1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for Objective C declarations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "clang/AST/ASTConsumer.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/ASTMutationListener.h" 18 #include "clang/AST/DataRecursiveASTVisitor.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/Expr.h" 21 #include "clang/AST/ExprObjC.h" 22 #include "clang/Basic/SourceManager.h" 23 #include "clang/Sema/DeclSpec.h" 24 #include "clang/Sema/ExternalSemaSource.h" 25 #include "clang/Sema/Lookup.h" 26 #include "clang/Sema/Scope.h" 27 #include "clang/Sema/ScopeInfo.h" 28 #include "llvm/ADT/DenseSet.h" 29 30 using namespace clang; 31 32 /// Check whether the given method, which must be in the 'init' 33 /// family, is a valid member of that family. 34 /// 35 /// \param receiverTypeIfCall - if null, check this as if declaring it; 36 /// if non-null, check this as if making a call to it with the given 37 /// receiver type 38 /// 39 /// \return true to indicate that there was an error and appropriate 40 /// actions were taken 41 bool Sema::checkInitMethod(ObjCMethodDecl *method, 42 QualType receiverTypeIfCall) { 43 if (method->isInvalidDecl()) return true; 44 45 // This castAs is safe: methods that don't return an object 46 // pointer won't be inferred as inits and will reject an explicit 47 // objc_method_family(init). 48 49 // We ignore protocols here. Should we? What about Class? 50 51 const ObjCObjectType *result = 52 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType(); 53 54 if (result->isObjCId()) { 55 return false; 56 } else if (result->isObjCClass()) { 57 // fall through: always an error 58 } else { 59 ObjCInterfaceDecl *resultClass = result->getInterface(); 60 assert(resultClass && "unexpected object type!"); 61 62 // It's okay for the result type to still be a forward declaration 63 // if we're checking an interface declaration. 64 if (!resultClass->hasDefinition()) { 65 if (receiverTypeIfCall.isNull() && 66 !isa<ObjCImplementationDecl>(method->getDeclContext())) 67 return false; 68 69 // Otherwise, we try to compare class types. 70 } else { 71 // If this method was declared in a protocol, we can't check 72 // anything unless we have a receiver type that's an interface. 73 const ObjCInterfaceDecl *receiverClass = nullptr; 74 if (isa<ObjCProtocolDecl>(method->getDeclContext())) { 75 if (receiverTypeIfCall.isNull()) 76 return false; 77 78 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() 79 ->getInterfaceDecl(); 80 81 // This can be null for calls to e.g. id<Foo>. 82 if (!receiverClass) return false; 83 } else { 84 receiverClass = method->getClassInterface(); 85 assert(receiverClass && "method not associated with a class!"); 86 } 87 88 // If either class is a subclass of the other, it's fine. 89 if (receiverClass->isSuperClassOf(resultClass) || 90 resultClass->isSuperClassOf(receiverClass)) 91 return false; 92 } 93 } 94 95 SourceLocation loc = method->getLocation(); 96 97 // If we're in a system header, and this is not a call, just make 98 // the method unusable. 99 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) { 100 method->addAttr(UnavailableAttr::CreateImplicit(Context, 101 "init method returns a type unrelated to its receiver type", 102 loc)); 103 return true; 104 } 105 106 // Otherwise, it's an error. 107 Diag(loc, diag::err_arc_init_method_unrelated_result_type); 108 method->setInvalidDecl(); 109 return true; 110 } 111 112 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, 113 const ObjCMethodDecl *Overridden) { 114 if (Overridden->hasRelatedResultType() && 115 !NewMethod->hasRelatedResultType()) { 116 // This can only happen when the method follows a naming convention that 117 // implies a related result type, and the original (overridden) method has 118 // a suitable return type, but the new (overriding) method does not have 119 // a suitable return type. 120 QualType ResultType = NewMethod->getReturnType(); 121 SourceRange ResultTypeRange; 122 if (const TypeSourceInfo *ResultTypeInfo = 123 NewMethod->getReturnTypeSourceInfo()) 124 ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange(); 125 126 // Figure out which class this method is part of, if any. 127 ObjCInterfaceDecl *CurrentClass 128 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext()); 129 if (!CurrentClass) { 130 DeclContext *DC = NewMethod->getDeclContext(); 131 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC)) 132 CurrentClass = Cat->getClassInterface(); 133 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC)) 134 CurrentClass = Impl->getClassInterface(); 135 else if (ObjCCategoryImplDecl *CatImpl 136 = dyn_cast<ObjCCategoryImplDecl>(DC)) 137 CurrentClass = CatImpl->getClassInterface(); 138 } 139 140 if (CurrentClass) { 141 Diag(NewMethod->getLocation(), 142 diag::warn_related_result_type_compatibility_class) 143 << Context.getObjCInterfaceType(CurrentClass) 144 << ResultType 145 << ResultTypeRange; 146 } else { 147 Diag(NewMethod->getLocation(), 148 diag::warn_related_result_type_compatibility_protocol) 149 << ResultType 150 << ResultTypeRange; 151 } 152 153 if (ObjCMethodFamily Family = Overridden->getMethodFamily()) 154 Diag(Overridden->getLocation(), 155 diag::note_related_result_type_family) 156 << /*overridden method*/ 0 157 << Family; 158 else 159 Diag(Overridden->getLocation(), 160 diag::note_related_result_type_overridden); 161 } 162 if (getLangOpts().ObjCAutoRefCount) { 163 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() != 164 Overridden->hasAttr<NSReturnsRetainedAttr>())) { 165 Diag(NewMethod->getLocation(), 166 diag::err_nsreturns_retained_attribute_mismatch) << 1; 167 Diag(Overridden->getLocation(), diag::note_previous_decl) 168 << "method"; 169 } 170 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() != 171 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) { 172 Diag(NewMethod->getLocation(), 173 diag::err_nsreturns_retained_attribute_mismatch) << 0; 174 Diag(Overridden->getLocation(), diag::note_previous_decl) 175 << "method"; 176 } 177 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(), 178 oe = Overridden->param_end(); 179 for (ObjCMethodDecl::param_iterator 180 ni = NewMethod->param_begin(), ne = NewMethod->param_end(); 181 ni != ne && oi != oe; ++ni, ++oi) { 182 const ParmVarDecl *oldDecl = (*oi); 183 ParmVarDecl *newDecl = (*ni); 184 if (newDecl->hasAttr<NSConsumedAttr>() != 185 oldDecl->hasAttr<NSConsumedAttr>()) { 186 Diag(newDecl->getLocation(), 187 diag::err_nsconsumed_attribute_mismatch); 188 Diag(oldDecl->getLocation(), diag::note_previous_decl) 189 << "parameter"; 190 } 191 } 192 } 193 } 194 195 /// \brief Check a method declaration for compatibility with the Objective-C 196 /// ARC conventions. 197 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) { 198 ObjCMethodFamily family = method->getMethodFamily(); 199 switch (family) { 200 case OMF_None: 201 case OMF_finalize: 202 case OMF_retain: 203 case OMF_release: 204 case OMF_autorelease: 205 case OMF_retainCount: 206 case OMF_self: 207 case OMF_performSelector: 208 return false; 209 210 case OMF_dealloc: 211 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) { 212 SourceRange ResultTypeRange; 213 if (const TypeSourceInfo *ResultTypeInfo = 214 method->getReturnTypeSourceInfo()) 215 ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange(); 216 if (ResultTypeRange.isInvalid()) 217 Diag(method->getLocation(), diag::error_dealloc_bad_result_type) 218 << method->getReturnType() 219 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)"); 220 else 221 Diag(method->getLocation(), diag::error_dealloc_bad_result_type) 222 << method->getReturnType() 223 << FixItHint::CreateReplacement(ResultTypeRange, "void"); 224 return true; 225 } 226 return false; 227 228 case OMF_init: 229 // If the method doesn't obey the init rules, don't bother annotating it. 230 if (checkInitMethod(method, QualType())) 231 return true; 232 233 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context)); 234 235 // Don't add a second copy of this attribute, but otherwise don't 236 // let it be suppressed. 237 if (method->hasAttr<NSReturnsRetainedAttr>()) 238 return false; 239 break; 240 241 case OMF_alloc: 242 case OMF_copy: 243 case OMF_mutableCopy: 244 case OMF_new: 245 if (method->hasAttr<NSReturnsRetainedAttr>() || 246 method->hasAttr<NSReturnsNotRetainedAttr>() || 247 method->hasAttr<NSReturnsAutoreleasedAttr>()) 248 return false; 249 break; 250 } 251 252 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context)); 253 return false; 254 } 255 256 static void DiagnoseObjCImplementedDeprecations(Sema &S, 257 NamedDecl *ND, 258 SourceLocation ImplLoc, 259 int select) { 260 if (ND && ND->isDeprecated()) { 261 S.Diag(ImplLoc, diag::warn_deprecated_def) << select; 262 if (select == 0) 263 S.Diag(ND->getLocation(), diag::note_method_declared_at) 264 << ND->getDeclName(); 265 else 266 S.Diag(ND->getLocation(), diag::note_previous_decl) << "class"; 267 } 268 } 269 270 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global 271 /// pool. 272 void Sema::AddAnyMethodToGlobalPool(Decl *D) { 273 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 274 275 // If we don't have a valid method decl, simply return. 276 if (!MDecl) 277 return; 278 if (MDecl->isInstanceMethod()) 279 AddInstanceMethodToGlobalPool(MDecl, true); 280 else 281 AddFactoryMethodToGlobalPool(MDecl, true); 282 } 283 284 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer 285 /// has explicit ownership attribute; false otherwise. 286 static bool 287 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) { 288 QualType T = Param->getType(); 289 290 if (const PointerType *PT = T->getAs<PointerType>()) { 291 T = PT->getPointeeType(); 292 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { 293 T = RT->getPointeeType(); 294 } else { 295 return true; 296 } 297 298 // If we have a lifetime qualifier, but it's local, we must have 299 // inferred it. So, it is implicit. 300 return !T.getLocalQualifiers().hasObjCLifetime(); 301 } 302 303 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible 304 /// and user declared, in the method definition's AST. 305 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { 306 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused"); 307 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 308 309 // If we don't have a valid method decl, simply return. 310 if (!MDecl) 311 return; 312 313 // Allow all of Sema to see that we are entering a method definition. 314 PushDeclContext(FnBodyScope, MDecl); 315 PushFunctionScope(); 316 317 // Create Decl objects for each parameter, entrring them in the scope for 318 // binding to their use. 319 320 // Insert the invisible arguments, self and _cmd! 321 MDecl->createImplicitParams(Context, MDecl->getClassInterface()); 322 323 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); 324 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); 325 326 // The ObjC parser requires parameter names so there's no need to check. 327 CheckParmsForFunctionDef(MDecl->param_begin(), MDecl->param_end(), 328 /*CheckParameterNames=*/false); 329 330 // Introduce all of the other parameters into this scope. 331 for (auto *Param : MDecl->params()) { 332 if (!Param->isInvalidDecl() && 333 getLangOpts().ObjCAutoRefCount && 334 !HasExplicitOwnershipAttr(*this, Param)) 335 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) << 336 Param->getType(); 337 338 if (Param->getIdentifier()) 339 PushOnScopeChains(Param, FnBodyScope); 340 } 341 342 // In ARC, disallow definition of retain/release/autorelease/retainCount 343 if (getLangOpts().ObjCAutoRefCount) { 344 switch (MDecl->getMethodFamily()) { 345 case OMF_retain: 346 case OMF_retainCount: 347 case OMF_release: 348 case OMF_autorelease: 349 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def) 350 << 0 << MDecl->getSelector(); 351 break; 352 353 case OMF_None: 354 case OMF_dealloc: 355 case OMF_finalize: 356 case OMF_alloc: 357 case OMF_init: 358 case OMF_mutableCopy: 359 case OMF_copy: 360 case OMF_new: 361 case OMF_self: 362 case OMF_performSelector: 363 break; 364 } 365 } 366 367 // Warn on deprecated methods under -Wdeprecated-implementations, 368 // and prepare for warning on missing super calls. 369 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) { 370 ObjCMethodDecl *IMD = 371 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()); 372 373 if (IMD) { 374 ObjCImplDecl *ImplDeclOfMethodDef = 375 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext()); 376 ObjCContainerDecl *ContDeclOfMethodDecl = 377 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext()); 378 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr; 379 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl)) 380 ImplDeclOfMethodDecl = OID->getImplementation(); 381 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) { 382 if (CD->IsClassExtension()) { 383 if (ObjCInterfaceDecl *OID = CD->getClassInterface()) 384 ImplDeclOfMethodDecl = OID->getImplementation(); 385 } else 386 ImplDeclOfMethodDecl = CD->getImplementation(); 387 } 388 // No need to issue deprecated warning if deprecated mehod in class/category 389 // is being implemented in its own implementation (no overriding is involved). 390 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef) 391 DiagnoseObjCImplementedDeprecations(*this, 392 dyn_cast<NamedDecl>(IMD), 393 MDecl->getLocation(), 0); 394 } 395 396 if (MDecl->getMethodFamily() == OMF_init) { 397 if (MDecl->isDesignatedInitializerForTheInterface()) { 398 getCurFunction()->ObjCIsDesignatedInit = true; 399 getCurFunction()->ObjCWarnForNoDesignatedInitChain = 400 IC->getSuperClass() != nullptr; 401 } else if (IC->hasDesignatedInitializers()) { 402 getCurFunction()->ObjCIsSecondaryInit = true; 403 getCurFunction()->ObjCWarnForNoInitDelegation = true; 404 } 405 } 406 407 // If this is "dealloc" or "finalize", set some bit here. 408 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false. 409 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set. 410 // Only do this if the current class actually has a superclass. 411 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) { 412 ObjCMethodFamily Family = MDecl->getMethodFamily(); 413 if (Family == OMF_dealloc) { 414 if (!(getLangOpts().ObjCAutoRefCount || 415 getLangOpts().getGC() == LangOptions::GCOnly)) 416 getCurFunction()->ObjCShouldCallSuper = true; 417 418 } else if (Family == OMF_finalize) { 419 if (Context.getLangOpts().getGC() != LangOptions::NonGC) 420 getCurFunction()->ObjCShouldCallSuper = true; 421 422 } else { 423 const ObjCMethodDecl *SuperMethod = 424 SuperClass->lookupMethod(MDecl->getSelector(), 425 MDecl->isInstanceMethod()); 426 getCurFunction()->ObjCShouldCallSuper = 427 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>()); 428 } 429 } 430 } 431 } 432 433 namespace { 434 435 // Callback to only accept typo corrections that are Objective-C classes. 436 // If an ObjCInterfaceDecl* is given to the constructor, then the validation 437 // function will reject corrections to that class. 438 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback { 439 public: 440 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {} 441 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl) 442 : CurrentIDecl(IDecl) {} 443 444 bool ValidateCandidate(const TypoCorrection &candidate) override { 445 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>(); 446 return ID && !declaresSameEntity(ID, CurrentIDecl); 447 } 448 449 private: 450 ObjCInterfaceDecl *CurrentIDecl; 451 }; 452 453 } 454 455 Decl *Sema:: 456 ActOnStartClassInterface(SourceLocation AtInterfaceLoc, 457 IdentifierInfo *ClassName, SourceLocation ClassLoc, 458 IdentifierInfo *SuperName, SourceLocation SuperLoc, 459 Decl * const *ProtoRefs, unsigned NumProtoRefs, 460 const SourceLocation *ProtoLocs, 461 SourceLocation EndProtoLoc, AttributeList *AttrList) { 462 assert(ClassName && "Missing class identifier"); 463 464 // Check for another declaration kind with the same name. 465 NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc, 466 LookupOrdinaryName, ForRedeclaration); 467 468 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 469 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 470 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 471 } 472 473 // Create a declaration to describe this @interface. 