
Android Camera Imaging Test Suite / CTS Verifier

Document version: 1.3
Document date: 16th November, 2014

1. Introduction
2. Setup

2.1. Device setup
2.2. Host machine setup

2.2.1. Software installation
2.2.1.1. Android SDK
2.2.1.2. Python 2.7 and numpy stack (Ubuntu)
2.2.1.3. Python 2.7 and numpy stack (Linux, Windows or Mac OS X)

2.2.2. Environment setup
2.3. Physical setup

2.3.1. Example equipment list
2.3.2. Desk-side test station setup
2.3.3. Scene as viewed by camera
2.3.4. Rear vs. front camera testing

3. Running the ITS tests under CTS Verifier
3.1. Invoking the tests
3.2. Collecting test debug output
3.3. Non-automated tests

3.3.1. Sensor fusion
3.3.2. DNG noise model

4. ITS framework details (for advanced users)
4.1. Python framework overview
4.2. Device control
4.3. Image processing and analysis
4.4. Tests
4.5. Test scenes
4.6. Target exposure
4.7. Docs
4.8. List of command line args
4.9. Known issues

1. Introduction

The ITS is a framework for running tests on the images produced by an Android camera. The
general goal of each test is to configure the camera in a desired manner and capture one or
more shots, and then examine the shots to see if they contain the expected image data. Many

of the tests will require that the camera is pointed at a specific target chart or be illuminated at
a specific intensity.

The ITS framework was located in the pdk/apps/ area of the Android source in the KitKat
release, but was moved into the CTS Verifier test harness (under the cts/ area in the
source) in Lollipop. It is required that devices pass a specific set of ITS tests as a part of
Android CTS (for the camera frameworks).

Users who only want to run the ITS tests to satisfy CTS Verifier requirements need only read
Sections 2 and 3. Section 4 provides additional detail about the infrastructure for users who
may want to write their own tests, or in general understand the components of this framework
in greater detail.

2. Setup

There are three things that must be set up correctly to run the ITS tests: the device itself, a
host machine (e.g. a Linux desktop or laptop), and the physical scene that the camera will be
photographing.

2.1. Device setup

Connect the device over USB to a host machine, and grant permissions for the host to access
the device over adb.

Install the CtsVerifier.apk onto the device, following the instructions for using the CTS Verifier
application. As a quick reference, when building from source directly on the attached host
machine:

cd cts/apps/CtsVerifier
mma ­j32
adb install ­r <OUTPUT_PATH>/CtsVerifier.apk

If you are installing this from a CTS Verifier bundle (android­cts­verifier.zip) rather
than from a full Android source tree, both CtsVerifier.apk and the CameraITS/ directory
can be found at the top level of the zipped android­cts­verifier folder.

Any apps on the device that use the camera should be killed prior to running any ITS tests.
The device’s camera app can be used to line up the camera and the scene, but it should be
killed once this is done.

2.2. Host machine setup

The ITS tests require a host machine to be connected to the device under test via USB, and
make use of adb for device control and communication.

2.2.1. Software installation

2.2.1.1. Android SDK

The Android SDK must be installed, and adb must be in the executable path of the
shell/terminal that is running on the host machine.

2.2.1.2. Python 2.7 and numpy stack (Ubuntu)

Python 2.7 must be installed on the machine, along with the numpy/scipy/matplotlib/opencv
stack and the Python Imaging Library. On an Ubuntu machine running Python 2.7, the
following commands should suffice:

sudo apt­get install python­numpy
sudo apt­get install python­scipy
sudo apt­get install python­matplotlib
sudo apt­get install python­opencv

If these instructions don’t work properly, and script errors (e.g. “import” errors) are observed,
then it is recommended to instead use a bundled Python 2.7 distribution, as is described in
the next section.

2.2.1.3. Python 2.7 and numpy stack (Linux, Windows or Mac OS X)

Setting up a full numpy/scipy/matplotlib/opencv installation by installing the modules
separately is possible, however it can be complicated and time-consuming, especially on a
Windows machine. For this reason, it is highly recommended to install a bundled distribution
of Python 2.7 that comes with these modules. Some different bundles are listed here:
http://www.scipy.org/install.html.

