OpenGrok
Home
Sort by relevance
Sort by last modified time
Full Search
Definition
Symbol
File Path
History
|
|
Help
Searched
full:ieee_tan
(Results
1 - 7
of
7
) sorted by null
/external/fdlibm/
k_tan.c
18
* Input k indicates whether
ieee_tan
(if k = 1) or -1/tan (if k = -1) is returned.
21
* 1. Since
ieee_tan
(-x) = -
ieee_tan
(x), we need only to consider positive x.
23
* 3.
ieee_tan
(x) is approximated by a odd polynomial of degree 27 on
29
* |
ieee_tan
(x) 2 4 26 | -59.2
33
* Note:
ieee_tan
(x+y) =
ieee_tan
(x) + tan'(x)*y
34
* ~
ieee_tan
(x) + (1+x*x)*y
35
* Therefore, for better accuracy in computing
ieee_tan
(x+y), let
43
* tan(x) =
ieee_tan
(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y)
[
all
...]
s_tan.c
14
/*
ieee_tan
(x)
27
* n ieee_sin(x) ieee_cos(x)
ieee_tan
(x)
47
double
ieee_tan
(double x)
function
49
double
ieee_tan
(x)
63
/*
ieee_tan
(Inf or NaN) is NaN */
changes
66
ieee_tan
(1.7765241907548024E+269) = 1.7733884462610958E+16
s_cos.c
28
* n ieee_sin(x) ieee_cos(x)
ieee_tan
(x)
s_sin.c
28
* n ieee_sin(x) ieee_cos(x)
ieee_tan
(x)
fdlibm.h
108
extern double
ieee_tan
__P((double));
/libcore/luni/src/main/native/
java_lang_StrictMath.cpp
34
return
ieee_tan
(a);
Completed in 65 milliseconds