474 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 475 476 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { 477 // A previous decl with a different name is because of 478 // @compatibility_alias, for example: 479 // \code 480 // @class NewImage; 481 // @compatibility_alias OldImage NewImage; 482 // \endcode 483 // A lookup for 'OldImage' will return the 'NewImage' decl. 484 // 485 // In such a case use the real declaration name, instead of the alias one, 486 // otherwise we will break IdentifierResolver and redecls-chain invariants. 487 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl 488 // has been aliased. 489 ClassName = PrevIDecl->getIdentifier(); 490 } 491 492 ObjCInterfaceDecl *IDecl 493 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName, 494 PrevIDecl, ClassLoc); 495 496 if (PrevIDecl) { 497 // Class already seen. Was it a definition? 498 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { 499 Diag(AtInterfaceLoc, diag::err_duplicate_class_def) 500 << PrevIDecl->getDeclName(); 501 Diag(Def->getLocation(), diag::note_previous_definition); 502 IDecl->setInvalidDecl(); 503 } 504 } 505 506 if (AttrList) 507 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 508 PushOnScopeChains(IDecl, TUScope); 509 510 // Start the definition of this class. If we're in a redefinition case, there 511 // may already be a definition, so we'll end up adding to it. 512 if (!IDecl->hasDefinition()) 513 IDecl->startDefinition(); 514 515 if (SuperName) { 516 // Check if a different kind of symbol declared in this scope. 517 PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 518 LookupOrdinaryName); 519 520 if (!PrevDecl) { 521 // Try to correct for a typo in the superclass name without correcting 522 // to the class we're defining. 523 ObjCInterfaceValidatorCCC Validator(IDecl); 524 if (TypoCorrection Corrected = CorrectTypo( 525 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope, 526 nullptr, Validator, CTK_ErrorRecovery)) { 527 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest) 528 << SuperName << ClassName); 529 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); 530 } 531 } 532 533 if (declaresSameEntity(PrevDecl, IDecl)) { 534 Diag(SuperLoc, diag::err_recursive_superclass) 535 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 536 IDecl->setEndOfDefinitionLoc(ClassLoc); 537 } else { 538 ObjCInterfaceDecl *SuperClassDecl = 539 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 540 541 // Diagnose classes that inherit from deprecated classes. 542 if (SuperClassDecl) 543 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); 544 545 if (PrevDecl && !SuperClassDecl) { 546 // The previous declaration was not a class decl. Check if we have a 547 // typedef. If we do, get the underlying class type. 548 if (const TypedefNameDecl *TDecl = 549 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 550 QualType T = TDecl->getUnderlyingType(); 551 if (T->isObjCObjectType()) { 552 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) { 553 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl); 554 // This handles the following case: 555 // @interface NewI @end 556 // typedef NewI DeprI __attribute__((deprecated("blah"))) 557 // @interface SI : DeprI /* warn here */ @end 558 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc); 559 } 560 } 561 } 562 563 // This handles the following case: 564 // 565 // typedef int SuperClass; 566 // @interface MyClass : SuperClass {} @end 567 // 568 if (!SuperClassDecl) { 569 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; 570 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 571 } 572 } 573 574 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 575 if (!SuperClassDecl) 576 Diag(SuperLoc, diag::err_undef_superclass) 577 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 578 else if (RequireCompleteType(SuperLoc, 579 Context.getObjCInterfaceType(SuperClassDecl), 580 diag::err_forward_superclass, 581 SuperClassDecl->getDeclName(), 582 ClassName, 583 SourceRange(AtInterfaceLoc, ClassLoc))) { 584 SuperClassDecl = nullptr; 585 } 586 } 587 IDecl->setSuperClass(SuperClassDecl); 588 IDecl->setSuperClassLoc(SuperLoc); 589 IDecl->setEndOfDefinitionLoc(SuperLoc); 590 } 591 } else { // we have a root class. 592 IDecl->setEndOfDefinitionLoc(ClassLoc); 593 } 594 595 // Check then save referenced protocols. 596 if (NumProtoRefs) { 597 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 598 ProtoLocs, Context); 599 IDecl->setEndOfDefinitionLoc(EndProtoLoc); 600 } 601 602 CheckObjCDeclScope(IDecl); 603 return ActOnObjCContainerStartDefinition(IDecl); 604 } 605 606 /// ActOnTypedefedProtocols - this action finds protocol list as part of the 607 /// typedef'ed use for a qualified super class and adds them to the list 608 /// of the protocols. 609 void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs, 610 IdentifierInfo *SuperName, 611 SourceLocation SuperLoc) { 612 if (!SuperName) 613 return; 614 NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 615 LookupOrdinaryName); 616 if (!IDecl) 617 return; 618 619 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) { 620 QualType T = TDecl->getUnderlyingType(); 621 if (T->isObjCObjectType()) 622 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) 623 for (auto *I : OPT->quals()) 624 ProtocolRefs.push_back(I); 625 } 626 } 627 628 /// ActOnCompatibilityAlias - this action is called after complete parsing of 629 /// a \@compatibility_alias declaration. It sets up the alias relationships. 630 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc, 631 IdentifierInfo *AliasName, 632 SourceLocation AliasLocation, 633 IdentifierInfo *ClassName, 634 SourceLocation ClassLocation) { 635 // Look for previous declaration of alias name 636 NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation, 637 LookupOrdinaryName, ForRedeclaration); 638 if (ADecl) { 639 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; 640 Diag(ADecl->getLocation(), diag::note_previous_declaration); 641 return nullptr; 642 } 643 // Check for class declaration 644 NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 645 LookupOrdinaryName, ForRedeclaration); 646 if (const TypedefNameDecl *TDecl = 647 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) { 648 QualType T = TDecl->getUnderlyingType(); 649 if (T->isObjCObjectType()) { 650 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) { 651 ClassName = IDecl->getIdentifier(); 652 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 653 LookupOrdinaryName, ForRedeclaration); 654 } 655 } 656 } 657 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU); 658 if (!CDecl) { 659 Diag(ClassLocation, diag::warn_undef_interface) << ClassName; 660 if (CDeclU) 661 Diag(CDeclU->getLocation(), diag::note_previous_declaration); 662 return nullptr; 663 } 664 665 // Everything checked out, instantiate a new alias declaration AST. 666 ObjCCompatibleAliasDecl *AliasDecl = 667 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl); 668 669 if (!CheckObjCDeclScope(AliasDecl)) 670 PushOnScopeChains(AliasDecl, TUScope); 671 672 return AliasDecl; 673 } 674 675 bool Sema::CheckForwardProtocolDeclarationForCircularDependency( 676 IdentifierInfo *PName, 677 SourceLocation &Ploc, SourceLocation PrevLoc, 678 const ObjCList<ObjCProtocolDecl> &PList) { 679 680 bool res = false; 681 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), 682 E = PList.end(); I != E; ++I) { 683 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), 684 Ploc)) { 685 if (PDecl->getIdentifier() == PName) { 686 Diag(Ploc, diag::err_protocol_has_circular_dependency); 687 Diag(PrevLoc, diag::note_previous_definition); 688 res = true; 689 } 690 691 if (!PDecl->hasDefinition()) 692 continue; 693 694 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, 695 PDecl->getLocation(), PDecl->getReferencedProtocols())) 696 res = true; 697 } 698 } 699 return res; 700 } 701 702 Decl * 703 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc, 704 IdentifierInfo *ProtocolName, 705 SourceLocation ProtocolLoc, 706 Decl * const *ProtoRefs, 707 unsigned NumProtoRefs, 708 const SourceLocation *ProtoLocs, 709 SourceLocation EndProtoLoc, 710 AttributeList *AttrList) { 711 bool err = false; 712 // FIXME: Deal with AttrList. 713 assert(ProtocolName && "Missing protocol identifier"); 714 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc, 715 ForRedeclaration); 716 ObjCProtocolDecl *PDecl = nullptr; 717 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) { 718 // If we already have a definition, complain. 719 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; 720 Diag(Def->getLocation(), diag::note_previous_definition); 721 722 // Create a new protocol that is completely distinct from previous 723 // declarations, and do not make this protocol available for name lookup. 724 // That way, we'll end up completely ignoring the duplicate. 725 // FIXME: Can we turn this into an error? 726 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 727 ProtocolLoc, AtProtoInterfaceLoc, 728 /*PrevDecl=*/nullptr); 729 PDecl->startDefinition(); 730 } else { 731 if (PrevDecl) { 732 // Check for circular dependencies among protocol declarations. This can 733 // only happen if this protocol was forward-declared. 734 ObjCList<ObjCProtocolDecl> PList; 735 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context); 736 err = CheckForwardProtocolDeclarationForCircularDependency( 737 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList); 738 } 739 740 // Create the new declaration. 741 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 742 ProtocolLoc, AtProtoInterfaceLoc, 743 /*PrevDecl=*/PrevDecl); 744 745 PushOnScopeChains(PDecl, TUScope); 746 PDecl->startDefinition(); 747 } 748 749 if (AttrList) 750 ProcessDeclAttributeList(TUScope, PDecl, AttrList); 751 752 // Merge attributes from previous declarations. 753 if (PrevDecl) 754 mergeDeclAttributes(PDecl, PrevDecl); 755 756 if (!err && NumProtoRefs ) { 757 /// Check then save referenced protocols. 758 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 759 ProtoLocs, Context); 760 } 761 762 CheckObjCDeclScope(PDecl); 763 return ActOnObjCContainerStartDefinition(PDecl); 764 } 765 766 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl, 767 ObjCProtocolDecl *&UndefinedProtocol) { 768 if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) { 769 UndefinedProtocol = PDecl; 770 return true; 771 } 772 773 for (auto *PI : PDecl->protocols()) 774 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) { 775 UndefinedProtocol = PI; 776 return true; 777 } 778 return false; 779 } 780 781 /// FindProtocolDeclaration - This routine looks up protocols and 782 /// issues an error if they are not declared. It returns list of 783 /// protocol declarations in its 'Protocols' argument. 784 void 785 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, 786 const IdentifierLocPair *ProtocolId, 787 unsigned NumProtocols, 788 SmallVectorImpl<Decl *> &Protocols) { 789 for (unsigned i = 0; i != NumProtocols; ++i) { 790 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first, 791 ProtocolId[i].second); 792 if (!PDecl) { 793 DeclFilterCCC<ObjCProtocolDecl> Validator; 794 TypoCorrection Corrected = CorrectTypo( 795 DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second), 796 LookupObjCProtocolName, TUScope, nullptr, Validator, 797 CTK_ErrorRecovery); 798 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) 799 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest) 800 << ProtocolId[i].first); 801 } 802 803 if (!PDecl) { 804 Diag(ProtocolId[i].second, diag::err_undeclared_protocol) 805 << ProtocolId[i].first; 806 continue; 807 } 808 // If this is a forward protocol declaration, get its definition. 809 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition()) 810 PDecl = PDecl->getDefinition(); 811 812 (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second); 813 814 // If this is a forward declaration and we are supposed to warn in this 815 // case, do it. 816 // FIXME: Recover nicely in the hidden case. 817 ObjCProtocolDecl *UndefinedProtocol; 818 819 if (WarnOnDeclarations && 820 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) { 821 Diag(ProtocolId[i].second, diag::warn_undef_protocolref) 822 << ProtocolId[i].first; 823 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined) 824 << UndefinedProtocol; 825 } 826 Protocols.push_back(PDecl); 827 } 828 } 829 830 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of 831 /// a class method in its extension. 832 /// 833 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, 834 ObjCInterfaceDecl *ID) { 835 if (!ID) 836 return; // Possibly due to previous error 837 838 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; 839 for (auto *MD : ID->methods()) 840 MethodMap[MD->getSelector()] = MD; 841 842 if (MethodMap.empty()) 843 return; 844 for (const auto *Method : CAT->methods()) { 845 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; 846 if (PrevMethod && 847 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) && 848 !MatchTwoMethodDeclarations(Method, PrevMethod)) { 849 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 850 << Method->getDeclName(); 851 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 852 } 853 } 854 } 855 856 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo; 857 Sema::DeclGroupPtrTy 858 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, 859 const IdentifierLocPair *IdentList, 860 unsigned NumElts, 861 AttributeList *attrList) { 862 SmallVector<Decl *, 8> DeclsInGroup; 863 for (unsigned i = 0; i != NumElts; ++i) { 864 IdentifierInfo *Ident = IdentList[i].first; 865 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second, 866 ForRedeclaration); 867 ObjCProtocolDecl *PDecl 868 = ObjCProtocolDecl::Create(Context, CurContext, Ident, 869 IdentList[i].second, AtProtocolLoc, 870 PrevDecl); 871 872 PushOnScopeChains(PDecl, TUScope); 873 CheckObjCDeclScope(PDecl); 874 875 if (attrList) 876 ProcessDeclAttributeList(TUScope, PDecl, attrList); 877 878 if (PrevDecl) 879 mergeDeclAttributes(PDecl, PrevDecl); 880 881 DeclsInGroup.push_back(PDecl); 882 } 883 884 return BuildDeclaratorGroup(DeclsInGroup, false); 885 } 886 887 Decl *Sema:: 888 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, 889 IdentifierInfo *ClassName, SourceLocation ClassLoc, 890 IdentifierInfo *CategoryName, 891 SourceLocation CategoryLoc, 892 Decl * const *ProtoRefs, 893 unsigned NumProtoRefs, 894 const SourceLocation *ProtoLocs, 895 SourceLocation EndProtoLoc) { 896 ObjCCategoryDecl *CDecl; 897 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 898 899 /// Check that class of this category is already completely declared. 900 901 if (!IDecl 902 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 903 diag::err_category_forward_interface, 904 CategoryName == nullptr)) { 905 // Create an invalid ObjCCategoryDecl to serve as context for 906 // the enclosing method declarations. We mark the decl invalid 907 // to make it clear that this isn't a valid AST. 908 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 909 ClassLoc, CategoryLoc, CategoryName,IDecl); 910 CDecl->setInvalidDecl(); 911 CurContext->addDecl(CDecl); 912 913 if (!IDecl) 914 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 915 return ActOnObjCContainerStartDefinition(CDecl); 916 } 917 918 if (!CategoryName && IDecl->getImplementation()) { 919 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; 920 Diag(IDecl->getImplementation()->getLocation(), 921 diag::note_implementation_declared); 922 } 923 924 if (CategoryName) { 925 /// Check for duplicate interface declaration for this category 926 if (ObjCCategoryDecl *Previous 927 = IDecl->FindCategoryDeclaration(CategoryName)) { 928 // Class extensions can be declared multiple times, categories cannot. 929 Diag(CategoryLoc, diag::warn_dup_category_def) 930 << ClassName << CategoryName; 931 Diag(Previous->getLocation(), diag::note_previous_definition); 932 } 933 } 934 935 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 936 ClassLoc, CategoryLoc, CategoryName, IDecl); 937 // FIXME: PushOnScopeChains? 938 CurContext->addDecl(CDecl); 939 940 if (NumProtoRefs) { 941 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 942 ProtoLocs, Context); 943 // Protocols in the class extension belong to the class. 