Of these, Anaconda has been verified to work with the ITS infrastructure, and it is available on
Mac OS X, Linux, and Windows from here: http://continuum.io/downloads. After downloading
and running the Anaconda installer, configure it with the following commands (in this specific
order):

conda install opencv numpy=1.7
conda install anaconda numpy=1.7

After running these commands, the Anaconda installation should have versions of numpy,
scipy, opencv, and matplotlib that work together, however the conda install mechanism
may itself become broken. If other packages are needed, then re-install a fresh Anaconda

http://www.google.com/url?q=http%3A%2F%2Fwww.scipy.org%2Finstall.html&sa=D&sntz=1&usg=AFQjCNESTbSCIwCIAjRkmtuN9wOFt2iF9Q
http://www.google.com/url?q=http%3A%2F%2Fcontinuum.io%2Fdownloads&sa=D&sntz=1&usg=AFQjCNGoryyQdnBnKOSLlRBlRz7CJRzKcQ

distribution, use conda install to get the needed packages, and then run the above
commands.

Note that the Anaconda Python executable's directory must be at the front of your PATH
environment variable; the Anaconda installer may set this up for you automatically. Once this
is installed (and the above commands have been run), you’ll see something like the following:

> python ­­version
Python 2.7.5 :: Anaconda 1.8.0 (x86_64)

2.2.2. Environment setup

On Linux or Mac OS X, run the following command (in a terminal) from the CameraITS/
directory, from a bash shell:

source build/envsetup.sh

This will do some basic sanity checks on your Python installation, and set up the
PYTHONPATH environment variable. If no errors are printed to the terminal then the
environment is ready to run the tests.

On Windows, the bash script won't run (unless you have cygwin (which has not been tested)),
but all you need to do is set your PYTHONPATH environment variable in your shell to point to
the CameraITS/pymodules directory, giving an absolute path. Without this, you'll get
"import" errors when running the test scripts.

2.3. Physical setup

The high-level requirements for running the tests are:

● Device is in a tripod, pointed at a static scene containing a grey card in front of a white
background

● A steady (non-fluctuating) light source is illuminating the scene (though illumination
uniformity isn’t important). Don’t use a fluorescent light as this introduces flicker.

● The device is connected over USB to a host machine, and isn’t moved or jostled
during the test run.

The remainder of this section details a particular example physical setup that works well,
however any setup that satisfies the above requirements will suffice.

Note that the ITS tests were designed to only require a simple, inexpensive physical setup,
which can be easily replicated on the desk of any Android camera HAL engineer. No special
labs are needed.

2.3.1. Example equipment list

The following equipment list is used in the example setup described below.

● Light box: http://www.amazon.com/dp/B000PC4A0O
● LED desk lamp: http://www.amazon.com/dp/B00B0A18MI
● Tripod: http://www.amazon.com/dp/B0002J2TLC
● Tripod head: http://www.amazon.com/dp/B008VI7ORA
● Grey card: http://www.amazon.com/dp/B00290Y9K6

2.3.2. Desk‐side test station setup

The equipment should be set up as is depicted in the following photo (using a Nexus 5 device
as an example):

The desk lamp should be reasonably bright: bright enough that it wouldn’t be considered a
“low light” environment, but not so bright that the device’s flash won’t make any difference to
the scene illumination when turned on. Using the specific desk lamp in this example, setting
the brightness to the middle of its three adjustable brightness levels works well.

