OpenGrok
Home
Sort by relevance
Sort by last modified time
Full Search
Definition
Symbol
File Path
History
|
|
Help
Searched
full:ieee_cos
(Results
1 - 9
of
9
) sorted by null
/external/fdlibm/
k_cos.c
21
* 1. Since
ieee_cos
(-x) =
ieee_cos
(x), we need only to consider positive x.
23
* 3.
ieee_cos
(x) is approximated by a polynomial of degree 14 on
30
* |
ieee_cos
(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
35
*
ieee_cos
(x) = 1 - x*x/2 + r
36
* since
ieee_cos
(x+y) ~
ieee_cos
(x) - ieee_sin(x)*y
37
* ~
ieee_cos
(x) - x*y,
38
* a correction term is necessary in
ieee_cos
(x) and hence
s_cos.c
14
/*
ieee_cos
(x)
28
* n ieee_sin(x)
ieee_cos
(x) ieee_tan(x)
48
double
ieee_cos
(double x)
function
50
double
ieee_cos
(x)
64
/*
ieee_cos
(Inf or NaN) is NaN */
e_jn.c
87
* Jn(x) =
ieee_cos
(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
89
* Let s=ieee_sin(x), c=
ieee_cos
(x),
100
case 0: temp =
ieee_cos
(x)+ieee_sin(x); break;
101
case 1: temp = -
ieee_cos
(x)+ieee_sin(x); break;
102
case 2: temp = -
ieee_cos
(x)-ieee_sin(x); break;
103
case 3: temp =
ieee_cos
(x)-ieee_sin(x); break;
242
* Jn(x) =
ieee_cos
(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
244
* Let s=ieee_sin(x), c=
ieee_cos
(x),
255
case 0: temp = ieee_sin(x)-
ieee_cos
(x); break;
256
case 1: temp = -ieee_sin(x)-
ieee_cos
(x); break
[
all
...]
e_j1.c
23
* j1(x) = ieee_sqrt(2/(pi*x))*(p1(x)*
ieee_cos
(x1)-q1(x)*ieee_sin(x1))
24
* y1(x) = ieee_sqrt(2/(pi*x))*(p1(x)*ieee_sin(x1)+q1(x)*
ieee_cos
(x1))
27
* cos(x1) =
ieee_cos
(x)cos(3pi/4)+ieee_sin(x)sin(3pi/4)
28
* = 1/ieee_sqrt(2) * (ieee_sin(x) -
ieee_cos
(x))
29
* sin(x1) = ieee_sin(x)cos(3pi/4)-
ieee_cos
(x)sin(3pi/4)
30
* = -1/ieee_sqrt(2) * (ieee_sin(x) +
ieee_cos
(x))
32
* sin(x) +-
ieee_cos
(x) = -
ieee_cos
(2x)/(ieee_sin(x) -+
ieee_cos
(x))
54
* y1(x) = ieee_sqrt(2/(pi*x))*(p1(x)*ieee_sin(x1)+q1(x)*
ieee_cos
(x1)
[
all
...]
e_j0.c
23
* j0(x) = ieee_sqrt(2/(pi*x))*(p0(x)*
ieee_cos
(x0)-q0(x)*ieee_sin(x0))
26
* cos(x0) =
ieee_cos
(x)cos(pi/4)+ieee_sin(x)sin(pi/4)
27
* = 1/ieee_sqrt(2) * (
ieee_cos
(x) + ieee_sin(x))
28
* sin(x0) = ieee_sin(x)cos(pi/4)-
ieee_cos
(x)sin(pi/4)
29
* = 1/ieee_sqrt(2) * (ieee_sin(x) -
ieee_cos
(x))
31
* sin(x) +-
ieee_cos
(x) = -
ieee_cos
(2x)/(ieee_sin(x) -+
ieee_cos
(x))
53
* y0(x) = ieee_sqrt(2/(pi*x))*(p0(x)*
ieee_cos
(x0)+q0(x)*ieee_sin(x0))
104
c =
ieee_cos
(x)
[
all
...]
s_sin.c
28
* n ieee_sin(x)
ieee_cos
(x) ieee_tan(x)
s_tan.c
27
* n ieee_sin(x)
ieee_cos
(x) ieee_tan(x)
fdlibm.h
106
extern double
ieee_cos
__P((double));
/libcore/luni/src/main/native/
java_lang_StrictMath.cpp
30
return
ieee_cos
(a);
Completed in 281 milliseconds