944 if (CDecl->IsClassExtension()) 945 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs, 946 NumProtoRefs, Context); 947 } 948 949 CheckObjCDeclScope(CDecl); 950 return ActOnObjCContainerStartDefinition(CDecl); 951 } 952 953 /// ActOnStartCategoryImplementation - Perform semantic checks on the 954 /// category implementation declaration and build an ObjCCategoryImplDecl 955 /// object. 956 Decl *Sema::ActOnStartCategoryImplementation( 957 SourceLocation AtCatImplLoc, 958 IdentifierInfo *ClassName, SourceLocation ClassLoc, 959 IdentifierInfo *CatName, SourceLocation CatLoc) { 960 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 961 ObjCCategoryDecl *CatIDecl = nullptr; 962 if (IDecl && IDecl->hasDefinition()) { 963 CatIDecl = IDecl->FindCategoryDeclaration(CatName); 964 if (!CatIDecl) { 965 // Category @implementation with no corresponding @interface. 966 // Create and install one. 967 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc, 968 ClassLoc, CatLoc, 969 CatName, IDecl); 970 CatIDecl->setImplicit(); 971 } 972 } 973 974 ObjCCategoryImplDecl *CDecl = 975 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl, 976 ClassLoc, AtCatImplLoc, CatLoc); 977 /// Check that class of this category is already completely declared. 978 if (!IDecl) { 979 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 980 CDecl->setInvalidDecl(); 981 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 982 diag::err_undef_interface)) { 983 CDecl->setInvalidDecl(); 984 } 985 986 // FIXME: PushOnScopeChains? 987 CurContext->addDecl(CDecl); 988 989 // If the interface is deprecated/unavailable, warn/error about it. 990 if (IDecl) 991 DiagnoseUseOfDecl(IDecl, ClassLoc); 992 993 /// Check that CatName, category name, is not used in another implementation. 994 if (CatIDecl) { 995 if (CatIDecl->getImplementation()) { 996 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName 997 << CatName; 998 Diag(CatIDecl->getImplementation()->getLocation(), 999 diag::note_previous_definition); 1000 CDecl->setInvalidDecl(); 1001 } else { 1002 CatIDecl->setImplementation(CDecl); 1003 // Warn on implementating category of deprecated class under 1004 // -Wdeprecated-implementations flag. 1005 DiagnoseObjCImplementedDeprecations(*this, 1006 dyn_cast<NamedDecl>(IDecl), 1007 CDecl->getLocation(), 2); 1008 } 1009 } 1010 1011 CheckObjCDeclScope(CDecl); 1012 return ActOnObjCContainerStartDefinition(CDecl); 1013 } 1014 1015 Decl *Sema::ActOnStartClassImplementation( 1016 SourceLocation AtClassImplLoc, 1017 IdentifierInfo *ClassName, SourceLocation ClassLoc, 1018 IdentifierInfo *SuperClassname, 1019 SourceLocation SuperClassLoc) { 1020 ObjCInterfaceDecl *IDecl = nullptr; 1021 // Check for another declaration kind with the same name. 1022 NamedDecl *PrevDecl 1023 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, 1024 ForRedeclaration); 1025 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 1026 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 1027 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1028 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) { 1029 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 1030 diag::warn_undef_interface); 1031 } else { 1032 // We did not find anything with the name ClassName; try to correct for 1033 // typos in the class name. 1034 ObjCInterfaceValidatorCCC Validator; 1035 TypoCorrection Corrected = 1036 CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc), 1037 LookupOrdinaryName, TUScope, nullptr, Validator, 1038 CTK_NonError); 1039 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { 1040 // Suggest the (potentially) correct interface name. Don't provide a 1041 // code-modification hint or use the typo name for recovery, because 1042 // this is just a warning. The program may actually be correct. 1043 diagnoseTypo(Corrected, 1044 PDiag(diag::warn_undef_interface_suggest) << ClassName, 1045 /*ErrorRecovery*/false); 1046 } else { 1047 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 1048 } 1049 } 1050 1051 // Check that super class name is valid class name 1052 ObjCInterfaceDecl *SDecl = nullptr; 1053 if (SuperClassname) { 1054 // Check if a different kind of symbol declared in this scope. 1055 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc, 1056 LookupOrdinaryName); 1057 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 1058 Diag(SuperClassLoc, diag::err_redefinition_different_kind) 1059 << SuperClassname; 1060 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1061 } else { 1062 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 1063 if (SDecl && !SDecl->hasDefinition()) 1064 SDecl = nullptr; 1065 if (!SDecl) 1066 Diag(SuperClassLoc, diag::err_undef_superclass) 1067 << SuperClassname << ClassName; 1068 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) { 1069 // This implementation and its interface do not have the same 1070 // super class. 1071 Diag(SuperClassLoc, diag::err_conflicting_super_class) 1072 << SDecl->getDeclName(); 1073 Diag(SDecl->getLocation(), diag::note_previous_definition); 1074 } 1075 } 1076 } 1077 1078 if (!IDecl) { 1079 // Legacy case of @implementation with no corresponding @interface. 1080 // Build, chain & install the interface decl into the identifier. 1081 1082 // FIXME: Do we support attributes on the @implementation? If so we should 1083 // copy them over. 1084 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc, 1085 ClassName, /*PrevDecl=*/nullptr, ClassLoc, 1086 true); 1087 IDecl->startDefinition(); 1088 if (SDecl) { 1089 IDecl->setSuperClass(SDecl); 1090 IDecl->setSuperClassLoc(SuperClassLoc); 1091 IDecl->setEndOfDefinitionLoc(SuperClassLoc); 1092 } else { 1093 IDecl->setEndOfDefinitionLoc(ClassLoc); 1094 } 1095 1096 PushOnScopeChains(IDecl, TUScope); 1097 } else { 1098 // Mark the interface as being completed, even if it was just as 1099 // @class ....; 1100 // declaration; the user cannot reopen it. 1101 if (!IDecl->hasDefinition()) 1102 IDecl->startDefinition(); 1103 } 1104 1105 ObjCImplementationDecl* IMPDecl = 1106 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl, 1107 ClassLoc, AtClassImplLoc, SuperClassLoc); 1108 1109 if (CheckObjCDeclScope(IMPDecl)) 1110 return ActOnObjCContainerStartDefinition(IMPDecl); 1111 1112 // Check that there is no duplicate implementation of this class. 1113 if (IDecl->getImplementation()) { 1114 // FIXME: Don't leak everything! 1115 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; 1116 Diag(IDecl->getImplementation()->getLocation(), 1117 diag::note_previous_definition); 1118 IMPDecl->setInvalidDecl(); 1119 } else { // add it to the list. 1120 IDecl->setImplementation(IMPDecl); 1121 PushOnScopeChains(IMPDecl, TUScope); 1122 // Warn on implementating deprecated class under 1123 // -Wdeprecated-implementations flag. 1124 DiagnoseObjCImplementedDeprecations(*this, 1125 dyn_cast<NamedDecl>(IDecl), 1126 IMPDecl->getLocation(), 1); 1127 } 1128 return ActOnObjCContainerStartDefinition(IMPDecl); 1129 } 1130 1131 Sema::DeclGroupPtrTy 1132 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) { 1133 SmallVector<Decl *, 64> DeclsInGroup; 1134 DeclsInGroup.reserve(Decls.size() + 1); 1135 1136 for (unsigned i = 0, e = Decls.size(); i != e; ++i) { 1137 Decl *Dcl = Decls[i]; 1138 if (!Dcl) 1139 continue; 1140 if (Dcl->getDeclContext()->isFileContext()) 1141 Dcl->setTopLevelDeclInObjCContainer(); 1142 DeclsInGroup.push_back(Dcl); 1143 } 1144 1145 DeclsInGroup.push_back(ObjCImpDecl); 1146 1147 return BuildDeclaratorGroup(DeclsInGroup, false); 1148 } 1149 1150 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, 1151 ObjCIvarDecl **ivars, unsigned numIvars, 1152 SourceLocation RBrace) { 1153 assert(ImpDecl && "missing implementation decl"); 1154 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); 1155 if (!IDecl) 1156 return; 1157 /// Check case of non-existing \@interface decl. 1158 /// (legacy objective-c \@implementation decl without an \@interface decl). 1159 /// Add implementations's ivar to the synthesize class's ivar list. 1160 if (IDecl->isImplicitInterfaceDecl()) { 1161 IDecl->setEndOfDefinitionLoc(RBrace); 1162 // Add ivar's to class's DeclContext. 1163 for (unsigned i = 0, e = numIvars; i != e; ++i) { 1164 ivars[i]->setLexicalDeclContext(ImpDecl); 1165 IDecl->makeDeclVisibleInContext(ivars[i]); 1166 ImpDecl->addDecl(ivars[i]); 1167 } 1168 1169 return; 1170 } 1171 // If implementation has empty ivar list, just return. 1172 if (numIvars == 0) 1173 return; 1174 1175 assert(ivars && "missing @implementation ivars"); 1176 if (LangOpts.ObjCRuntime.isNonFragile()) { 1177 if (ImpDecl->getSuperClass()) 1178 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); 1179 for (unsigned i = 0; i < numIvars; i++) { 1180 ObjCIvarDecl* ImplIvar = ivars[i]; 1181 if (const ObjCIvarDecl *ClsIvar = 1182 IDecl->getIvarDecl(ImplIvar->getIdentifier())) { 1183 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 1184 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1185 continue; 1186 } 1187 // Check class extensions (unnamed categories) for duplicate ivars. 1188 for (const auto *CDecl : IDecl->visible_extensions()) { 1189 if (const ObjCIvarDecl *ClsExtIvar = 1190 CDecl->getIvarDecl(ImplIvar->getIdentifier())) { 1191 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 1192 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); 1193 continue; 1194 } 1195 } 1196 // Instance ivar to Implementation's DeclContext. 1197 ImplIvar->setLexicalDeclContext(ImpDecl); 1198 IDecl->makeDeclVisibleInContext(ImplIvar); 1199 ImpDecl->addDecl(ImplIvar); 1200 } 1201 return; 1202 } 1203 // Check interface's Ivar list against those in the implementation. 1204 // names and types must match. 1205 // 1206 unsigned j = 0; 1207 ObjCInterfaceDecl::ivar_iterator 1208 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); 1209 for (; numIvars > 0 && IVI != IVE; ++IVI) { 1210 ObjCIvarDecl* ImplIvar = ivars[j++]; 1211 ObjCIvarDecl* ClsIvar = *IVI; 1212 assert (ImplIvar && "missing implementation ivar"); 1213 assert (ClsIvar && "missing class ivar"); 1214 1215 // First, make sure the types match. 1216 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) { 1217 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) 1218 << ImplIvar->getIdentifier() 1219 << ImplIvar->getType() << ClsIvar->getType(); 1220 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1221 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() && 1222 ImplIvar->getBitWidthValue(Context) != 1223 ClsIvar->getBitWidthValue(Context)) { 1224 Diag(ImplIvar->getBitWidth()->getLocStart(), 1225 diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier(); 1226 Diag(ClsIvar->getBitWidth()->getLocStart(), 1227 diag::note_previous_definition); 1228 } 1229 // Make sure the names are identical. 1230 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { 1231 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) 1232 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); 1233 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1234 } 1235 --numIvars; 1236 } 1237 1238 if (numIvars > 0) 1239 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count); 1240 else if (IVI != IVE) 1241 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count); 1242 } 1243 1244 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc, 1245 ObjCMethodDecl *method, 1246 bool &IncompleteImpl, 1247 unsigned DiagID, 1248 NamedDecl *NeededFor = nullptr) { 1249 // No point warning no definition of method which is 'unavailable'. 1250 switch (method->getAvailability()) { 1251 case AR_Available: 1252 case AR_Deprecated: 1253 break; 1254 1255 // Don't warn about unavailable or not-yet-introduced methods. 1256 case AR_NotYetIntroduced: 1257 case AR_Unavailable: 1258 return; 1259 } 1260 1261 // FIXME: For now ignore 'IncompleteImpl'. 1262 // Previously we grouped all unimplemented methods under a single 1263 // warning, but some users strongly voiced that they would prefer 1264 // separate warnings. We will give that approach a try, as that 1265 // matches what we do with protocols. 1266 { 1267 const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID); 1268 B << method; 1269 if (NeededFor) 1270 B << NeededFor; 1271 } 1272 1273 // Issue a note to the original declaration. 1274 SourceLocation MethodLoc = method->getLocStart(); 1275 if (MethodLoc.isValid()) 1276 S.Diag(MethodLoc, diag::note_method_declared_at) << method; 1277 } 1278 1279 /// Determines if type B can be substituted for type A. Returns true if we can 1280 /// guarantee that anything that the user will do to an object of type A can 1281 /// also be done to an object of type B. This is trivially true if the two 1282 /// types are the same, or if B is a subclass of A. It becomes more complex 1283 /// in cases where protocols are involved. 1284 /// 1285 /// Object types in Objective-C describe the minimum requirements for an 1286 /// object, rather than providing a complete description of a type. For 1287 /// example, if A is a subclass of B, then B* may refer to an instance of A. 1288 /// The principle of substitutability means that we may use an instance of A 1289 /// anywhere that we may use an instance of B - it will implement all of the 1290 /// ivars of B and all of the methods of B. 1291 /// 1292 /// This substitutability is important when type checking methods, because 1293 /// the implementation may have stricter type definitions than the interface. 1294 /// The interface specifies minimum requirements, but the implementation may 1295 /// have more accurate ones. For example, a method may privately accept 1296 /// instances of B, but only publish that it accepts instances of A. Any 1297 /// object passed to it will be type checked against B, and so will implicitly 1298 /// by a valid A*. Similarly, a method may return a subclass of the class that 1299 /// it is declared as returning. 1300 /// 1301 /// This is most important when considering subclassing. A method in a 1302 /// subclass must accept any object as an argument that its superclass's 1303 /// implementation accepts. It may, however, accept a more general type 1304 /// without breaking substitutability (i.e. you can still use the subclass 1305 /// anywhere that you can use the superclass, but not vice versa). The 1306 /// converse requirement applies to return types: the return type for a 1307 /// subclass method must be a valid object of the kind that the superclass 1308 /// advertises, but it may be specified more accurately. This avoids the need 1309 /// for explicit down-casting by callers. 1310 /// 1311 /// Note: This is a stricter requirement than for assignment. 1312 static bool isObjCTypeSubstitutable(ASTContext &Context, 1313 const ObjCObjectPointerType *A, 1314 const ObjCObjectPointerType *B, 1315 bool rejectId) { 1316 // Reject a protocol-unqualified id. 1317 if (rejectId && B->isObjCIdType()) return false; 1318 1319 // If B is a qualified id, then A must also be a qualified id and it must 1320 // implement all of the protocols in B. It may not be a qualified class. 1321 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a 1322 // stricter definition so it is not substitutable for id<A>. 1323 if (B->isObjCQualifiedIdType()) { 1324 return A->isObjCQualifiedIdType() && 1325 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0), 1326 QualType(B,0), 1327 false); 1328 } 1329 1330 /* 1331 // id is a special type that bypasses type checking completely. We want a 1332 // warning when it is used in one place but not another. 1333 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; 1334 1335 1336 // If B is a qualified id, then A must also be a qualified id (which it isn't 1337 // if we've got this far) 1338 if (B->isObjCQualifiedIdType()) return false; 1339 */ 1340 1341 // Now we know that A and B are (potentially-qualified) class types. The 1342 // normal rules for assignment apply. 