http://www.google.com/url?q=http%3A%2F%2Fwww.amazon.com%2Fdp%2FB000PC4A0O&sa=D&sntz=1&usg=AFQjCNHC0PzyVvkQwPy9Z5oqwcrUCkyOHg
http://www.google.com/url?q=http%3A%2F%2Fwww.amazon.com%2Fdp%2FB00B0A18MI&sa=D&sntz=1&usg=AFQjCNHG-imd91rg7oUnFnkuFG_wD7rmlg
http://www.google.com/url?q=http%3A%2F%2Fwww.amazon.com%2Fdp%2FB0002J2TLC&sa=D&sntz=1&usg=AFQjCNFxns-0qMGa4w22WqqKYIICdkOR5A
http://www.google.com/url?q=http%3A%2F%2Fwww.amazon.com%2Fdp%2FB008VI7ORA&sa=D&sntz=1&usg=AFQjCNGtxYWkRuC_yFrhkzry8YPE8TR9Cw
http://www.google.com/url?q=http%3A%2F%2Fwww.amazon.com%2Fdp%2FB00290Y9K6&sa=D&sntz=1&usg=AFQjCNGBL_dMSHFRhb_ZQvgIn5MbKVMY6Q

2.3.3. Scene as viewed by camera

The camera (in the tripod) and the grey card should be lined up so that a photograph of the
scene from the camera looks approximately like the following:

In particular, the grey card is roughly centered in the field of view, taking up around ½ x ½ of
the scene, with the white background visible on all sides around it. As is evident from the
image above, a high degree of precision is not required; the most important factors are that
the scene is completely static (including no light source flicker) and that the very center of the
image is within the grey card area.

2.3.4. Rear vs. front camera testing

The example shown here is for the rear camera. The ITS tests need to also be run on the
front camera (and any other cameras on the device which are exposed to the app layer), and
the tripod and camera will need to be positioned appropriately to be able to run those sets of
tests too.

Note that the tests are run separately for each camera, so it’s OK to have a single setup
which serves to test each camera one at a time, with the tripod and camera repositioned in
between each round of tests.

3. Running the ITS tests under CTS Verifier

3.1. Invoking the tests

After the device, host machine (including environment), and physical scene have been set up
as described above, the ITS tests can be run using the following process.

First, open the CTS Verifier app and in the menu of tests, scroll to “Camera ITS Test” and
select it. There is a splash-screen dialog with some brief instructions (though note that the
instructions in this doc are more detailed). Once the “OK” button is pressed, the following
screen can be seen, in which the green tick (“pass”) button is greyed out and not selectable:

Second, from the host PC, run the ITS tests for each camera on the device from the top-level
CameraITS/ directory. For example, for a device with front and rear cameras, the commands
would be:

(Line up the rear camera with the target)
python tools/run_all_tests.py camera=0

(Line up the front camera with the target)
python tools/run_all_tests.py camera=1

Each run prints out a table showing either PASS, FAIL, or SKIP for each ITS test, where
SKIP indicates that the test was passed because the device didn’t advertise the underlying
capability that was being tested; for example, if a device doesn’t advertise through the camera
interfaces that it supports DNG, then any tests related to DNG file capture will be skipped and
counted as passes.

Some tests may also report a result of FAIL*, where the asterisk means that the test did fail,
but as that particular test is not yet mandatory it doesn’t count against the device. These tests

are expected to become mandatory in some future Android release, however, so whatever
HAL bugs are causing them to fail should be fixed if at all possible.

Finally, if all tests on all cameras succeeded then the green tick “pass” button will become
available to be tapped in the CTS Verifier app that is running on the device. Tap it, and the
“Camera ITS Test” entry in the CTS Verifier menu of tests will become green.

3.2. Collecting test debug output

Each run of the ITS tests generates a large amount of intermediate data, including many of
the captured images that were used in the analysis as well as plots that are used to visualize
the results of test runs. These files are all saved to a new temporary directory, the path of
which is printed when the run_all_tests.py script begins.

These output files will be invaluable for any developers who are debugging HAL bugs that are
resulting in test failures.

3.3. Non‐automated tests

Not all tests are currently fully automated. Automated tests are invoked by the
run_all_tests.py script, however non-automated tests must be manually run, and
manually verified to pass.

3.3.1. Sensor fusion

The test for sensor fusion requires physical movement of the device in a constrained manner,
in addition to a checkerboard target. The tests/sensor_fusion directory contains both
the test as well as the PDF documentation for how to set up and run it.

A device may only claim to support sensor fusion if this test is passed. Support for sensor
fusion is advertised by returning 1 for the android.sensor.info.timestampSource
static metadata (which corresponds to the REALTIME capability level for this setting).

