null

1 23 4 5 6

  /external/eigen/Eigen/src/Eigenvalues/
MatrixBaseEigenvalues.h 128 return sqrt((m_eval*m_eval.adjoint())
140 * This function computes the L2 operator norm of a self-adjoint matrix. For a
141 * self-adjoint matrix, the operator norm is the largest eigenvalue.
SelfAdjointEigenSolver_MKL.h 29 * Self-adjoint eigenvalues/eigenvectors.
  /external/eigen/test/eigen2/
eigen2_sparse_solvers.cpp 19 refMat = refMat * refMat.adjoint();
23 refMat += aux * aux.adjoint();
124 refMat2 += refMat2.adjoint();
eigen2_determinant.cpp 41 VERIFY_IS_APPROX(ei_conj(m2.determinant()), m2.adjoint().determinant());
eigen2_sparse_product.cpp 71 // test self adjoint products
95 VERIFY_IS_APPROX(refS.adjoint(), refS);
  /external/eigen/Eigen/src/SparseCore/
SparseSelfAdjointView.h 72 /** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs.
84 /** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs.
96 /** Efficient sparse self-adjoint matrix times dense vector/matrix product */
104 /** Efficient dense vector/matrix times sparse self-adjoint matrix product */
118 * call this function with u.adjoint().
202 SparseMatrix<Scalar,MatrixType::Flags&RowMajorBit?RowMajor:ColMajor> tmp = u * u.adjoint();
212 * Implementation of sparse self-adjoint time dense matrix
  /external/eigen/test/
cholesky.cpp 46 symmCpy += sigma * vec * vec.adjoint();
78 SquareMatrixType symm = a0 * a0.adjoint();
83 symm += a1 * a1.adjoint();
205 SquareMatrixType A = a * a.adjoint();
224 SquareMatrixType A = a * d.asDiagonal() * a.adjoint();
261 RealMatrixType symm = a0 * a0.adjoint();
266 symm += a1 * a1.adjoint();
jacobisvd.cpp 38 VERIFY_IS_APPROX(m, u * sigma * v.adjoint());
114 VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs);
136 HouseholderQR<MatrixType2T> qr(m2.adjoint());
137 Matrix<Scalar,Dynamic,1> tmp = qr.matrixQR().topLeftCorner(rank,rank).template triangularView<Upper>().adjoint().solve(rhs2);
206 VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
determinant.cpp 42 VERIFY_IS_APPROX(numext::conj(m2.determinant()), m2.adjoint().determinant());
hessenberg.cpp 24 VERIFY_IS_APPROX(m, Q * H * Q.adjoint());
product.h 136 VERIFY_IS_APPROX(res.col(r).noalias() = square.adjoint() * square.col(r), (square.adjoint() * square.col(r)).eval());
eigensolver_complex.cpp 46 MatrixType symmA = a.adjoint() * a;
qr.cpp 69 m1 += a * a.adjoint();
schur_complex.cpp 31 VERIFY_IS_APPROX(A.template cast<ComplexScalar>(), U * T * U.adjoint());
sparseqr.cpp 87 QtQ = Q * Q.adjoint();
  /external/eigen/Eigen/src/Eigen2Support/
SVD.h 550 if(unitary) *unitary = m_matU * m_matV.adjoint();
551 if(positive) *positive = m_matV * m_sigma.asDiagonal() * m_matV.adjoint();
568 if(unitary) *unitary = m_matU * m_matV.adjoint();
569 if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint();
586 Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
589 if(scaling) scaling->lazyAssign(m_matV * sv.asDiagonal() * m_matV.adjoint());
594 rotation->lazyAssign(m * m_matV.adjoint());
612 Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
615 if(scaling) scaling->lazyAssign(m_matU * sv.asDiagonal() * m_matU.adjoint());
620 rotation->lazyAssign(m * m_matV.adjoint());
    [all...]
  /external/eigen/doc/
QuickReference.dox 337 transposition \n adjoint \matrixworld</td><td>\code
339 mat1 = mat2.adjoint(); mat1.adjointInPlace();
345 scalar = col1.adjoint() * col2;
346 scalar = (col1.adjoint() * col2).value();\endcode
538 <a href="#" class="top">top</a>\section QuickRef_DiagTriSymm Diagonal, Triangular, and Self-adjoint matrices
605 m3 += s1 * m1.adjoint().triangularView<Eigen::UnitUpper>() * m2
606 m3 -= s1 * m2.conjugate() * m1.adjoint().triangularView<Eigen::Lower>() \endcode
615 L1.triangularView<Eigen::Lower>().adjoint().solveInPlace(M3)
640 m3 -= s1 * m3.adjoint() * m1.selfadjointView<Eigen::Lower>();\endcode
648 M1.selfadjointView<Eigen::Lower>().rankUpdate(M2.adjoint(),-1); \endcod
    [all...]
  /external/chromium-trace/trace-viewer/third_party/gl-matrix/spec/gl-matrix/
mat2-spec.js 96 describe("adjoint", function() {
98 beforeEach(function() { result = mat2.adjoint(out, matA); });
106 beforeEach(function() { result = mat2.adjoint(matA, matA); });
mat3-spec.js 152 describe("adjoint", function() {
154 beforeEach(function() { result = mat3.adjoint(out, matA); });
174 beforeEach(function() { result = mat3.adjoint(matA, matA); });
  /external/eigen/Eigen/src/Householder/
HouseholderSequence.h 46 * A.applyOnTheRight(H.adjoint()); // A = A * H^*
47 * A.applyOnTheLeft(H.adjoint()); // A = H^* * A
50 * In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators.
217 /** \brief Adjoint (conjugate transpose) of the Householder sequence. */
218 ConjugateReturnType adjoint() const function in class:Eigen::HouseholderSequence
223 /** \brief Inverse of the Householder sequence (equals the adjoint). */
224 ConjugateReturnType inverse() const { return adjoint(); }
372 /* Necessary for .adjoint() and .conjugate() */
  /external/eigen/lapack/
eigenvalues.cpp 59 if(UPLO(*uplo)==UP) mat = matrix(a,*n,*n,*lda).adjoint();
  /external/eigen/Eigen/src/Cholesky/
LLT.h 285 if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
318 if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
360 static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
369 static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
465 return matrixL() * matrixL().adjoint().toDenseMatrix();
  /external/eigen/Eigen/src/Jacobi/
Jacobi.h 27 * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code:
29 * v.applyOnTheLeft(J.adjoint());
61 /** Returns the adjoint transformation */
62 JacobiRotation adjoint() const { using numext::conj; return JacobiRotation(conj(m_c), -m_s); } function in class:Eigen::JacobiRotation
  /external/eigen/Eigen/src/SVD/
JacobiSVD_MKL.h 74 if (computeV()) m_matrixV = localV.adjoint(); \
  /external/eigen/bench/
benchCholesky.cpp 47 SquareMatrixType covMat = a * a.adjoint();

Completed in 763 milliseconds

1 23 4 5 6