1343 return Context.canAssignObjCInterfaces(A, B); 1344 } 1345 1346 static SourceRange getTypeRange(TypeSourceInfo *TSI) { 1347 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); 1348 } 1349 1350 static bool CheckMethodOverrideReturn(Sema &S, 1351 ObjCMethodDecl *MethodImpl, 1352 ObjCMethodDecl *MethodDecl, 1353 bool IsProtocolMethodDecl, 1354 bool IsOverridingMode, 1355 bool Warn) { 1356 if (IsProtocolMethodDecl && 1357 (MethodDecl->getObjCDeclQualifier() != 1358 MethodImpl->getObjCDeclQualifier())) { 1359 if (Warn) { 1360 S.Diag(MethodImpl->getLocation(), 1361 (IsOverridingMode 1362 ? diag::warn_conflicting_overriding_ret_type_modifiers 1363 : diag::warn_conflicting_ret_type_modifiers)) 1364 << MethodImpl->getDeclName() 1365 << getTypeRange(MethodImpl->getReturnTypeSourceInfo()); 1366 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration) 1367 << getTypeRange(MethodDecl->getReturnTypeSourceInfo()); 1368 } 1369 else 1370 return false; 1371 } 1372 1373 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(), 1374 MethodDecl->getReturnType())) 1375 return true; 1376 if (!Warn) 1377 return false; 1378 1379 unsigned DiagID = 1380 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types 1381 : diag::warn_conflicting_ret_types; 1382 1383 // Mismatches between ObjC pointers go into a different warning 1384 // category, and sometimes they're even completely whitelisted. 1385 if (const ObjCObjectPointerType *ImplPtrTy = 1386 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) { 1387 if (const ObjCObjectPointerType *IfacePtrTy = 1388 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) { 1389 // Allow non-matching return types as long as they don't violate 1390 // the principle of substitutability. Specifically, we permit 1391 // return types that are subclasses of the declared return type, 1392 // or that are more-qualified versions of the declared type. 1393 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false)) 1394 return false; 1395 1396 DiagID = 1397 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types 1398 : diag::warn_non_covariant_ret_types; 1399 } 1400 } 1401 1402 S.Diag(MethodImpl->getLocation(), DiagID) 1403 << MethodImpl->getDeclName() << MethodDecl->getReturnType() 1404 << MethodImpl->getReturnType() 1405 << getTypeRange(MethodImpl->getReturnTypeSourceInfo()); 1406 S.Diag(MethodDecl->getLocation(), IsOverridingMode 1407 ? diag::note_previous_declaration 1408 : diag::note_previous_definition) 1409 << getTypeRange(MethodDecl->getReturnTypeSourceInfo()); 1410 return false; 1411 } 1412 1413 static bool CheckMethodOverrideParam(Sema &S, 1414 ObjCMethodDecl *MethodImpl, 1415 ObjCMethodDecl *MethodDecl, 1416 ParmVarDecl *ImplVar, 1417 ParmVarDecl *IfaceVar, 1418 bool IsProtocolMethodDecl, 1419 bool IsOverridingMode, 1420 bool Warn) { 1421 if (IsProtocolMethodDecl && 1422 (ImplVar->getObjCDeclQualifier() != 1423 IfaceVar->getObjCDeclQualifier())) { 1424 if (Warn) { 1425 if (IsOverridingMode) 1426 S.Diag(ImplVar->getLocation(), 1427 diag::warn_conflicting_overriding_param_modifiers) 1428 << getTypeRange(ImplVar->getTypeSourceInfo()) 1429 << MethodImpl->getDeclName(); 1430 else S.Diag(ImplVar->getLocation(), 1431 diag::warn_conflicting_param_modifiers) 1432 << getTypeRange(ImplVar->getTypeSourceInfo()) 1433 << MethodImpl->getDeclName(); 1434 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration) 1435 << getTypeRange(IfaceVar->getTypeSourceInfo()); 1436 } 1437 else 1438 return false; 1439 } 1440 1441 QualType ImplTy = ImplVar->getType(); 1442 QualType IfaceTy = IfaceVar->getType(); 1443 1444 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy)) 1445 return true; 1446 1447 if (!Warn) 1448 return false; 1449 unsigned DiagID = 1450 IsOverridingMode ? diag::warn_conflicting_overriding_param_types 1451 : diag::warn_conflicting_param_types; 1452 1453 // Mismatches between ObjC pointers go into a different warning 1454 // category, and sometimes they're even completely whitelisted. 1455 if (const ObjCObjectPointerType *ImplPtrTy = 1456 ImplTy->getAs<ObjCObjectPointerType>()) { 1457 if (const ObjCObjectPointerType *IfacePtrTy = 1458 IfaceTy->getAs<ObjCObjectPointerType>()) { 1459 // Allow non-matching argument types as long as they don't 1460 // violate the principle of substitutability. Specifically, the 1461 // implementation must accept any objects that the superclass 1462 // accepts, however it may also accept others. 1463 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true)) 1464 return false; 1465 1466 DiagID = 1467 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types 1468 : diag::warn_non_contravariant_param_types; 1469 } 1470 } 1471 1472 S.Diag(ImplVar->getLocation(), DiagID) 1473 << getTypeRange(ImplVar->getTypeSourceInfo()) 1474 << MethodImpl->getDeclName() << IfaceTy << ImplTy; 1475 S.Diag(IfaceVar->getLocation(), 1476 (IsOverridingMode ? diag::note_previous_declaration 1477 : diag::note_previous_definition)) 1478 << getTypeRange(IfaceVar->getTypeSourceInfo()); 1479 return false; 1480 } 1481 1482 /// In ARC, check whether the conventional meanings of the two methods 1483 /// match. If they don't, it's a hard error. 1484 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, 1485 ObjCMethodDecl *decl) { 1486 ObjCMethodFamily implFamily = impl->getMethodFamily(); 1487 ObjCMethodFamily declFamily = decl->getMethodFamily(); 1488 if (implFamily == declFamily) return false; 1489 1490 // Since conventions are sorted by selector, the only possibility is 1491 // that the types differ enough to cause one selector or the other 1492 // to fall out of the family. 1493 assert(implFamily == OMF_None || declFamily == OMF_None); 1494 1495 // No further diagnostics required on invalid declarations. 1496 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; 1497 1498 const ObjCMethodDecl *unmatched = impl; 1499 ObjCMethodFamily family = declFamily; 1500 unsigned errorID = diag::err_arc_lost_method_convention; 1501 unsigned noteID = diag::note_arc_lost_method_convention; 1502 if (declFamily == OMF_None) { 1503 unmatched = decl; 1504 family = implFamily; 1505 errorID = diag::err_arc_gained_method_convention; 1506 noteID = diag::note_arc_gained_method_convention; 1507 } 1508 1509 // Indexes into a %select clause in the diagnostic. 1510 enum FamilySelector { 1511 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new 1512 }; 1513 FamilySelector familySelector = FamilySelector(); 1514 1515 switch (family) { 1516 case OMF_None: llvm_unreachable("logic error, no method convention"); 1517 case OMF_retain: 1518 case OMF_release: 1519 case OMF_autorelease: 1520 case OMF_dealloc: 1521 case OMF_finalize: 1522 case OMF_retainCount: 1523 case OMF_self: 1524 case OMF_performSelector: 1525 // Mismatches for these methods don't change ownership 1526 // conventions, so we don't care. 1527 return false; 1528 1529 case OMF_init: familySelector = F_init; break; 1530 case OMF_alloc: familySelector = F_alloc; break; 1531 case OMF_copy: familySelector = F_copy; break; 1532 case OMF_mutableCopy: familySelector = F_mutableCopy; break; 1533 case OMF_new: familySelector = F_new; break; 1534 } 1535 1536 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; 1537 ReasonSelector reasonSelector; 1538 1539 // The only reason these methods don't fall within their families is 1540 // due to unusual result types. 1541 if (unmatched->getReturnType()->isObjCObjectPointerType()) { 1542 reasonSelector = R_UnrelatedReturn; 1543 } else { 1544 reasonSelector = R_NonObjectReturn; 1545 } 1546 1547 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector); 1548 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector); 1549 1550 return true; 1551 } 1552 1553 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, 1554 ObjCMethodDecl *MethodDecl, 1555 bool IsProtocolMethodDecl) { 1556 if (getLangOpts().ObjCAutoRefCount && 1557 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl)) 1558 return; 1559 1560 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 1561 IsProtocolMethodDecl, false, 1562 true); 1563 1564 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 1565 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), 1566 EF = MethodDecl->param_end(); 1567 IM != EM && IF != EF; ++IM, ++IF) { 1568 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF, 1569 IsProtocolMethodDecl, false, true); 1570 } 1571 1572 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { 1573 Diag(ImpMethodDecl->getLocation(), 1574 diag::warn_conflicting_variadic); 1575 Diag(MethodDecl->getLocation(), diag::note_previous_declaration); 1576 } 1577 } 1578 1579 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method, 1580 ObjCMethodDecl *Overridden, 1581 bool IsProtocolMethodDecl) { 1582 1583 CheckMethodOverrideReturn(*this, Method, Overridden, 1584 IsProtocolMethodDecl, true, 1585 true); 1586 1587 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(), 1588 IF = Overridden->param_begin(), EM = Method->param_end(), 1589 EF = Overridden->param_end(); 1590 IM != EM && IF != EF; ++IM, ++IF) { 1591 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF, 1592 IsProtocolMethodDecl, true, true); 1593 } 1594 1595 if (Method->isVariadic() != Overridden->isVariadic()) { 1596 Diag(Method->getLocation(), 1597 diag::warn_conflicting_overriding_variadic); 1598 Diag(Overridden->getLocation(), diag::note_previous_declaration); 1599 } 1600 } 1601 1602 /// WarnExactTypedMethods - This routine issues a warning if method 1603 /// implementation declaration matches exactly that of its declaration. 1604 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl, 1605 ObjCMethodDecl *MethodDecl, 1606 bool IsProtocolMethodDecl) { 1607 // don't issue warning when protocol method is optional because primary 1608 // class is not required to implement it and it is safe for protocol 1609 // to implement it. 1610 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional) 1611 return; 1612 // don't issue warning when primary class's method is 1613 // depecated/unavailable. 1614 if (MethodDecl->hasAttr<UnavailableAttr>() || 1615 MethodDecl->hasAttr<DeprecatedAttr>()) 1616 return; 1617 1618 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 1619 IsProtocolMethodDecl, false, false); 1620 if (match) 1621 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 1622 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), 1623 EF = MethodDecl->param_end(); 1624 IM != EM && IF != EF; ++IM, ++IF) { 1625 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, 1626 *IM, *IF, 1627 IsProtocolMethodDecl, false, false); 1628 if (!match) 1629 break; 1630 } 1631 if (match) 1632 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic()); 1633 if (match) 1634 match = !(MethodDecl->isClassMethod() && 1635 MethodDecl->getSelector() == GetNullarySelector("load", Context)); 1636 1637 if (match) { 1638 Diag(ImpMethodDecl->getLocation(), 1639 diag::warn_category_method_impl_match); 1640 Diag(MethodDecl->getLocation(), diag::note_method_declared_at) 1641 << MethodDecl->getDeclName(); 1642 } 1643 } 1644 1645 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely 1646 /// improve the efficiency of selector lookups and type checking by associating 1647 /// with each protocol / interface / category the flattened instance tables. If 1648 /// we used an immutable set to keep the table then it wouldn't add significant 1649 /// memory cost and it would be handy for lookups. 1650 1651 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet; 1652 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet; 1653 1654 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl, 1655 ProtocolNameSet &PNS) { 1656 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) 1657 PNS.insert(PDecl->getIdentifier()); 1658 for (const auto *PI : PDecl->protocols()) 1659 findProtocolsWithExplicitImpls(PI, PNS); 1660 } 1661 1662 /// Recursively populates a set with all conformed protocols in a class 1663 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation' 1664 /// attribute. 1665 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super, 1666 ProtocolNameSet &PNS) { 1667 if (!Super) 1668 return; 1669 1670 for (const auto *I : Super->all_referenced_protocols()) 1671 findProtocolsWithExplicitImpls(I, PNS); 1672 1673 findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS); 1674 } 1675 1676 /// CheckProtocolMethodDefs - This routine checks unimplemented methods 1677 /// Declared in protocol, and those referenced by it. 1678 static void CheckProtocolMethodDefs(Sema &S, 1679 SourceLocation ImpLoc, 1680 ObjCProtocolDecl *PDecl, 1681 bool& IncompleteImpl, 1682 const Sema::SelectorSet &InsMap, 1683 const Sema::SelectorSet &ClsMap, 1684 ObjCContainerDecl *CDecl, 1685 LazyProtocolNameSet &ProtocolsExplictImpl) { 1686 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl); 1687 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() 1688 : dyn_cast<ObjCInterfaceDecl>(CDecl); 1689 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); 1690 1691 ObjCInterfaceDecl *Super = IDecl->getSuperClass(); 1692 ObjCInterfaceDecl *NSIDecl = nullptr; 1693 1694 // If this protocol is marked 'objc_protocol_requires_explicit_implementation' 1695 // then we should check if any class in the super class hierarchy also 1696 // conforms to this protocol, either directly or via protocol inheritance. 1697 // If so, we can skip checking this protocol completely because we 1698 // know that a parent class already satisfies this protocol. 1699 // 1700 // Note: we could generalize this logic for all protocols, and merely 1701 // add the limit on looking at the super class chain for just 1702 // specially marked protocols. This may be a good optimization. This 1703 // change is restricted to 'objc_protocol_requires_explicit_implementation' 1704 // protocols for now for controlled evaluation. 1705 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) { 1706 if (!ProtocolsExplictImpl) { 1707 ProtocolsExplictImpl.reset(new ProtocolNameSet); 1708 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl); 1709 } 1710 if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) != 1711 ProtocolsExplictImpl->end()) 1712 return; 1713 1714 // If no super class conforms to the protocol, we should not search 1715 // for methods in the super class to implicitly satisfy the protocol. 1716 Super = nullptr; 1717 } 1718 1719 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) { 1720 // check to see if class implements forwardInvocation method and objects 1721 // of this class are derived from 'NSProxy' so that to forward requests 1722 // from one object to another. 1723 // Under such conditions, which means that every method possible is 1724 // implemented in the class, we should not issue "Method definition not 1725 // found" warnings. 1726 // FIXME: Use a general GetUnarySelector method for this. 1727 IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation"); 1728 Selector fISelector = S.Context.Selectors.getSelector(1, &II); 1729 if (InsMap.count(fISelector)) 1730 // Is IDecl derived from 'NSProxy'? If so, no instance methods 1731 // need be implemented in the implementation. 1732 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy")); 1733 } 1734 1735 // If this is a forward protocol declaration, get its definition. 1736 if (!PDecl->isThisDeclarationADefinition() && 1737 PDecl->getDefinition()) 1738 PDecl = PDecl->getDefinition(); 1739 1740 // If a method lookup fails locally we still need to look and see if 1741 // the method was implemented by a base class or an inherited 1742 // protocol. This lookup is slow, but occurs rarely in correct code 1743 // and otherwise would terminate in a warning. 1744 1745 // check unimplemented instance methods. 1746 if (!NSIDecl) 1747 for (auto *method : PDecl->instance_methods()) { 1748 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 1749 !method->isPropertyAccessor() && 1750 !InsMap.count(method->getSelector()) && 1751 (!Super || !Super->lookupMethod(method->getSelector(), 1752 true /* instance */, 1753 false /* shallowCategory */, 1754 true /* followsSuper */, 1755 nullptr /* category */))) { 1756 // If a method is not implemented in the category implementation but 1757 // has been declared in its primary class, superclass, 1758 // or in one of their protocols, no need to issue the warning. 1759 // This is because method will be implemented in the primary class 1760 // or one of its super class implementation. 1761 1762 // Ugly, but necessary. Method declared in protcol might have 1763 // have been synthesized due to a property declared in the class which 1764 // uses the protocol. 1765 if (ObjCMethodDecl *MethodInClass = 1766 IDecl->lookupMethod(method->getSelector(), 1767 true /* instance */, 1768 true /* shallowCategoryLookup */, 1769 false /* followSuper */)) 1770 if (C || MethodInClass->isPropertyAccessor()) 1771 continue; 1772 unsigned DIAG = diag::warn_unimplemented_protocol_method; 1773 if (!S.Diags.isIgnored(DIAG, ImpLoc)) { 1774 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, 1775 PDecl); 1776 } 1777 } 1778 } 1779 // check unimplemented class methods 1780 for (auto *method : PDecl->class_methods()) { 1781 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 1782 !ClsMap.count(method->getSelector()) && 1783 (!Super || !Super->lookupMethod(method->getSelector(), 1784 false /* class method */, 1785 false /* shallowCategoryLookup */, 1786 true /* followSuper */, 1787 nullptr /* category */))) { 1788 // See above comment for instance method lookups. 