This test must be passed for each camera device that claims to support sensor fusion.

3.3.2. DNG noise model

Devices which advertise the ability to capture RAW/DNG must also provide a noise profile in
the capture result metadata of each raw shot. The tests/dng_noise_model directory
contains a script (dng_noise_model.py) to generate this noise model along with some PDF
documentation explaining how to set up and run it. The primary output of this script is a C
code snippet than can be cut-and-pasted into the camera HAL, to implement the noise model
for the device. Note that this is done per-camera-model, not per-unit, meaning that each

camera on a phone (e.g. Nexus 5 front-facing and rear-facing cameras) will have its own
generated noise profile, and these noise profiles will be shared across all Nexus 5 units.

Put another way, a vendor or OEM who is shipping an Android product that claims RAW/DNG
support is expected to run the dng_noise_model.py script to generate the noise model that
is embedded into the camera HAL, for each camera on the product that claims support (e.g.
front + back).

Separately, there is an automated ITS test that validates that the noise model provided by the
camera HAL is correct; this is tests/scene1/test_dng_noise_model.py.

4. ITS framework details (for advanced users)

This section goes into more detail about the ITS framework, and users who are only
interested in running the ITS tests as a part of CTS Verifier need not read any further.

The ITS infrastructure provides a very general framework for doing image-based testing of the
device, by allowing arbitrary captures to be collected and analyzed using a powerful numerical
framework (numpy). Users who are interested in learning how the tests work, or in writing
their own tests, will find this section relevant.

4.1. Python framework overview

The Python modules are under the pymodules/ directory, in the its package.

● its.device: Encapsulates communication with the ITS service included in the CTS
Verifier APK that is running on the device

● its.objects: Contains a collection of functions for creating Python objects
corresponding to the Java objects which the ITS service uses

● its.image: Contains a collection of functions (built on numpy arrays) for processing
captured images

● its.error: The exception/error class used in this framework
● its.target: Functions to set and measure the exposure level to use for manual

shots in tests, to ensure that the images are exposed well for the target scene
● its.dng: Functions to work with DNG metadata
● its.caps: Functions to encapsulate querying for device capabilities

Some of these module have associated unit tests; to run the unit tests, execute the modules
(rather than importing them).

4.2. Device control

The its.device.ItsSession class encapsulates a session with a connected device

https://googleplex-android-review.git.corp.google.com/#/c/588467/1/apps/CameraITS/tests/scene1/test_dng_noise_model.py

under test (which is running the CTS Verifier APK). The session is over TCP, which is
forwarded over ADB.

As an overview, the its.device.ItsSession.do_capture() function takes a Python
dictionary object as an argument, converts that object to JSON, and sends it to the device
over tcp which then deserializes from the JSON object representation to Camera2 Java
objects (CaptureRequest) which are used to specify one or more captures. Once the
captures are complete, the resultant images are copied back to the host machine (over TCP
again), along with JSON representations of the CaptureResult and other objects that
describe the shot that was actually taken.

The Python capture request object(s) can contain key/value entries corresponding to any of
the Java CaptureRequest object fields.

The output surface's width, height, and format can also be specified. Currently supported
formats are "jpg", "raw", "raw10", "dng", and "yuv", where "yuv" is YUV420 fully planar. The
default output surface is a full sensor YUV420 frame.

The metadata that is returned along with the captured images is also in JSON format,
serialized from the CaptureRequest and CaptureResult objects that were passed to the
capture listener, as well as the CameraCharacteristics object.

4.3. Image processing and analysis

The its.image module is a collection of Python functions, built on top of numpy arrays, for
manipulating captured images.

Note that it's important to do heavy image processing using the efficient numpy ndarray
operations, rather than writing complex loops in standard Python to process pixels. Refer to
online docs and examples of numpy for information on this.

