/external/eigen/Eigen/ |
Eigenvalues | 14 /** \defgroup Eigenvalues_Module Eigenvalues module 20 * - MatrixBase::eigenvalues(), 24 * #include <Eigen/Eigenvalues> 28 #include "src/Eigenvalues/Tridiagonalization.h" 29 #include "src/Eigenvalues/RealSchur.h" 30 #include "src/Eigenvalues/EigenSolver.h" 31 #include "src/Eigenvalues/SelfAdjointEigenSolver.h" 32 #include "src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h" 33 #include "src/Eigenvalues/HessenbergDecomposition.h" 34 #include "src/Eigenvalues/ComplexSchur.h [all...] |
Dense | 7 #include "Eigenvalues"
|
/external/eigen/doc/snippets/ |
EigenSolver_compute.cpp | 4 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl; 5 es.compute(A + MatrixXf::Identity(4,4), false); // re-use es to compute eigenvalues of A+I 6 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
|
SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp | 5 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl; 6 es.compute(A + Matrix4f::Identity(4,4)); // re-use es to compute eigenvalues of A+I 7 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
|
SelfAdjointEigenSolver_compute_MatrixType.cpp | 5 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl; 6 es.compute(A + MatrixXf::Identity(4,4)); // re-use es to compute eigenvalues of A+I 7 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
|
ComplexEigenSolver_eigenvalues.cpp | 3 cout << "The eigenvalues of the 3x3 matrix of ones are:" 4 << endl << ces.eigenvalues() << endl;
|
EigenSolver_eigenvalues.cpp | 3 cout << "The eigenvalues of the 3x3 matrix of ones are:" 4 << endl << es.eigenvalues() << endl;
|
MatrixBase_eigenvalues.cpp | 2 VectorXcd eivals = ones.eigenvalues(); 3 cout << "The eigenvalues of the 3x3 matrix of ones are:" << endl << eivals << endl;
|
SelfAdjointEigenSolver_eigenvalues.cpp | 3 cout << "The eigenvalues of the 3x3 matrix of ones are:" 4 << endl << es.eigenvalues() << endl;
|
SelfAdjointView_eigenvalues.cpp | 2 VectorXd eivals = ones.selfadjointView<Lower>().eigenvalues(); 3 cout << "The eigenvalues of the 3x3 matrix of ones are:" << endl << eivals << endl;
|
GeneralizedEigenSolver.cpp | 5 cout << "The (complex) numerators of the generalzied eigenvalues are: " << ges.alphas().transpose() << endl; 6 cout << "The (real) denominatore of the generalzied eigenvalues are: " << ges.betas().transpose() << endl; 7 cout << "The (complex) generalzied eigenvalues are (alphas./beta): " << ges.eigenvalues().transpose() << endl;
|
SelfAdjointEigenSolver_compute_MatrixType2.cpp | 7 cout << "The eigenvalues of the pencil (A,B) are:" << endl << es.eigenvalues() << endl; 9 cout << "The eigenvalues of the pencil (B,A) are:" << endl << es.eigenvalues() << endl;
|
ComplexEigenSolver_compute.cpp | 6 cout << "The eigenvalues of A are:" << endl << ces.eigenvalues() << endl; 9 complex<float> lambda = ces.eigenvalues()[0]; 16 << ces.eigenvectors() * ces.eigenvalues().asDiagonal() * ces.eigenvectors().inverse() << endl;
|
EigenSolver_EigenSolver_MatrixType.cpp | 5 cout << "The eigenvalues of A are:" << endl << es.eigenvalues() << endl; 8 complex<double> lambda = es.eigenvalues()[0]; 14 MatrixXcd D = es.eigenvalues().asDiagonal();
|
SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp | 6 cout << "The eigenvalues of A are:" << endl << es.eigenvalues() << endl; 9 double lambda = es.eigenvalues()[0]; 15 MatrixXd D = es.eigenvalues().asDiagonal();
|
SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp | 9 cout << "The eigenvalues of the pencil (A,B) are:" << endl << es.eigenvalues() << endl; 12 double lambda = es.eigenvalues()[0];
|
/external/eigen/Eigen/src/Eigenvalues/ |
CMakeLists.txt | 5 DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Eigenvalues COMPONENT Devel
|