1789 if (C && IDecl->lookupMethod(method->getSelector(), 1790 false /* class */, 1791 true /* shallowCategoryLookup */, 1792 false /* followSuper */)) 1793 continue; 1794 1795 unsigned DIAG = diag::warn_unimplemented_protocol_method; 1796 if (!S.Diags.isIgnored(DIAG, ImpLoc)) { 1797 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl); 1798 } 1799 } 1800 } 1801 // Check on this protocols's referenced protocols, recursively. 1802 for (auto *PI : PDecl->protocols()) 1803 CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap, 1804 CDecl, ProtocolsExplictImpl); 1805 } 1806 1807 /// MatchAllMethodDeclarations - Check methods declared in interface 1808 /// or protocol against those declared in their implementations. 1809 /// 1810 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap, 1811 const SelectorSet &ClsMap, 1812 SelectorSet &InsMapSeen, 1813 SelectorSet &ClsMapSeen, 1814 ObjCImplDecl* IMPDecl, 1815 ObjCContainerDecl* CDecl, 1816 bool &IncompleteImpl, 1817 bool ImmediateClass, 1818 bool WarnCategoryMethodImpl) { 1819 // Check and see if instance methods in class interface have been 1820 // implemented in the implementation class. If so, their types match. 1821 for (auto *I : CDecl->instance_methods()) { 1822 if (!InsMapSeen.insert(I->getSelector())) 1823 continue; 1824 if (!I->isPropertyAccessor() && 1825 !InsMap.count(I->getSelector())) { 1826 if (ImmediateClass) 1827 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl, 1828 diag::warn_undef_method_impl); 1829 continue; 1830 } else { 1831 ObjCMethodDecl *ImpMethodDecl = 1832 IMPDecl->getInstanceMethod(I->getSelector()); 1833 assert(CDecl->getInstanceMethod(I->getSelector()) && 1834 "Expected to find the method through lookup as well"); 1835 // ImpMethodDecl may be null as in a @dynamic property. 1836 if (ImpMethodDecl) { 1837 if (!WarnCategoryMethodImpl) 1838 WarnConflictingTypedMethods(ImpMethodDecl, I, 1839 isa<ObjCProtocolDecl>(CDecl)); 1840 else if (!I->isPropertyAccessor()) 1841 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl)); 1842 } 1843 } 1844 } 1845 1846 // Check and see if class methods in class interface have been 1847 // implemented in the implementation class. If so, their types match. 1848 for (auto *I : CDecl->class_methods()) { 1849 if (!ClsMapSeen.insert(I->getSelector())) 1850 continue; 1851 if (!ClsMap.count(I->getSelector())) { 1852 if (ImmediateClass) 1853 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl, 1854 diag::warn_undef_method_impl); 1855 } else { 1856 ObjCMethodDecl *ImpMethodDecl = 1857 IMPDecl->getClassMethod(I->getSelector()); 1858 assert(CDecl->getClassMethod(I->getSelector()) && 1859 "Expected to find the method through lookup as well"); 1860 if (!WarnCategoryMethodImpl) 1861 WarnConflictingTypedMethods(ImpMethodDecl, I, 1862 isa<ObjCProtocolDecl>(CDecl)); 1863 else 1864 WarnExactTypedMethods(ImpMethodDecl, I, 1865 isa<ObjCProtocolDecl>(CDecl)); 1866 } 1867 } 1868 1869 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) { 1870 // Also, check for methods declared in protocols inherited by 1871 // this protocol. 1872 for (auto *PI : PD->protocols()) 1873 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1874 IMPDecl, PI, IncompleteImpl, false, 1875 WarnCategoryMethodImpl); 1876 } 1877 1878 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 1879 // when checking that methods in implementation match their declaration, 1880 // i.e. when WarnCategoryMethodImpl is false, check declarations in class 1881 // extension; as well as those in categories. 1882 if (!WarnCategoryMethodImpl) { 1883 for (auto *Cat : I->visible_categories()) 1884 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1885 IMPDecl, Cat, IncompleteImpl, false, 1886 WarnCategoryMethodImpl); 1887 } else { 1888 // Also methods in class extensions need be looked at next. 1889 for (auto *Ext : I->visible_extensions()) 1890 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1891 IMPDecl, Ext, IncompleteImpl, false, 1892 WarnCategoryMethodImpl); 1893 } 1894 1895 // Check for any implementation of a methods declared in protocol. 1896 for (auto *PI : I->all_referenced_protocols()) 1897 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1898 IMPDecl, PI, IncompleteImpl, false, 1899 WarnCategoryMethodImpl); 1900 1901 // FIXME. For now, we are not checking for extact match of methods 1902 // in category implementation and its primary class's super class. 1903 if (!WarnCategoryMethodImpl && I->getSuperClass()) 1904 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1905 IMPDecl, 1906 I->getSuperClass(), IncompleteImpl, false); 1907 } 1908 } 1909 1910 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in 1911 /// category matches with those implemented in its primary class and 1912 /// warns each time an exact match is found. 1913 void Sema::CheckCategoryVsClassMethodMatches( 1914 ObjCCategoryImplDecl *CatIMPDecl) { 1915 // Get category's primary class. 1916 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl(); 1917 if (!CatDecl) 1918 return; 1919 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface(); 1920 if (!IDecl) 1921 return; 1922 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass(); 1923 SelectorSet InsMap, ClsMap; 1924 1925 for (const auto *I : CatIMPDecl->instance_methods()) { 1926 Selector Sel = I->getSelector(); 1927 // When checking for methods implemented in the category, skip over 1928 // those declared in category class's super class. This is because 1929 // the super class must implement the method. 1930 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true)) 1931 continue; 1932 InsMap.insert(Sel); 1933 } 1934 1935 for (const auto *I : CatIMPDecl->class_methods()) { 1936 Selector Sel = I->getSelector(); 1937 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false)) 1938 continue; 1939 ClsMap.insert(Sel); 1940 } 1941 if (InsMap.empty() && ClsMap.empty()) 1942 return; 1943 1944 SelectorSet InsMapSeen, ClsMapSeen; 1945 bool IncompleteImpl = false; 1946 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1947 CatIMPDecl, IDecl, 1948 IncompleteImpl, false, 1949 true /*WarnCategoryMethodImpl*/); 1950 } 1951 1952 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, 1953 ObjCContainerDecl* CDecl, 1954 bool IncompleteImpl) { 1955 SelectorSet InsMap; 1956 // Check and see if instance methods in class interface have been 1957 // implemented in the implementation class. 1958 for (const auto *I : IMPDecl->instance_methods()) 1959 InsMap.insert(I->getSelector()); 1960 1961 // Check and see if properties declared in the interface have either 1) 1962 // an implementation or 2) there is a @synthesize/@dynamic implementation 1963 // of the property in the @implementation. 1964 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) { 1965 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties && 1966 LangOpts.ObjCRuntime.isNonFragile() && 1967 !IDecl->isObjCRequiresPropertyDefs(); 1968 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties); 1969 } 1970 1971 SelectorSet ClsMap; 1972 for (const auto *I : IMPDecl->class_methods()) 1973 ClsMap.insert(I->getSelector()); 1974 1975 // Check for type conflict of methods declared in a class/protocol and 1976 // its implementation; if any. 1977 SelectorSet InsMapSeen, ClsMapSeen; 1978 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1979 IMPDecl, CDecl, 1980 IncompleteImpl, true); 1981 1982 // check all methods implemented in category against those declared 1983 // in its primary class. 1984 if (ObjCCategoryImplDecl *CatDecl = 1985 dyn_cast<ObjCCategoryImplDecl>(IMPDecl)) 1986 CheckCategoryVsClassMethodMatches(CatDecl); 1987 1988 // Check the protocol list for unimplemented methods in the @implementation 1989 // class. 1990 // Check and see if class methods in class interface have been 1991 // implemented in the implementation class. 1992 1993 LazyProtocolNameSet ExplicitImplProtocols; 1994 1995 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 1996 for (auto *PI : I->all_referenced_protocols()) 1997 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl, 1998 InsMap, ClsMap, I, ExplicitImplProtocols); 1999 // Check class extensions (unnamed categories) 2000 for (auto *Ext : I->visible_extensions()) 2001 ImplMethodsVsClassMethods(S, IMPDecl, Ext, IncompleteImpl); 2002 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) { 2003 // For extended class, unimplemented methods in its protocols will 2004 // be reported in the primary class. 2005 if (!C->IsClassExtension()) { 2006 for (auto *P : C->protocols()) 2007 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P, 2008 IncompleteImpl, InsMap, ClsMap, CDecl, 2009 ExplicitImplProtocols); 2010 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, 2011 /* SynthesizeProperties */ false); 2012 } 2013 } else 2014 llvm_unreachable("invalid ObjCContainerDecl type."); 2015 } 2016 2017 /// ActOnForwardClassDeclaration - 2018 Sema::DeclGroupPtrTy 2019 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, 2020 IdentifierInfo **IdentList, 2021 SourceLocation *IdentLocs, 2022 unsigned NumElts) { 2023 SmallVector<Decl *, 8> DeclsInGroup; 2024 for (unsigned i = 0; i != NumElts; ++i) { 2025 // Check for another declaration kind with the same name. 2026 NamedDecl *PrevDecl 2027 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 2028 LookupOrdinaryName, ForRedeclaration); 2029 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 2030 // GCC apparently allows the following idiom: 2031 // 2032 // typedef NSObject < XCElementTogglerP > XCElementToggler; 2033 // @class XCElementToggler; 2034 // 2035 // Here we have chosen to ignore the forward class declaration 2036 // with a warning. Since this is the implied behavior. 2037 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl); 2038 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { 2039 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; 2040 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 2041 } else { 2042 // a forward class declaration matching a typedef name of a class refers 2043 // to the underlying class. Just ignore the forward class with a warning 2044 // as this will force the intended behavior which is to lookup the typedef 2045 // name. 2046 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) { 2047 Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i]; 2048 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 2049 continue; 2050 } 2051 } 2052 } 2053 2054 // Create a declaration to describe this forward declaration. 2055 ObjCInterfaceDecl *PrevIDecl 2056 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 2057 2058 IdentifierInfo *ClassName = IdentList[i]; 2059 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { 2060 // A previous decl with a different name is because of 2061 // @compatibility_alias, for example: 2062 // \code 2063 // @class NewImage; 2064 // @compatibility_alias OldImage NewImage; 2065 // \endcode 2066 // A lookup for 'OldImage' will return the 'NewImage' decl. 2067 // 2068 // In such a case use the real declaration name, instead of the alias one, 2069 // otherwise we will break IdentifierResolver and redecls-chain invariants. 2070 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl 2071 // has been aliased. 2072 ClassName = PrevIDecl->getIdentifier(); 2073 } 2074 2075 ObjCInterfaceDecl *IDecl 2076 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc, 2077 ClassName, PrevIDecl, IdentLocs[i]); 2078 IDecl->setAtEndRange(IdentLocs[i]); 2079 2080 PushOnScopeChains(IDecl, TUScope); 2081 CheckObjCDeclScope(IDecl); 2082 DeclsInGroup.push_back(IDecl); 2083 } 2084 2085 return BuildDeclaratorGroup(DeclsInGroup, false); 2086 } 2087 2088 static bool tryMatchRecordTypes(ASTContext &Context, 2089 Sema::MethodMatchStrategy strategy, 2090 const Type *left, const Type *right); 2091 2092 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, 2093 QualType leftQT, QualType rightQT) { 2094 const Type *left = 2095 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr(); 2096 const Type *right = 2097 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr(); 2098 2099 if (left == right) return true; 2100 2101 // If we're doing a strict match, the types have to match exactly. 2102 if (strategy == Sema::MMS_strict) return false; 2103 2104 if (left->isIncompleteType() || right->isIncompleteType()) return false; 2105 2106 // Otherwise, use this absurdly complicated algorithm to try to 2107 // validate the basic, low-level compatibility of the two types. 2108 2109 // As a minimum, require the sizes and alignments to match. 2110 if (Context.getTypeInfo(left) != Context.getTypeInfo(right)) 2111 return false; 2112 2113 // Consider all the kinds of non-dependent canonical types: 2114 // - functions and arrays aren't possible as return and parameter types 2115 2116 // - vector types of equal size can be arbitrarily mixed 2117 if (isa<VectorType>(left)) return isa<VectorType>(right); 2118 if (isa<VectorType>(right)) return false; 2119 2120 // - references should only match references of identical type 2121 // - structs, unions, and Objective-C objects must match more-or-less 2122 // exactly 2123 // - everything else should be a scalar 2124 if (!left->isScalarType() || !right->isScalarType()) 2125 return tryMatchRecordTypes(Context, strategy, left, right); 2126 2127 // Make scalars agree in kind, except count bools as chars, and group 2128 // all non-member pointers together. 2129 Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); 2130 Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); 2131 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; 2132 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; 2133 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer) 2134 leftSK = Type::STK_ObjCObjectPointer; 2135 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer) 2136 rightSK = Type::STK_ObjCObjectPointer; 2137 2138 // Note that data member pointers and function member pointers don't 2139 // intermix because of the size differences. 2140 2141 return (leftSK == rightSK); 2142 } 2143 2144 static bool tryMatchRecordTypes(ASTContext &Context, 2145 Sema::MethodMatchStrategy strategy, 2146 const Type *lt, const Type *rt) { 2147 assert(lt && rt && lt != rt); 2148 2149 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false; 2150 RecordDecl *left = cast<RecordType>(lt)->getDecl(); 2151 RecordDecl *right = cast<RecordType>(rt)->getDecl(); 2152 2153 // Require union-hood to match. 2154 if (left->isUnion() != right->isUnion()) return false; 2155 2156 // Require an exact match if either is non-POD. 2157 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) || 2158 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD())) 2159 return false; 2160 2161 // Require size and alignment to match. 2162 if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false; 2163 2164 // Require fields to match. 2165 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); 2166 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); 2167 for (; li != le && ri != re; ++li, ++ri) { 2168 if (!matchTypes(Context, strategy, li->getType(), ri->getType())) 2169 return false; 2170 } 2171 return (li == le && ri == re); 2172 } 2173 2174 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and 2175 /// returns true, or false, accordingly. 2176 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons 2177 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, 2178 const ObjCMethodDecl *right, 2179 MethodMatchStrategy strategy) { 2180 if (!matchTypes(Context, strategy, left->getReturnType(), 2181 right->getReturnType())) 2182 return false; 2183 2184 // If either is hidden, it is not considered to match. 