4.4. Tests

The tests/ directory contains a number of self-contained test scripts. Most of the tests save
various files in the current directory. To have all the output files put into a separate directory,
run the script from that directory, for example:

mkdir out
cd out
python ../tests/scene1/test_linearity.py

Any test can be specified to reboot the camera prior to capturing any shots, by adding a
reboot or reboot=N command line argument, where N is the number of seconds to wait
after rebooting the device before sending any commands; the default is 30 seconds.

python tests/scene1/test_linearity.py reboot
python tests/scene1/test_linearity.py reboot=20

It's possible that a test could leave the camera in a bad state, in particular if there are any
bugs in the HAL or the camera framework. Rebooting the device can be used to get it into a
known clean state again.

By default, camera device id 0 is opened when the script connects to the unit, however this
can be specified by adding a camera=1 or similar argument to the script command line. On a
typical device, camera id 0 is the main (rear) camera, and camera id 1 is the front-facing
camera.

python tests/scene1/test_linearity.py camera=1

The tools/run_all_tests.py script should be executed from the top-level CameraITS
directory, and it will run all of the tests in an automated fashion, saving the generated output
files along with the stdout and stderr dumps to a temporary directory.

python tools/run_all_tests.py

This can be run with the camera, reboot and/or noinit arguments (see below), and in
general any args provided to this command line will be passed to each script as it is executed.

python tools/run_all_tests.py camera=1

When running individual tests from the command line (as in the examples here), each test run
will ensure that the ITS service is running on the device and is ready to accept TCP
connections. When using a separate test harness to control this infrastructure, the noinit
command line argument can be provided to skip this step; in this case, the test will just try to
open a socket to the service on the device, and will fail if it's not running and ready.

python tests/scene1/test_linearity.py noinit

4.5. Test scenes

The tests are grouped into scene folders: tests/scene0/, tests/scene1/, etc. Each
assumes some specific details about the scene that the camera is pointing at while running
those tests.

● Scene 0: No requirements. The camera camera be pointing at anything (including
being face down on the desk, or using the same setup as scene 1).

● Scene 1: The camera is on a tripod pointing at a static scene containing a grey card
and white background, under a constant (stable) relatively bright illumination source.
This is the scene that is described above for the CTS Verifier physical setup.

The tests/inprog directory contains a mix of unfinished, in-progress, and incomplete tests.
These may or may not be useful in testing a camera HAL implementation, and if and when
these tests are completed they will be moved into the scene folders.

4.6. Target exposure

The tools/config.py script is a wrapper for the its.target module, which is used to
set an exposure level based on the scene that the camera is imaging. The purpose of this is
to be able to have tests which use hard-coded manual exposure controls, while at the same
time ensuring that the captured images are properly exposed for the test (and aren't clamped
to white or black).

If no argument is provided, the script will use the camera to measure the scene to determine
the exposure level. An argument can be provided to hard-code the exposure level.

python tools/config.py
python tools/config.py 16531519962

This creates a file named its.target.cfg in the current directory, storing the target
exposure level. Tests that use the its.target module will be reusing this value, if they are
run from the same directory and if they contain the target command line argument:

python tests/scene1/test_linearity.py target

If the target argument isn't present, then the script won't use any cached
its.target.cfg values that may be present in the current directory.

In general, there will be no need for a developer/user to manually hard-code the exposure
level and use the target argument as described here, except for when a camera HAL is in
the early stage of bring-up and not enough of the functionality is complete yet for the full tests
to be able to run. This mechanism allows some of the tests to still be run on such a device.

4.7. Docs

The pydoc tool can generate docs for the ITS Python modules, using the following
commands (where the -w option indicates that the docs should be saved in a HTML file):

pydoc its.device
pydoc ­w its.device

There is also a tutorial script in the tests/ folder (named tutorial.py). It illustrates a
number of the its.image and its.device primitives, and shows how to work with image
data in general using this infrastructure. (Its code is commented with explanatory remarks.)

python tests/tutorial.py

4.8. List of command line args

Just to summarize them in one place, the above document sections describe the following
command line arguments that may be provided when running a test:

● reboot
● reboot=N
● target
● noinit
● camera=N

4.9. Known issues

The Python test scripts don't work in a stand-alone fashion if multiple devices are connected
to the host machine; currently, the its.device module uses a simplistic “adb ­d” approach
to communicating with the device, assuming that there is only one device connected.

