/external/eigen/doc/ |
AsciiQuickReference.txt | 203 A.eigenvalues(); // eig(A); 205 eig.eigenvalues(); // diag(val)
|
QuickReference.dox | 23 <tr><td>\link Eigenvalues_Module Eigenvalues \endlink</td><td>\code#include <Eigen/Eigenvalues>\endcode</td><td>Eigenvalue, eigenvector decompositions (EigenSolver, SelfAdjointEigenSolver, ComplexEigenSolver)</td></tr> 25 <tr><td></td><td>\code#include <Eigen/Dense>\endcode</td><td>Includes Core, Geometry, LU, Cholesky, SVD, QR, and Eigenvalues header files</td></tr>
|
A05_PortingFrom2To3.dox | 192 <td>\code #include<Eigen/Eigenvalues> \endcode </td>
|
SparseLinearSystems.dox | 121 For iterative solvers, the compute step is used to eventually setup a preconditioner. For instance, with the ILUT preconditioner, the incomplete factors L and U are computed in this step. Remember that, basically, the goal of the preconditioner is to speedup the convergence of an iterative method by solving a modified linear system where the coefficient matrix has more clustered eigenvalues. For real problems, an iterative solver should always be used with a preconditioner. In Eigen, a preconditioner is selected by simply adding it as a template parameter to the iterative solver object.
|
Doxyfile.in | 211 "eigenvalues_module=This is defined in the %Eigenvalues module. \code #include <Eigen/Eigenvalues> \endcode" \ [all...] |
/external/eigen/unsupported/Eigen/src/MatrixFunctions/ |
MatrixPower.h | 144 * loop. We should move 0 eigenvalues to bottom right corner. We need not 148 * If the 0 eigenvalues are semisimple, they can form a 0 matrix at the
|
MatrixSquareRoot.h | 134 // pre: T.block(i,i,2,2) has complex conjugate eigenvalues 140 // TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere 145 = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real();
|
MatrixLogarithm.h | 80 /** \brief Compute logarithm of triangular matrix with clustered eigenvalues. */
|
/external/ceres-solver/internal/ceres/ |
low_rank_inverse_hessian.cc | 150 // Where \lambda_1 & \lambda_m are the smallest and largest eigenvalues of
|
line_search_direction.cc | 233 // Where \lambda_1 & \lambda_m are the smallest and largest eigenvalues
|
/external/eigen/unsupported/Eigen/src/Polynomials/ |
Companion.h | 125 * "Balancing a matrix for calculation of eigenvalues and eigenvectors"
|
/external/eigen/Eigen/src/Core/ |
MatrixBase.h | 125 /** \internal Return type of eigenvalues() */ 380 EigenvaluesReturnType eigenvalues() const;
|
DenseBase.h | 243 /** \internal the return type of MatrixBase::eigenvalues() */
|
/external/eigen/Eigen/src/LU/ |
FullPivLU.h | 26 * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any 576 * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
|
/external/ceres-solver/include/ceres/ |
covariance.h | 297 // this sum that correspond to small eigenvalues.
|
/external/opencv/cxcore/src/ |
cxmatrix.cpp | [all...] |
/external/eigen/Eigen/src/Eigenvalues/ |
Tridiagonalization.h | 47 * eigenvalues and eigenvectors of a selfadjoint matrix.
|
/external/chromium_org/third_party/skia/src/core/ |
SkMatrix.cpp | [all...] |
/external/opencv/cvaux/src/ |
cveigenobjects.cpp | 438 // eigVals - pointer to corresponding eigenvalues (array of <nObjects> 627 /* Calculation of eigenvalues & eigenvectors */ [all...] |
/external/skia/src/core/ |
SkMatrix.cpp | [all...] |
/external/ceres-solver/docs/source/ |
solving.rst | 666 solving :eq:`normal` depends on the distribution of eigenvalues [all...] |