2185 if (left->isHidden() || right->isHidden()) 2186 return false; 2187 2188 if (getLangOpts().ObjCAutoRefCount && 2189 (left->hasAttr<NSReturnsRetainedAttr>() 2190 != right->hasAttr<NSReturnsRetainedAttr>() || 2191 left->hasAttr<NSConsumesSelfAttr>() 2192 != right->hasAttr<NSConsumesSelfAttr>())) 2193 return false; 2194 2195 ObjCMethodDecl::param_const_iterator 2196 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(), 2197 re = right->param_end(); 2198 2199 for (; li != le && ri != re; ++li, ++ri) { 2200 assert(ri != right->param_end() && "Param mismatch"); 2201 const ParmVarDecl *lparm = *li, *rparm = *ri; 2202 2203 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType())) 2204 return false; 2205 2206 if (getLangOpts().ObjCAutoRefCount && 2207 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) 2208 return false; 2209 } 2210 return true; 2211 } 2212 2213 void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) { 2214 // Record at the head of the list whether there were 0, 1, or >= 2 methods 2215 // inside categories. 2216 if (ObjCCategoryDecl * 2217 CD = dyn_cast<ObjCCategoryDecl>(Method->getDeclContext())) 2218 if (!CD->IsClassExtension() && List->getBits() < 2) 2219 List->setBits(List->getBits()+1); 2220 2221 // If the list is empty, make it a singleton list. 2222 if (List->Method == nullptr) { 2223 List->Method = Method; 2224 List->setNext(nullptr); 2225 return; 2226 } 2227 2228 // We've seen a method with this name, see if we have already seen this type 2229 // signature. 2230 ObjCMethodList *Previous = List; 2231 for (; List; Previous = List, List = List->getNext()) { 2232 // If we are building a module, keep all of the methods. 2233 if (getLangOpts().Modules && !getLangOpts().CurrentModule.empty()) 2234 continue; 2235 2236 if (!MatchTwoMethodDeclarations(Method, List->Method)) 2237 continue; 2238 2239 ObjCMethodDecl *PrevObjCMethod = List->Method; 2240 2241 // Propagate the 'defined' bit. 2242 if (Method->isDefined()) 2243 PrevObjCMethod->setDefined(true); 2244 2245 // If a method is deprecated, push it in the global pool. 2246 // This is used for better diagnostics. 2247 if (Method->isDeprecated()) { 2248 if (!PrevObjCMethod->isDeprecated()) 2249 List->Method = Method; 2250 } 2251 // If new method is unavailable, push it into global pool 2252 // unless previous one is deprecated. 2253 if (Method->isUnavailable()) { 2254 if (PrevObjCMethod->getAvailability() < AR_Deprecated) 2255 List->Method = Method; 2256 } 2257 2258 return; 2259 } 2260 2261 // We have a new signature for an existing method - add it. 2262 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". 2263 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); 2264 Previous->setNext(new (Mem) ObjCMethodList(Method, nullptr)); 2265 } 2266 2267 /// \brief Read the contents of the method pool for a given selector from 2268 /// external storage. 2269 void Sema::ReadMethodPool(Selector Sel) { 2270 assert(ExternalSource && "We need an external AST source"); 2271 ExternalSource->ReadMethodPool(Sel); 2272 } 2273 2274 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, 2275 bool instance) { 2276 // Ignore methods of invalid containers. 2277 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl()) 2278 return; 2279 2280 if (ExternalSource) 2281 ReadMethodPool(Method->getSelector()); 2282 2283 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector()); 2284 if (Pos == MethodPool.end()) 2285 Pos = MethodPool.insert(std::make_pair(Method->getSelector(), 2286 GlobalMethods())).first; 2287 2288 Method->setDefined(impl); 2289 2290 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; 2291 addMethodToGlobalList(&Entry, Method); 2292 } 2293 2294 /// Determines if this is an "acceptable" loose mismatch in the global 2295 /// method pool. This exists mostly as a hack to get around certain 2296 /// global mismatches which we can't afford to make warnings / errors. 2297 /// Really, what we want is a way to take a method out of the global 2298 /// method pool. 2299 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, 2300 ObjCMethodDecl *other) { 2301 if (!chosen->isInstanceMethod()) 2302 return false; 2303 2304 Selector sel = chosen->getSelector(); 2305 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length") 2306 return false; 2307 2308 // Don't complain about mismatches for -length if the method we 2309 // chose has an integral result type. 2310 return (chosen->getReturnType()->isIntegerType()); 2311 } 2312 2313 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R, 2314 bool receiverIdOrClass, 2315 bool warn, bool instance) { 2316 if (ExternalSource) 2317 ReadMethodPool(Sel); 2318 2319 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 2320 if (Pos == MethodPool.end()) 2321 return nullptr; 2322 2323 // Gather the non-hidden methods. 2324 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; 2325 SmallVector<ObjCMethodDecl *, 4> Methods; 2326 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) { 2327 if (M->Method && !M->Method->isHidden()) { 2328 // If we're not supposed to warn about mismatches, we're done. 2329 if (!warn) 2330 return M->Method; 2331 2332 Methods.push_back(M->Method); 2333 } 2334 } 2335 2336 // If there aren't any visible methods, we're done. 2337 // FIXME: Recover if there are any known-but-hidden methods? 2338 if (Methods.empty()) 2339 return nullptr; 2340 2341 if (Methods.size() == 1) 2342 return Methods[0]; 2343 2344 // We found multiple methods, so we may have to complain. 2345 bool issueDiagnostic = false, issueError = false; 2346 2347 // We support a warning which complains about *any* difference in 2348 // method signature. 2349 bool strictSelectorMatch = 2350 receiverIdOrClass && warn && 2351 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin()); 2352 if (strictSelectorMatch) { 2353 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 2354 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) { 2355 issueDiagnostic = true; 2356 break; 2357 } 2358 } 2359 } 2360 2361 // If we didn't see any strict differences, we won't see any loose 2362 // differences. In ARC, however, we also need to check for loose 2363 // mismatches, because most of them are errors. 2364 if (!strictSelectorMatch || 2365 (issueDiagnostic && getLangOpts().ObjCAutoRefCount)) 2366 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 2367 // This checks if the methods differ in type mismatch. 2368 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) && 2369 !isAcceptableMethodMismatch(Methods[0], Methods[I])) { 2370 issueDiagnostic = true; 2371 if (getLangOpts().ObjCAutoRefCount) 2372 issueError = true; 2373 break; 2374 } 2375 } 2376 2377 if (issueDiagnostic) { 2378 if (issueError) 2379 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R; 2380 else if (strictSelectorMatch) 2381 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; 2382 else 2383 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; 2384 2385 Diag(Methods[0]->getLocStart(), 2386 issueError ? diag::note_possibility : diag::note_using) 2387 << Methods[0]->getSourceRange(); 2388 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 2389 Diag(Methods[I]->getLocStart(), diag::note_also_found) 2390 << Methods[I]->getSourceRange(); 2391 } 2392 } 2393 return Methods[0]; 2394 } 2395 2396 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) { 2397 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 2398 if (Pos == MethodPool.end()) 2399 return nullptr; 2400 2401 GlobalMethods &Methods = Pos->second; 2402 for (const ObjCMethodList *Method = &Methods.first; Method; 2403 Method = Method->getNext()) 2404 if (Method->Method && Method->Method->isDefined()) 2405 return Method->Method; 2406 2407 for (const ObjCMethodList *Method = &Methods.second; Method; 2408 Method = Method->getNext()) 2409 if (Method->Method && Method->Method->isDefined()) 2410 return Method->Method; 2411 return nullptr; 2412 } 2413 2414 static void 2415 HelperSelectorsForTypoCorrection( 2416 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod, 2417 StringRef Typo, const ObjCMethodDecl * Method) { 2418 const unsigned MaxEditDistance = 1; 2419 unsigned BestEditDistance = MaxEditDistance + 1; 2420 std::string MethodName = Method->getSelector().getAsString(); 2421 2422 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size()); 2423 if (MinPossibleEditDistance > 0 && 2424 Typo.size() / MinPossibleEditDistance < 1) 2425 return; 2426 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance); 2427 if (EditDistance > MaxEditDistance) 2428 return; 2429 if (EditDistance == BestEditDistance) 2430 BestMethod.push_back(Method); 2431 else if (EditDistance < BestEditDistance) { 2432 BestMethod.clear(); 2433 BestMethod.push_back(Method); 2434 } 2435 } 2436 2437 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel, 2438 QualType ObjectType) { 2439 if (ObjectType.isNull()) 2440 return true; 2441 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/)) 2442 return true; 2443 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) != 2444 nullptr; 2445 } 2446 2447 const ObjCMethodDecl * 2448 Sema::SelectorsForTypoCorrection(Selector Sel, 2449 QualType ObjectType) { 2450 unsigned NumArgs = Sel.getNumArgs(); 2451 SmallVector<const ObjCMethodDecl *, 8> Methods; 2452 bool ObjectIsId = true, ObjectIsClass = true; 2453 if (ObjectType.isNull()) 2454 ObjectIsId = ObjectIsClass = false; 2455 else if (!ObjectType->isObjCObjectPointerType()) 2456 return nullptr; 2457 else if (const ObjCObjectPointerType *ObjCPtr = 2458 ObjectType->getAsObjCInterfacePointerType()) { 2459 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0); 2460 ObjectIsId = ObjectIsClass = false; 2461 } 2462 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType()) 2463 ObjectIsClass = false; 2464 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType()) 2465 ObjectIsId = false; 2466 else 2467 return nullptr; 2468 2469 for (GlobalMethodPool::iterator b = MethodPool.begin(), 2470 e = MethodPool.end(); b != e; b++) { 2471 // instance methods 2472 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext()) 2473 if (M->Method && 2474 (M->Method->getSelector().getNumArgs() == NumArgs) && 2475 (M->Method->getSelector() != Sel)) { 2476 if (ObjectIsId) 2477 Methods.push_back(M->Method); 2478 else if (!ObjectIsClass && 2479 HelperIsMethodInObjCType(*this, M->Method->getSelector(), ObjectType)) 2480 Methods.push_back(M->Method); 2481 } 2482 // class methods 2483 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext()) 2484 if (M->Method && 2485 (M->Method->getSelector().getNumArgs() == NumArgs) && 2486 (M->Method->getSelector() != Sel)) { 2487 if (ObjectIsClass) 2488 Methods.push_back(M->Method); 2489 else if (!ObjectIsId && 2490 HelperIsMethodInObjCType(*this, M->Method->getSelector(), ObjectType)) 2491 Methods.push_back(M->Method); 2492 } 2493 } 2494 2495 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods; 2496 for (unsigned i = 0, e = Methods.size(); i < e; i++) { 2497 HelperSelectorsForTypoCorrection(SelectedMethods, 2498 Sel.getAsString(), Methods[i]); 2499 } 2500 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr; 2501 } 2502 2503 /// DiagnoseDuplicateIvars - 2504 /// Check for duplicate ivars in the entire class at the start of 2505 /// \@implementation. This becomes necesssary because class extension can 2506 /// add ivars to a class in random order which will not be known until 2507 /// class's \@implementation is seen. 2508 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 2509 ObjCInterfaceDecl *SID) { 2510 for (auto *Ivar : ID->ivars()) { 2511 if (Ivar->isInvalidDecl()) 2512 continue; 2513 if (IdentifierInfo *II = Ivar->getIdentifier()) { 2514 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II); 2515 if (prevIvar) { 2516 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; 2517 Diag(prevIvar->getLocation(), diag::note_previous_declaration); 2518 Ivar->setInvalidDecl(); 2519 } 2520 } 2521 } 2522 } 2523 2524 Sema::ObjCContainerKind Sema::getObjCContainerKind() const { 2525 switch (CurContext->getDeclKind()) { 2526 case Decl::ObjCInterface: 2527 return Sema::OCK_Interface; 2528 case Decl::ObjCProtocol: 2529 return Sema::OCK_Protocol; 2530 case Decl::ObjCCategory: 2531 if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension()) 2532 return Sema::OCK_ClassExtension; 2533 else 2534 return Sema::OCK_Category; 2535 case Decl::ObjCImplementation: 2536 return Sema::OCK_Implementation; 2537 case Decl::ObjCCategoryImpl: 2538 return Sema::OCK_CategoryImplementation; 2539 2540 default: 2541 return Sema::OCK_None; 2542 } 2543 } 2544 2545 // Note: For class/category implementations, allMethods is always null. 2546 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods, 2547 ArrayRef<DeclGroupPtrTy> allTUVars) { 2548 if (getObjCContainerKind() == Sema::OCK_None) 2549 return nullptr; 2550 2551 assert(AtEnd.isValid() && "Invalid location for '@end'"); 2552 2553 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); 2554 Decl *ClassDecl = cast<Decl>(OCD); 2555 2556 bool isInterfaceDeclKind = 2557 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl) 2558 || isa<ObjCProtocolDecl>(ClassDecl); 2559 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl); 2560 2561 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. 2562 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; 2563 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; 2564 2565 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) { 2566 ObjCMethodDecl *Method = 2567 cast_or_null<ObjCMethodDecl>(allMethods[i]); 2568 2569 if (!Method) continue; // Already issued a diagnostic. 2570 if (Method->isInstanceMethod()) { 2571 /// Check for instance method of the same name with incompatible types 2572 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; 2573 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 2574 : false; 2575 if ((isInterfaceDeclKind && PrevMethod && !match) 2576 || (checkIdenticalMethods && match)) { 2577 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 2578 << Method->getDeclName(); 2579 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2580 Method->setInvalidDecl(); 2581 } else { 2582 if (PrevMethod) { 2583 Method->setAsRedeclaration(PrevMethod); 2584 if (!Context.getSourceManager().isInSystemHeader( 2585 Method->getLocation())) 2586 Diag(Method->getLocation(), diag::warn_duplicate_method_decl) 2587 << Method->getDeclName(); 2588 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2589 } 2590 InsMap[Method->getSelector()] = Method; 2591 /// The following allows us to typecheck messages to "id". 2592 AddInstanceMethodToGlobalPool(Method); 2593 } 2594 } else { 2595 /// Check for class method of the same name with incompatible types 2596 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; 2597 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 2598 : false; 2599 if ((isInterfaceDeclKind && PrevMethod && !match) 2600 || (checkIdenticalMethods && match)) { 2601 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 2602 << Method->getDeclName(); 2603 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2604 Method->setInvalidDecl(); 2605 } else { 2606 if (PrevMethod) { 2607 Method->setAsRedeclaration(PrevMethod); 2608 if (!Context.getSourceManager().isInSystemHeader( 2609 Method->getLocation())) 2610 Diag(Method->getLocation(), diag::warn_duplicate_method_decl) 2611 << Method->getDeclName(); 2612 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2613 } 2614 ClsMap[Method->getSelector()] = Method; 2615 AddFactoryMethodToGlobalPool(Method); 2616 } 2617 } 2618 } 2619 if (isa<ObjCInterfaceDecl>(ClassDecl)) { 2620 // Nothing to do here. 2621 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) { 2622 // Categories are used to extend the class by declaring new methods. 2623 // By the same token, they are also used to add new properties. No 2624 // need to compare the added property to those in the class. 2625 2626 if (C->IsClassExtension()) { 2627 ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); 2628 DiagnoseClassExtensionDupMethods(C, CCPrimary); 2629 } 2630 } 2631 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) { 2632 if (CDecl->getIdentifier()) 2633 // ProcessPropertyDecl is responsible for diagnosing conflicts with any 2634 // user-defined setter/getter. It also synthesizes setter/getter methods 2635 // and adds them to the DeclContext and global method pools. 2636 for (auto *I : CDecl->properties()) 2637 ProcessPropertyDecl(I, CDecl); 2638 CDecl->setAtEndRange(AtEnd); 2639 } 2640 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) { 2641 IC->setAtEndRange(AtEnd); 2642 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { 2643 // Any property declared in a class extension might have user 2644 // declared setter or getter in current class extension or one 2645 // of the other class extensions. Mark them as synthesized as 2646 // property will be synthesized when property with same name is 2647 // seen in the @implementation. 