MatrixBaseEigenvalues.h | 27 return ComplexEigenSolver<PlainObject>(m_eval, false).eigenvalues(); 39 return EigenSolver<PlainObject>(m_eval, false).eigenvalues(); 45 /** \brief Computes the eigenvalues of a matrix 46 * \returns Column vector containing the eigenvalues. 49 * This function computes the eigenvalues with the help of the EigenSolver 53 * The eigenvalues are repeated according to their algebraic multiplicity, 54 * so there are as many eigenvalues as rows in the matrix. 62 * \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(), 63 * SelfAdjointView::eigenvalues() 67 MatrixBase<Derived>::eigenvalues() const function in class:Eigen::MatrixBase 89 SelfAdjointView<MatrixType, UpLo>::eigenvalues() const function in class:Eigen::SelfAdjointView [all...] |
GeneralizedEigenSolver.h | 23 * \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices 29 * The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars 31 * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and 36 * The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the 38 * singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$ 44 * Call the function compute() to compute the generalized eigenvalues and eigenvectors of 47 * eigenvalues and eigenvectors at construction time. Once the eigenvalue and 48 * eigenvectors are computed, they can be retrieved with the eigenvalues() and 55 * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver 85 /** \brief Type for vector of real scalar values eigenvalues as returned by betas() 198 EigenvalueType eigenvalues() const function in class:Eigen::GeneralizedEigenSolver [all...] |
ComplexEigenSolver.h | 24 * \brief Computes eigenvalues and eigenvectors of general complex matrices 30 * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars 32 * \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on 39 * eigenvalues and eigenvectors of a given function. The 73 /** \brief Type for vector of eigenvalues as returned by eigenvalues(). 120 * eigenvalues are computed; if false, only the eigenvalues are 148 * \f$ as returned by eigenvalues(). The eigenvectors are normalized to 159 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.") 181 const EigenvalueType& eigenvalues() const function in class:Eigen::ComplexEigenSolver [all...] |
/external/eigen/doc/examples/ |
TutorialLinAlgSelfAdjointEigenSolver.cpp | 14 cout << "The eigenvalues of A are:\n" << eigensolver.eigenvalues() << endl; 16 << "corresponding to these eigenvalues:\n"
|
/external/chromium_org/ui/gfx/geometry/ |
matrix3_f.cc | 134 float eigenvalues[3]; local 142 eigenvalues[0] = data_[M00]; 143 eigenvalues[1] = data_[M11]; 144 eigenvalues[2] = data_[M22]; 169 eigenvalues[0] = q + 2 * p * static_cast<float>(cos(phi)); 170 eigenvalues[2] = q + 2 * p * 172 eigenvalues[1] = 3 * q - eigenvalues[0] - eigenvalues[2]; 175 // Put eigenvalues in the descending order [all...] |
/external/eigen/test/ |
eigensolver_complex.cpp | 13 #include <Eigen/Eigenvalues> 50 VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); 54 VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); 55 // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus 57 verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues()); 63 VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); 72 VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); [all...] |
eigensolver_generic.cpp | 13 #include <Eigen/Eigenvalues> 37 (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); 43 ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); 45 VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues()); 51 VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); 60 VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); 81 VERIFY_RAISES_ASSERT(eig.eigenvalues()); [all...] |
eigensolver_selfadjoint.cpp | 13 #include <Eigen/Eigenvalues> 47 eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); 48 VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues()); 52 eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal(), largerEps)); 53 VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiDirect.eigenvalues()); 57 VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues()); 63 symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)) [all...] |