/external/eigen/Eigen/src/Eigenvalues/ |
MatrixBaseEigenvalues.h | 128 return sqrt((m_eval*m_eval.adjoint()) 140 * This function computes the L2 operator norm of a self-adjoint matrix. For a 141 * self-adjoint matrix, the operator norm is the largest eigenvalue.
|
SelfAdjointEigenSolver_MKL.h | 29 * Self-adjoint eigenvalues/eigenvectors.
|
/external/eigen/test/eigen2/ |
eigen2_sparse_solvers.cpp | 19 refMat = refMat * refMat.adjoint(); 23 refMat += aux * aux.adjoint(); 124 refMat2 += refMat2.adjoint();
|
eigen2_determinant.cpp | 41 VERIFY_IS_APPROX(ei_conj(m2.determinant()), m2.adjoint().determinant());
|
eigen2_sparse_product.cpp | 71 // test self adjoint products 95 VERIFY_IS_APPROX(refS.adjoint(), refS);
|
/external/eigen/Eigen/src/SparseCore/ |
SparseSelfAdjointView.h | 72 /** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs. 84 /** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs. 96 /** Efficient sparse self-adjoint matrix times dense vector/matrix product */ 104 /** Efficient dense vector/matrix times sparse self-adjoint matrix product */ 118 * call this function with u.adjoint(). 202 SparseMatrix<Scalar,MatrixType::Flags&RowMajorBit?RowMajor:ColMajor> tmp = u * u.adjoint(); 212 * Implementation of sparse self-adjoint time dense matrix
|
/external/eigen/test/ |
cholesky.cpp | 46 symmCpy += sigma * vec * vec.adjoint(); 78 SquareMatrixType symm = a0 * a0.adjoint(); 83 symm += a1 * a1.adjoint(); 205 SquareMatrixType A = a * a.adjoint(); 224 SquareMatrixType A = a * d.asDiagonal() * a.adjoint(); 261 RealMatrixType symm = a0 * a0.adjoint(); 266 symm += a1 * a1.adjoint();
|
jacobisvd.cpp | 38 VERIFY_IS_APPROX(m, u * sigma * v.adjoint()); 114 VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs); 136 HouseholderQR<MatrixType2T> qr(m2.adjoint()); 137 Matrix<Scalar,Dynamic,1> tmp = qr.matrixQR().topLeftCorner(rank,rank).template triangularView<Upper>().adjoint().solve(rhs2); 206 VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
|
determinant.cpp | 42 VERIFY_IS_APPROX(numext::conj(m2.determinant()), m2.adjoint().determinant());
|
hessenberg.cpp | 24 VERIFY_IS_APPROX(m, Q * H * Q.adjoint());
|
product.h | 136 VERIFY_IS_APPROX(res.col(r).noalias() = square.adjoint() * square.col(r), (square.adjoint() * square.col(r)).eval());
|
eigensolver_complex.cpp | 46 MatrixType symmA = a.adjoint() * a;
|
qr.cpp | 69 m1 += a * a.adjoint();
|
schur_complex.cpp | 31 VERIFY_IS_APPROX(A.template cast<ComplexScalar>(), U * T * U.adjoint());
|
sparseqr.cpp | 87 QtQ = Q * Q.adjoint();
|
/external/eigen/Eigen/src/Eigen2Support/ |
SVD.h | 550 if(unitary) *unitary = m_matU * m_matV.adjoint(); 551 if(positive) *positive = m_matV * m_sigma.asDiagonal() * m_matV.adjoint(); 568 if(unitary) *unitary = m_matU * m_matV.adjoint(); 569 if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint(); 586 Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1 589 if(scaling) scaling->lazyAssign(m_matV * sv.asDiagonal() * m_matV.adjoint()); 594 rotation->lazyAssign(m * m_matV.adjoint()); 612 Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1 615 if(scaling) scaling->lazyAssign(m_matU * sv.asDiagonal() * m_matU.adjoint()); 620 rotation->lazyAssign(m * m_matV.adjoint()); [all...] |
/external/eigen/doc/ |
QuickReference.dox | 337 transposition \n adjoint \matrixworld</td><td>\code 339 mat1 = mat2.adjoint(); mat1.adjointInPlace(); 345 scalar = col1.adjoint() * col2; 346 scalar = (col1.adjoint() * col2).value();\endcode 538 <a href="#" class="top">top</a>\section QuickRef_DiagTriSymm Diagonal, Triangular, and Self-adjoint matrices 605 m3 += s1 * m1.adjoint().triangularView<Eigen::UnitUpper>() * m2 606 m3 -= s1 * m2.conjugate() * m1.adjoint().triangularView<Eigen::Lower>() \endcode 615 L1.triangularView<Eigen::Lower>().adjoint().solveInPlace(M3) 640 m3 -= s1 * m3.adjoint() * m1.selfadjointView<Eigen::Lower>();\endcode 648 M1.selfadjointView<Eigen::Lower>().rankUpdate(M2.adjoint(),-1); \endcod [all...] |
/external/chromium-trace/trace-viewer/third_party/gl-matrix/spec/gl-matrix/ |
mat2-spec.js | 96 describe("adjoint", function() { 98 beforeEach(function() { result = mat2.adjoint(out, matA); }); 106 beforeEach(function() { result = mat2.adjoint(matA, matA); });
|
mat3-spec.js | 152 describe("adjoint", function() { 154 beforeEach(function() { result = mat3.adjoint(out, matA); }); 174 beforeEach(function() { result = mat3.adjoint(matA, matA); });
|
/external/eigen/Eigen/src/Householder/ |
HouseholderSequence.h | 46 * A.applyOnTheRight(H.adjoint()); // A = A * H^* 47 * A.applyOnTheLeft(H.adjoint()); // A = H^* * A 50 * In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators. 217 /** \brief Adjoint (conjugate transpose) of the Householder sequence. */ 218 ConjugateReturnType adjoint() const function in class:Eigen::HouseholderSequence 223 /** \brief Inverse of the Householder sequence (equals the adjoint). */ 224 ConjugateReturnType inverse() const { return adjoint(); } 372 /* Necessary for .adjoint() and .conjugate() */
|
/external/eigen/lapack/ |
eigenvalues.cpp | 59 if(UPLO(*uplo)==UP) mat = matrix(a,*n,*n,*lda).adjoint();
|
/external/eigen/Eigen/src/Cholesky/ |
LLT.h | 285 if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); 318 if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21); 360 static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } 369 static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); } 465 return matrixL() * matrixL().adjoint().toDenseMatrix();
|
/external/eigen/Eigen/src/Jacobi/ |
Jacobi.h | 27 * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code: 29 * v.applyOnTheLeft(J.adjoint()); 61 /** Returns the adjoint transformation */ 62 JacobiRotation adjoint() const { using numext::conj; return JacobiRotation(conj(m_c), -m_s); } function in class:Eigen::JacobiRotation
|
/external/eigen/Eigen/src/SVD/ |
JacobiSVD_MKL.h | 74 if (computeV()) m_matrixV = localV.adjoint(); \
|
/external/eigen/bench/ |
benchCholesky.cpp | 47 SquareMatrixType covMat = a * a.adjoint();
|