2648 for (const auto *Ext : IDecl->visible_extensions()) { 2649 for (const auto *Property : Ext->properties()) { 2650 // Skip over properties declared @dynamic 2651 if (const ObjCPropertyImplDecl *PIDecl 2652 = IC->FindPropertyImplDecl(Property->getIdentifier())) 2653 if (PIDecl->getPropertyImplementation() 2654 == ObjCPropertyImplDecl::Dynamic) 2655 continue; 2656 2657 for (const auto *Ext : IDecl->visible_extensions()) { 2658 if (ObjCMethodDecl *GetterMethod 2659 = Ext->getInstanceMethod(Property->getGetterName())) 2660 GetterMethod->setPropertyAccessor(true); 2661 if (!Property->isReadOnly()) 2662 if (ObjCMethodDecl *SetterMethod 2663 = Ext->getInstanceMethod(Property->getSetterName())) 2664 SetterMethod->setPropertyAccessor(true); 2665 } 2666 } 2667 } 2668 ImplMethodsVsClassMethods(S, IC, IDecl); 2669 AtomicPropertySetterGetterRules(IC, IDecl); 2670 DiagnoseOwningPropertyGetterSynthesis(IC); 2671 DiagnoseUnusedBackingIvarInAccessor(S, IC); 2672 if (IDecl->hasDesignatedInitializers()) 2673 DiagnoseMissingDesignatedInitOverrides(IC, IDecl); 2674 2675 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>(); 2676 if (IDecl->getSuperClass() == nullptr) { 2677 // This class has no superclass, so check that it has been marked with 2678 // __attribute((objc_root_class)). 2679 if (!HasRootClassAttr) { 2680 SourceLocation DeclLoc(IDecl->getLocation()); 2681 SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc)); 2682 Diag(DeclLoc, diag::warn_objc_root_class_missing) 2683 << IDecl->getIdentifier(); 2684 // See if NSObject is in the current scope, and if it is, suggest 2685 // adding " : NSObject " to the class declaration. 2686 NamedDecl *IF = LookupSingleName(TUScope, 2687 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject), 2688 DeclLoc, LookupOrdinaryName); 2689 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 2690 if (NSObjectDecl && NSObjectDecl->getDefinition()) { 2691 Diag(SuperClassLoc, diag::note_objc_needs_superclass) 2692 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject "); 2693 } else { 2694 Diag(SuperClassLoc, diag::note_objc_needs_superclass); 2695 } 2696 } 2697 } else if (HasRootClassAttr) { 2698 // Complain that only root classes may have this attribute. 2699 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass); 2700 } 2701 2702 if (LangOpts.ObjCRuntime.isNonFragile()) { 2703 while (IDecl->getSuperClass()) { 2704 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass()); 2705 IDecl = IDecl->getSuperClass(); 2706 } 2707 } 2708 } 2709 SetIvarInitializers(IC); 2710 } else if (ObjCCategoryImplDecl* CatImplClass = 2711 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { 2712 CatImplClass->setAtEndRange(AtEnd); 2713 2714 // Find category interface decl and then check that all methods declared 2715 // in this interface are implemented in the category @implementation. 2716 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { 2717 if (ObjCCategoryDecl *Cat 2718 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) { 2719 ImplMethodsVsClassMethods(S, CatImplClass, Cat); 2720 } 2721 } 2722 } 2723 if (isInterfaceDeclKind) { 2724 // Reject invalid vardecls. 2725 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { 2726 DeclGroupRef DG = allTUVars[i].get(); 2727 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 2728 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) { 2729 if (!VDecl->hasExternalStorage()) 2730 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); 2731 } 2732 } 2733 } 2734 ActOnObjCContainerFinishDefinition(); 2735 2736 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { 2737 DeclGroupRef DG = allTUVars[i].get(); 2738 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 2739 (*I)->setTopLevelDeclInObjCContainer(); 2740 Consumer.HandleTopLevelDeclInObjCContainer(DG); 2741 } 2742 2743 ActOnDocumentableDecl(ClassDecl); 2744 return ClassDecl; 2745 } 2746 2747 2748 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for 2749 /// objective-c's type qualifier from the parser version of the same info. 2750 static Decl::ObjCDeclQualifier 2751 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { 2752 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; 2753 } 2754 2755 /// \brief Check whether the declared result type of the given Objective-C 2756 /// method declaration is compatible with the method's class. 2757 /// 2758 static Sema::ResultTypeCompatibilityKind 2759 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, 2760 ObjCInterfaceDecl *CurrentClass) { 2761 QualType ResultType = Method->getReturnType(); 2762 2763 // If an Objective-C method inherits its related result type, then its 2764 // declared result type must be compatible with its own class type. The 2765 // declared result type is compatible if: 2766 if (const ObjCObjectPointerType *ResultObjectType 2767 = ResultType->getAs<ObjCObjectPointerType>()) { 2768 // - it is id or qualified id, or 2769 if (ResultObjectType->isObjCIdType() || 2770 ResultObjectType->isObjCQualifiedIdType()) 2771 return Sema::RTC_Compatible; 2772 2773 if (CurrentClass) { 2774 if (ObjCInterfaceDecl *ResultClass 2775 = ResultObjectType->getInterfaceDecl()) { 2776 // - it is the same as the method's class type, or 2777 if (declaresSameEntity(CurrentClass, ResultClass)) 2778 return Sema::RTC_Compatible; 2779 2780 // - it is a superclass of the method's class type 2781 if (ResultClass->isSuperClassOf(CurrentClass)) 2782 return Sema::RTC_Compatible; 2783 } 2784 } else { 2785 // Any Objective-C pointer type might be acceptable for a protocol 2786 // method; we just don't know. 2787 return Sema::RTC_Unknown; 2788 } 2789 } 2790 2791 return Sema::RTC_Incompatible; 2792 } 2793 2794 namespace { 2795 /// A helper class for searching for methods which a particular method 2796 /// overrides. 2797 class OverrideSearch { 2798 public: 2799 Sema &S; 2800 ObjCMethodDecl *Method; 2801 llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden; 2802 bool Recursive; 2803 2804 public: 2805 OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) { 2806 Selector selector = method->getSelector(); 2807 2808 // Bypass this search if we've never seen an instance/class method 2809 // with this selector before. 2810 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector); 2811 if (it == S.MethodPool.end()) { 2812 if (!S.getExternalSource()) return; 2813 S.ReadMethodPool(selector); 2814 2815 it = S.MethodPool.find(selector); 2816 if (it == S.MethodPool.end()) 2817 return; 2818 } 2819 ObjCMethodList &list = 2820 method->isInstanceMethod() ? it->second.first : it->second.second; 2821 if (!list.Method) return; 2822 2823 ObjCContainerDecl *container 2824 = cast<ObjCContainerDecl>(method->getDeclContext()); 2825 2826 // Prevent the search from reaching this container again. This is 2827 // important with categories, which override methods from the 2828 // interface and each other. 2829 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) { 2830 searchFromContainer(container); 2831 if (ObjCInterfaceDecl *Interface = Category->getClassInterface()) 2832 searchFromContainer(Interface); 2833 } else { 2834 searchFromContainer(container); 2835 } 2836 } 2837 2838 typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator; 2839 iterator begin() const { return Overridden.begin(); } 2840 iterator end() const { return Overridden.end(); } 2841 2842 private: 2843 void searchFromContainer(ObjCContainerDecl *container) { 2844 if (container->isInvalidDecl()) return; 2845 2846 switch (container->getDeclKind()) { 2847 #define OBJCCONTAINER(type, base) \ 2848 case Decl::type: \ 2849 searchFrom(cast<type##Decl>(container)); \ 2850 break; 2851 #define ABSTRACT_DECL(expansion) 2852 #define DECL(type, base) \ 2853 case Decl::type: 2854 #include "clang/AST/DeclNodes.inc" 2855 llvm_unreachable("not an ObjC container!"); 2856 } 2857 } 2858 2859 void searchFrom(ObjCProtocolDecl *protocol) { 2860 if (!protocol->hasDefinition()) 2861 return; 2862 2863 // A method in a protocol declaration overrides declarations from 2864 // referenced ("parent") protocols. 2865 search(protocol->getReferencedProtocols()); 2866 } 2867 2868 void searchFrom(ObjCCategoryDecl *category) { 2869 // A method in a category declaration overrides declarations from 2870 // the main class and from protocols the category references. 2871 // The main class is handled in the constructor. 2872 search(category->getReferencedProtocols()); 2873 } 2874 2875 void searchFrom(ObjCCategoryImplDecl *impl) { 2876 // A method in a category definition that has a category 2877 // declaration overrides declarations from the category 2878 // declaration. 2879 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) { 2880 search(category); 2881 if (ObjCInterfaceDecl *Interface = category->getClassInterface()) 2882 search(Interface); 2883 2884 // Otherwise it overrides declarations from the class. 2885 } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) { 2886 search(Interface); 2887 } 2888 } 2889 2890 void searchFrom(ObjCInterfaceDecl *iface) { 2891 // A method in a class declaration overrides declarations from 2892 if (!iface->hasDefinition()) 2893 return; 2894 2895 // - categories, 2896 for (auto *Cat : iface->known_categories()) 2897 search(Cat); 2898 2899 // - the super class, and 2900 if (ObjCInterfaceDecl *super = iface->getSuperClass()) 2901 search(super); 2902 2903 // - any referenced protocols. 2904 search(iface->getReferencedProtocols()); 2905 } 2906 2907 void searchFrom(ObjCImplementationDecl *impl) { 2908 // A method in a class implementation overrides declarations from 2909 // the class interface. 2910 if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) 2911 search(Interface); 2912 } 2913 2914 2915 void search(const ObjCProtocolList &protocols) { 2916 for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end(); 2917 i != e; ++i) 2918 search(*i); 2919 } 2920 2921 void search(ObjCContainerDecl *container) { 2922 // Check for a method in this container which matches this selector. 2923 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(), 2924 Method->isInstanceMethod(), 2925 /*AllowHidden=*/true); 2926 2927 // If we find one, record it and bail out. 2928 if (meth) { 2929 Overridden.insert(meth); 2930 return; 2931 } 2932 2933 // Otherwise, search for methods that a hypothetical method here 2934 // would have overridden. 2935 2936 // Note that we're now in a recursive case. 2937 Recursive = true; 2938 2939 searchFromContainer(container); 2940 } 2941 }; 2942 } 2943 2944 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod, 2945 ObjCInterfaceDecl *CurrentClass, 2946 ResultTypeCompatibilityKind RTC) { 2947 // Search for overridden methods and merge information down from them. 2948 OverrideSearch overrides(*this, ObjCMethod); 2949 // Keep track if the method overrides any method in the class's base classes, 2950 // its protocols, or its categories' protocols; we will keep that info 2951 // in the ObjCMethodDecl. 2952 // For this info, a method in an implementation is not considered as 2953 // overriding the same method in the interface or its categories. 2954 bool hasOverriddenMethodsInBaseOrProtocol = false; 2955 for (OverrideSearch::iterator 2956 i = overrides.begin(), e = overrides.end(); i != e; ++i) { 2957 ObjCMethodDecl *overridden = *i; 2958 2959 if (!hasOverriddenMethodsInBaseOrProtocol) { 2960 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) || 2961 CurrentClass != overridden->getClassInterface() || 2962 overridden->isOverriding()) { 2963 hasOverriddenMethodsInBaseOrProtocol = true; 2964 2965 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) { 2966 // OverrideSearch will return as "overridden" the same method in the 2967 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to 2968 // check whether a category of a base class introduced a method with the 2969 // same selector, after the interface method declaration. 2970 // To avoid unnecessary lookups in the majority of cases, we use the 2971 // extra info bits in GlobalMethodPool to check whether there were any 2972 // category methods with this selector. 2973 GlobalMethodPool::iterator It = 2974 MethodPool.find(ObjCMethod->getSelector()); 2975 if (It != MethodPool.end()) { 2976 ObjCMethodList &List = 2977 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second; 2978 unsigned CategCount = List.getBits(); 2979 if (CategCount > 0) { 2980 // If the method is in a category we'll do lookup if there were at 2981 // least 2 category methods recorded, otherwise only one will do. 2982 if (CategCount > 1 || 2983 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) { 2984 OverrideSearch overrides(*this, overridden); 2985 for (OverrideSearch::iterator 2986 OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) { 2987 ObjCMethodDecl *SuperOverridden = *OI; 2988 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) || 2989 CurrentClass != SuperOverridden->getClassInterface()) { 2990 hasOverriddenMethodsInBaseOrProtocol = true; 2991 overridden->setOverriding(true); 2992 break; 2993 } 2994 } 2995 } 2996 } 2997 } 2998 } 2999 } 3000 3001 // Propagate down the 'related result type' bit from overridden methods. 3002 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType()) 3003 ObjCMethod->SetRelatedResultType(); 3004 3005 // Then merge the declarations. 3006 mergeObjCMethodDecls(ObjCMethod, overridden); 3007 3008 if (ObjCMethod->isImplicit() && overridden->isImplicit()) 3009 continue; // Conflicting properties are detected elsewhere. 3010 3011 // Check for overriding methods 3012 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || 3013 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext())) 3014 CheckConflictingOverridingMethod(ObjCMethod, overridden, 3015 isa<ObjCProtocolDecl>(overridden->getDeclContext())); 3016 3017 if (CurrentClass && overridden->getDeclContext() != CurrentClass && 3018 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) && 3019 !overridden->isImplicit() /* not meant for properties */) { 3020 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(), 3021 E = ObjCMethod->param_end(); 3022 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(), 3023 PrevE = overridden->param_end(); 3024 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) { 3025 assert(PrevI != overridden->param_end() && "Param mismatch"); 3026 QualType T1 = Context.getCanonicalType((*ParamI)->getType()); 3027 QualType T2 = Context.getCanonicalType((*PrevI)->getType()); 3028 // If type of argument of method in this class does not match its 3029 // respective argument type in the super class method, issue warning; 3030 if (!Context.typesAreCompatible(T1, T2)) { 3031 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) 3032 << T1 << T2; 3033 Diag(overridden->getLocation(), diag::note_previous_declaration); 3034 break; 3035 } 3036 } 3037 } 3038 } 3039 3040 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol); 3041 } 3042 3043 Decl *Sema::ActOnMethodDeclaration( 3044 Scope *S, 3045 SourceLocation MethodLoc, SourceLocation EndLoc, 3046 tok::TokenKind MethodType, 3047 ObjCDeclSpec &ReturnQT, ParsedType ReturnType, 3048 ArrayRef<SourceLocation> SelectorLocs, 3049 Selector Sel, 3050 // optional arguments. The number of types/arguments is obtained 3051 // from the Sel.getNumArgs(). 3052 ObjCArgInfo *ArgInfo, 3053 DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args 3054 AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind, 3055 bool isVariadic, bool MethodDefinition) { 3056 // Make sure we can establish a context for the method. 3057 if (!CurContext->isObjCContainer()) { 3058 Diag(MethodLoc, diag::error_missing_method_context); 3059 return nullptr; 3060 } 3061 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); 3062 Decl *ClassDecl = cast<Decl>(OCD); 3063 QualType resultDeclType; 3064 3065 bool HasRelatedResultType = false; 3066 TypeSourceInfo *ReturnTInfo = nullptr; 3067 if (ReturnType) { 3068 resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo); 3069 3070 if (CheckFunctionReturnType(resultDeclType, MethodLoc)) 3071 return nullptr; 3072 3073 HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType()); 3074 } else { // get the type for "id". 