HomeSort by relevance Sort by last modified time
    Searched full:eigenvalues (Results 76 - 96 of 96) sorted by null

1 2 34

  /external/eigen/doc/
AsciiQuickReference.txt 203 A.eigenvalues(); // eig(A);
205 eig.eigenvalues(); // diag(val)
QuickReference.dox 23 <tr><td>\link Eigenvalues_Module Eigenvalues \endlink</td><td>\code#include <Eigen/Eigenvalues>\endcode</td><td>Eigenvalue, eigenvector decompositions (EigenSolver, SelfAdjointEigenSolver, ComplexEigenSolver)</td></tr>
25 <tr><td></td><td>\code#include <Eigen/Dense>\endcode</td><td>Includes Core, Geometry, LU, Cholesky, SVD, QR, and Eigenvalues header files</td></tr>
A05_PortingFrom2To3.dox 192 <td>\code #include<Eigen/Eigenvalues> \endcode </td>
SparseLinearSystems.dox 121 For iterative solvers, the compute step is used to eventually setup a preconditioner. For instance, with the ILUT preconditioner, the incomplete factors L and U are computed in this step. Remember that, basically, the goal of the preconditioner is to speedup the convergence of an iterative method by solving a modified linear system where the coefficient matrix has more clustered eigenvalues. For real problems, an iterative solver should always be used with a preconditioner. In Eigen, a preconditioner is selected by simply adding it as a template parameter to the iterative solver object.
Doxyfile.in 211 "eigenvalues_module=This is defined in the %Eigenvalues module. \code #include <Eigen/Eigenvalues> \endcode" \
    [all...]
  /external/eigen/unsupported/Eigen/src/MatrixFunctions/
MatrixPower.h 144 * loop. We should move 0 eigenvalues to bottom right corner. We need not
148 * If the 0 eigenvalues are semisimple, they can form a 0 matrix at the
MatrixSquareRoot.h 134 // pre: T.block(i,i,2,2) has complex conjugate eigenvalues
140 // TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
145 = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real();
MatrixLogarithm.h 80 /** \brief Compute logarithm of triangular matrix with clustered eigenvalues. */
  /external/ceres-solver/internal/ceres/
low_rank_inverse_hessian.cc 150 // Where \lambda_1 & \lambda_m are the smallest and largest eigenvalues of
line_search_direction.cc 233 // Where \lambda_1 & \lambda_m are the smallest and largest eigenvalues
  /external/eigen/unsupported/Eigen/src/Polynomials/
Companion.h 125 * "Balancing a matrix for calculation of eigenvalues and eigenvectors"
  /external/eigen/Eigen/src/Core/
MatrixBase.h 125 /** \internal Return type of eigenvalues() */
380 EigenvaluesReturnType eigenvalues() const;
DenseBase.h 243 /** \internal the return type of MatrixBase::eigenvalues() */
  /external/eigen/Eigen/src/LU/
FullPivLU.h 26 * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any
576 * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
  /external/ceres-solver/include/ceres/
covariance.h 297 // this sum that correspond to small eigenvalues.
  /external/opencv/cxcore/src/
cxmatrix.cpp     [all...]
  /external/eigen/Eigen/src/Eigenvalues/
Tridiagonalization.h 47 * eigenvalues and eigenvectors of a selfadjoint matrix.
  /external/chromium_org/third_party/skia/src/core/
SkMatrix.cpp     [all...]
  /external/opencv/cvaux/src/
cveigenobjects.cpp 438 // eigVals - pointer to corresponding eigenvalues (array of <nObjects>
627 /* Calculation of eigenvalues & eigenvectors */
    [all...]
  /external/skia/src/core/
SkMatrix.cpp     [all...]
  /external/ceres-solver/docs/source/
solving.rst 666 solving :eq:`normal` depends on the distribution of eigenvalues
    [all...]

Completed in 306 milliseconds

1 2 34