3075 resultDeclType = Context.getObjCIdType(); 3076 Diag(MethodLoc, diag::warn_missing_method_return_type) 3077 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)"); 3078 } 3079 3080 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create( 3081 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext, 3082 MethodType == tok::minus, isVariadic, 3083 /*isPropertyAccessor=*/false, 3084 /*isImplicitlyDeclared=*/false, /*isDefined=*/false, 3085 MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional 3086 : ObjCMethodDecl::Required, 3087 HasRelatedResultType); 3088 3089 SmallVector<ParmVarDecl*, 16> Params; 3090 3091 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { 3092 QualType ArgType; 3093 TypeSourceInfo *DI; 3094 3095 if (!ArgInfo[i].Type) { 3096 ArgType = Context.getObjCIdType(); 3097 DI = nullptr; 3098 } else { 3099 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI); 3100 } 3101 3102 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, 3103 LookupOrdinaryName, ForRedeclaration); 3104 LookupName(R, S); 3105 if (R.isSingleResult()) { 3106 NamedDecl *PrevDecl = R.getFoundDecl(); 3107 if (S->isDeclScope(PrevDecl)) { 3108 Diag(ArgInfo[i].NameLoc, 3109 (MethodDefinition ? diag::warn_method_param_redefinition 3110 : diag::warn_method_param_declaration)) 3111 << ArgInfo[i].Name; 3112 Diag(PrevDecl->getLocation(), 3113 diag::note_previous_declaration); 3114 } 3115 } 3116 3117 SourceLocation StartLoc = DI 3118 ? DI->getTypeLoc().getBeginLoc() 3119 : ArgInfo[i].NameLoc; 3120 3121 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc, 3122 ArgInfo[i].NameLoc, ArgInfo[i].Name, 3123 ArgType, DI, SC_None); 3124 3125 Param->setObjCMethodScopeInfo(i); 3126 3127 Param->setObjCDeclQualifier( 3128 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier())); 3129 3130 // Apply the attributes to the parameter. 3131 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); 3132 3133 if (Param->hasAttr<BlocksAttr>()) { 3134 Diag(Param->getLocation(), diag::err_block_on_nonlocal); 3135 Param->setInvalidDecl(); 3136 } 3137 S->AddDecl(Param); 3138 IdResolver.AddDecl(Param); 3139 3140 Params.push_back(Param); 3141 } 3142 3143 for (unsigned i = 0, e = CNumArgs; i != e; ++i) { 3144 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param); 3145 QualType ArgType = Param->getType(); 3146 if (ArgType.isNull()) 3147 ArgType = Context.getObjCIdType(); 3148 else 3149 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 3150 ArgType = Context.getAdjustedParameterType(ArgType); 3151 3152 Param->setDeclContext(ObjCMethod); 3153 Params.push_back(Param); 3154 } 3155 3156 ObjCMethod->setMethodParams(Context, Params, SelectorLocs); 3157 ObjCMethod->setObjCDeclQualifier( 3158 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier())); 3159 3160 if (AttrList) 3161 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); 3162 3163 // Add the method now. 3164 const ObjCMethodDecl *PrevMethod = nullptr; 3165 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) { 3166 if (MethodType == tok::minus) { 3167 PrevMethod = ImpDecl->getInstanceMethod(Sel); 3168 ImpDecl->addInstanceMethod(ObjCMethod); 3169 } else { 3170 PrevMethod = ImpDecl->getClassMethod(Sel); 3171 ImpDecl->addClassMethod(ObjCMethod); 3172 } 3173 3174 ObjCMethodDecl *IMD = nullptr; 3175 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) 3176 IMD = IDecl->lookupMethod(ObjCMethod->getSelector(), 3177 ObjCMethod->isInstanceMethod()); 3178 if (IMD && IMD->hasAttr<ObjCRequiresSuperAttr>() && 3179 !ObjCMethod->hasAttr<ObjCRequiresSuperAttr>()) { 3180 // merge the attribute into implementation. 3181 ObjCMethod->addAttr(ObjCRequiresSuperAttr::CreateImplicit(Context, 3182 ObjCMethod->getLocation())); 3183 } 3184 if (isa<ObjCCategoryImplDecl>(ImpDecl)) { 3185 ObjCMethodFamily family = 3186 ObjCMethod->getSelector().getMethodFamily(); 3187 if (family == OMF_dealloc && IMD && IMD->isOverriding()) 3188 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category) 3189 << ObjCMethod->getDeclName(); 3190 } 3191 } else { 3192 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod); 3193 } 3194 3195 if (PrevMethod) { 3196 // You can never have two method definitions with the same name. 3197 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) 3198 << ObjCMethod->getDeclName(); 3199 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 3200 ObjCMethod->setInvalidDecl(); 3201 return ObjCMethod; 3202 } 3203 3204 // If this Objective-C method does not have a related result type, but we 3205 // are allowed to infer related result types, try to do so based on the 3206 // method family. 3207 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 3208 if (!CurrentClass) { 3209 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl)) 3210 CurrentClass = Cat->getClassInterface(); 3211 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl)) 3212 CurrentClass = Impl->getClassInterface(); 3213 else if (ObjCCategoryImplDecl *CatImpl 3214 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) 3215 CurrentClass = CatImpl->getClassInterface(); 3216 } 3217 3218 ResultTypeCompatibilityKind RTC 3219 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass); 3220 3221 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC); 3222 3223 bool ARCError = false; 3224 if (getLangOpts().ObjCAutoRefCount) 3225 ARCError = CheckARCMethodDecl(ObjCMethod); 3226 3227 // Infer the related result type when possible. 3228 if (!ARCError && RTC == Sema::RTC_Compatible && 3229 !ObjCMethod->hasRelatedResultType() && 3230 LangOpts.ObjCInferRelatedResultType) { 3231 bool InferRelatedResultType = false; 3232 switch (ObjCMethod->getMethodFamily()) { 3233 case OMF_None: 3234 case OMF_copy: 3235 case OMF_dealloc: 3236 case OMF_finalize: 3237 case OMF_mutableCopy: 3238 case OMF_release: 3239 case OMF_retainCount: 3240 case OMF_performSelector: 3241 break; 3242 3243 case OMF_alloc: 3244 case OMF_new: 3245 InferRelatedResultType = ObjCMethod->isClassMethod(); 3246 break; 3247 3248 case OMF_init: 3249 case OMF_autorelease: 3250 case OMF_retain: 3251 case OMF_self: 3252 InferRelatedResultType = ObjCMethod->isInstanceMethod(); 3253 break; 3254 } 3255 3256 if (InferRelatedResultType) 3257 ObjCMethod->SetRelatedResultType(); 3258 } 3259 3260 ActOnDocumentableDecl(ObjCMethod); 3261 3262 return ObjCMethod; 3263 } 3264 3265 bool Sema::CheckObjCDeclScope(Decl *D) { 3266 // Following is also an error. But it is caused by a missing @end 3267 // and diagnostic is issued elsewhere. 3268 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) 3269 return false; 3270 3271 // If we switched context to translation unit while we are still lexically in 3272 // an objc container, it means the parser missed emitting an error. 3273 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext())) 3274 return false; 3275 3276 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); 3277 D->setInvalidDecl(); 3278 3279 return true; 3280 } 3281 3282 /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the 3283 /// instance variables of ClassName into Decls. 3284 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, 3285 IdentifierInfo *ClassName, 3286 SmallVectorImpl<Decl*> &Decls) { 3287 // Check that ClassName is a valid class 3288 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart); 3289 if (!Class) { 3290 Diag(DeclStart, diag::err_undef_interface) << ClassName; 3291 return; 3292 } 3293 if (LangOpts.ObjCRuntime.isNonFragile()) { 3294 Diag(DeclStart, diag::err_atdef_nonfragile_interface); 3295 return; 3296 } 3297 3298 // Collect the instance variables 3299 SmallVector<const ObjCIvarDecl*, 32> Ivars; 3300 Context.DeepCollectObjCIvars(Class, true, Ivars); 3301 // For each ivar, create a fresh ObjCAtDefsFieldDecl. 3302 for (unsigned i = 0; i < Ivars.size(); i++) { 3303 const FieldDecl* ID = cast<FieldDecl>(Ivars[i]); 3304 RecordDecl *Record = dyn_cast<RecordDecl>(TagD); 3305 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, 3306 /*FIXME: StartL=*/ID->getLocation(), 3307 ID->getLocation(), 3308 ID->getIdentifier(), ID->getType(), 3309 ID->getBitWidth()); 3310 Decls.push_back(FD); 3311 } 3312 3313 // Introduce all of these fields into the appropriate scope. 3314 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin(); 3315 D != Decls.end(); ++D) { 3316 FieldDecl *FD = cast<FieldDecl>(*D); 3317 if (getLangOpts().CPlusPlus) 3318 PushOnScopeChains(cast<FieldDecl>(FD), S); 3319 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD)) 3320 Record->addDecl(FD); 3321 } 3322 } 3323 3324 /// \brief Build a type-check a new Objective-C exception variable declaration. 3325 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, 3326 SourceLocation StartLoc, 3327 SourceLocation IdLoc, 3328 IdentifierInfo *Id, 3329 bool Invalid) { 3330 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 3331 // duration shall not be qualified by an address-space qualifier." 3332 // Since all parameters have automatic store duration, they can not have 3333 // an address space. 3334 if (T.getAddressSpace() != 0) { 3335 Diag(IdLoc, diag::err_arg_with_address_space); 3336 Invalid = true; 3337 } 3338 3339 // An @catch parameter must be an unqualified object pointer type; 3340 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? 3341 if (Invalid) { 3342 // Don't do any further checking. 3343 } else if (T->isDependentType()) { 3344 // Okay: we don't know what this type will instantiate to. 3345 } else if (!T->isObjCObjectPointerType()) { 3346 Invalid = true; 3347 Diag(IdLoc ,diag::err_catch_param_not_objc_type); 3348 } else if (T->isObjCQualifiedIdType()) { 3349 Invalid = true; 3350 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm); 3351 } 3352 3353 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id, 3354 T, TInfo, SC_None); 3355 New->setExceptionVariable(true); 3356 3357 // In ARC, infer 'retaining' for variables of retainable type. 3358 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New)) 3359 Invalid = true; 3360 3361 if (Invalid) 3362 New->setInvalidDecl(); 3363 return New; 3364 } 3365 3366 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { 3367 const DeclSpec &DS = D.getDeclSpec(); 3368 3369 // We allow the "register" storage class on exception variables because 3370 // GCC did, but we drop it completely. Any other storage class is an error. 3371 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 3372 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) 3373 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); 3374 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { 3375 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) 3376 << DeclSpec::getSpecifierName(SCS); 3377 } 3378 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 3379 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 3380 diag::err_invalid_thread) 3381 << DeclSpec::getSpecifierName(TSCS); 3382 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3383 3384 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 3385 3386 // Check that there are no default arguments inside the type of this 3387 // exception object (C++ only). 3388 if (getLangOpts().CPlusPlus) 3389 CheckExtraCXXDefaultArguments(D); 3390 3391 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 3392 QualType ExceptionType = TInfo->getType(); 3393 3394 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, 3395 D.getSourceRange().getBegin(), 3396 D.getIdentifierLoc(), 3397 D.getIdentifier(), 3398 D.isInvalidType()); 3399 3400 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 3401 if (D.getCXXScopeSpec().isSet()) { 3402 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) 3403 << D.getCXXScopeSpec().getRange(); 3404 New->setInvalidDecl(); 3405 } 3406 3407 // Add the parameter declaration into this scope. 3408 S->AddDecl(New); 3409 if (D.getIdentifier()) 3410 IdResolver.AddDecl(New); 3411 3412 ProcessDeclAttributes(S, New, D); 3413 3414 if (New->hasAttr<BlocksAttr>()) 3415 Diag(New->getLocation(), diag::err_block_on_nonlocal); 3416 return New; 3417 } 3418 3419 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require 3420 /// initialization. 3421 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, 3422 SmallVectorImpl<ObjCIvarDecl*> &Ivars) { 3423 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; 3424 Iv= Iv->getNextIvar()) { 3425 QualType QT = Context.getBaseElementType(Iv->getType()); 3426 if (QT->isRecordType()) 3427 Ivars.push_back(Iv); 3428 } 3429 } 3430 3431 void Sema::DiagnoseUseOfUnimplementedSelectors() { 3432 // Load referenced selectors from the external source. 3433 if (ExternalSource) { 3434 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels; 3435 ExternalSource->ReadReferencedSelectors(Sels); 3436 for (unsigned I = 0, N = Sels.size(); I != N; ++I) 3437 ReferencedSelectors[Sels[I].first] = Sels[I].second; 3438 } 3439 3440 // Warning will be issued only when selector table is 3441 // generated (which means there is at lease one implementation 3442 // in the TU). This is to match gcc's behavior. 3443 if (ReferencedSelectors.empty() || 3444 !Context.AnyObjCImplementation()) 3445 return; 3446 for (llvm::DenseMap<Selector, SourceLocation>::iterator S = 3447 ReferencedSelectors.begin(), 3448 E = ReferencedSelectors.end(); S != E; ++S) { 3449 Selector Sel = (*S).first; 3450 if (!LookupImplementedMethodInGlobalPool(Sel)) 3451 Diag((*S).second, diag::warn_unimplemented_selector) << Sel; 3452 } 3453 return; 3454 } 3455 3456 ObjCIvarDecl * 3457 Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, 3458 const ObjCPropertyDecl *&PDecl) const { 3459 if (Method->isClassMethod()) 3460 return nullptr; 3461 const ObjCInterfaceDecl *IDecl = Method->getClassInterface(); 3462 if (!IDecl) 3463 return nullptr; 3464 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true, 3465 /*shallowCategoryLookup=*/false, 3466 /*followSuper=*/false); 3467 if (!Method || !Method->isPropertyAccessor()) 3468 return nullptr; 3469 if ((PDecl = Method->findPropertyDecl())) 3470 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) { 3471 // property backing ivar must belong to property's class 3472 // or be a private ivar in class's implementation. 3473 // FIXME. fix the const-ness issue. 3474 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable( 3475 IV->getIdentifier()); 3476 return IV; 3477 } 3478 return nullptr; 3479 } 3480 3481 namespace { 3482 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property 3483 /// accessor references the backing ivar. 3484 class UnusedBackingIvarChecker : 3485 public DataRecursiveASTVisitor<UnusedBackingIvarChecker> { 3486 public: 3487 Sema &S; 3488 const ObjCMethodDecl *Method; 3489 const ObjCIvarDecl *IvarD; 3490 bool AccessedIvar; 3491 bool InvokedSelfMethod; 3492 3493 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method, 3494 const ObjCIvarDecl *IvarD) 3495 : S(S), Method(Method), IvarD(IvarD), 3496 AccessedIvar(false), InvokedSelfMethod(false) { 3497 assert(IvarD); 3498 } 3499 3500 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 3501 if (E->getDecl() == IvarD) { 3502 AccessedIvar = true; 3503 return false; 3504 } 3505 return true; 3506 } 3507 3508 bool VisitObjCMessageExpr(ObjCMessageExpr *E) { 3509 if (E->getReceiverKind() == ObjCMessageExpr::Instance && 3510 S.isSelfExpr(E->getInstanceReceiver(), Method)) { 3511 InvokedSelfMethod = true; 3512 } 3513 return true; 3514 } 3515 }; 3516 } 3517 3518 void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S, 3519 const ObjCImplementationDecl *ImplD) { 3520 if (S->hasUnrecoverableErrorOccurred()) 3521 return; 3522 3523 for (const auto *CurMethod : ImplD->instance_methods()) { 3524 unsigned DIAG = diag::warn_unused_property_backing_ivar; 3525 SourceLocation Loc = CurMethod->getLocation(); 3526 if (Diags.isIgnored(DIAG, Loc)) 3527 continue; 3528 3529 const ObjCPropertyDecl *PDecl; 3530 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl); 3531 if (!IV) 3532 continue; 3533 3534 UnusedBackingIvarChecker Checker(*this, CurMethod, IV); 3535 Checker.TraverseStmt(CurMethod->getBody()); 3536 if (Checker.AccessedIvar) 3537 continue; 3538 3539 // Do not issue this warning if backing ivar is used somewhere and accessor 3540 // implementation makes a self call. This is to prevent false positive in 3541 // cases where the ivar is accessed by another method that the accessor 3542 // delegates to. 3543 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) { 3544 Diag(Loc, DIAG) << IV; 3545 Diag(PDecl->getLocation(), diag::note_property_declare); 3546 } 3547 } 3548 } 3549