Home | History | Annotate | Download | only in bn
      1 /* crypto/bn/bn_gf2m.c */
      2 /* ====================================================================
      3  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
      4  *
      5  * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
      6  * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
      7  * to the OpenSSL project.
      8  *
      9  * The ECC Code is licensed pursuant to the OpenSSL open source
     10  * license provided below.
     11  *
     12  * In addition, Sun covenants to all licensees who provide a reciprocal
     13  * covenant with respect to their own patents if any, not to sue under
     14  * current and future patent claims necessarily infringed by the making,
     15  * using, practicing, selling, offering for sale and/or otherwise
     16  * disposing of the ECC Code as delivered hereunder (or portions thereof),
     17  * provided that such covenant shall not apply:
     18  *  1) for code that a licensee deletes from the ECC Code;
     19  *  2) separates from the ECC Code; or
     20  *  3) for infringements caused by:
     21  *       i) the modification of the ECC Code or
     22  *      ii) the combination of the ECC Code with other software or
     23  *          devices where such combination causes the infringement.
     24  *
     25  * The software is originally written by Sheueling Chang Shantz and
     26  * Douglas Stebila of Sun Microsystems Laboratories.
     27  *
     28  */
     29 
     30 /* NOTE: This file is licensed pursuant to the OpenSSL license below
     31  * and may be modified; but after modifications, the above covenant
     32  * may no longer apply!  In such cases, the corresponding paragraph
     33  * ["In addition, Sun covenants ... causes the infringement."] and
     34  * this note can be edited out; but please keep the Sun copyright
     35  * notice and attribution. */
     36 
     37 /* ====================================================================
     38  * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  *
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in
     49  *    the documentation and/or other materials provided with the
     50  *    distribution.
     51  *
     52  * 3. All advertising materials mentioning features or use of this
     53  *    software must display the following acknowledgment:
     54  *    "This product includes software developed by the OpenSSL Project
     55  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     56  *
     57  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     58  *    endorse or promote products derived from this software without
     59  *    prior written permission. For written permission, please contact
     60  *    openssl-core (at) openssl.org.
     61  *
     62  * 5. Products derived from this software may not be called "OpenSSL"
     63  *    nor may "OpenSSL" appear in their names without prior written
     64  *    permission of the OpenSSL Project.
     65  *
     66  * 6. Redistributions of any form whatsoever must retain the following
     67  *    acknowledgment:
     68  *    "This product includes software developed by the OpenSSL Project
     69  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     70  *
     71  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     72  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     74  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     75  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     76  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     77  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     78  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     79  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     80  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     81  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     82  * OF THE POSSIBILITY OF SUCH DAMAGE.
     83  * ====================================================================
     84  *
     85  * This product includes cryptographic software written by Eric Young
     86  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     87  * Hudson (tjh (at) cryptsoft.com).
     88  *
     89  */
     90 
     91 #include <assert.h>
     92 #include <limits.h>
     93 #include <stdio.h>
     94 #include "cryptlib.h"
     95 #include "bn_lcl.h"
     96 
     97 #ifndef OPENSSL_NO_EC2M
     98 
     99 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
    100 #define MAX_ITERATIONS 50
    101 
    102 static const BN_ULONG SQR_tb[16] =
    103   {     0,     1,     4,     5,    16,    17,    20,    21,
    104        64,    65,    68,    69,    80,    81,    84,    85 };
    105 /* Platform-specific macros to accelerate squaring. */
    106 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
    107 #define SQR1(w) \
    108     SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
    109     SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
    110     SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
    111     SQR_tb[(w) >> 36 & 0xF] <<  8 | SQR_tb[(w) >> 32 & 0xF]
    112 #define SQR0(w) \
    113     SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
    114     SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
    115     SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
    116     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
    117 #endif
    118 #ifdef THIRTY_TWO_BIT
    119 #define SQR1(w) \
    120     SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
    121     SQR_tb[(w) >> 20 & 0xF] <<  8 | SQR_tb[(w) >> 16 & 0xF]
    122 #define SQR0(w) \
    123     SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
    124     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
    125 #endif
    126 
    127 #if !defined(OPENSSL_BN_ASM_GF2m)
    128 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
    129  * result is a polynomial r with degree < 2 * BN_BITS - 1
    130  * The caller MUST ensure that the variables have the right amount
    131  * of space allocated.
    132  */
    133 #ifdef THIRTY_TWO_BIT
    134 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
    135 	{
    136 	register BN_ULONG h, l, s;
    137 	BN_ULONG tab[8], top2b = a >> 30;
    138 	register BN_ULONG a1, a2, a4;
    139 
    140 	a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
    141 
    142 	tab[0] =  0; tab[1] = a1;    tab[2] = a2;    tab[3] = a1^a2;
    143 	tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
    144 
    145 	s = tab[b       & 0x7]; l  = s;
    146 	s = tab[b >>  3 & 0x7]; l ^= s <<  3; h  = s >> 29;
    147 	s = tab[b >>  6 & 0x7]; l ^= s <<  6; h ^= s >> 26;
    148 	s = tab[b >>  9 & 0x7]; l ^= s <<  9; h ^= s >> 23;
    149 	s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
    150 	s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
    151 	s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
    152 	s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
    153 	s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >>  8;
    154 	s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >>  5;
    155 	s = tab[b >> 30      ]; l ^= s << 30; h ^= s >>  2;
    156 
    157 	/* compensate for the top two bits of a */
    158 
    159 	if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
    160 	if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
    161 
    162 	*r1 = h; *r0 = l;
    163 	}
    164 #endif
    165 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
    166 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
    167 	{
    168 	register BN_ULONG h, l, s;
    169 	BN_ULONG tab[16], top3b = a >> 61;
    170 	register BN_ULONG a1, a2, a4, a8;
    171 
    172 	a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
    173 
    174 	tab[ 0] = 0;     tab[ 1] = a1;       tab[ 2] = a2;       tab[ 3] = a1^a2;
    175 	tab[ 4] = a4;    tab[ 5] = a1^a4;    tab[ 6] = a2^a4;    tab[ 7] = a1^a2^a4;
    176 	tab[ 8] = a8;    tab[ 9] = a1^a8;    tab[10] = a2^a8;    tab[11] = a1^a2^a8;
    177 	tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
    178 
    179 	s = tab[b       & 0xF]; l  = s;
    180 	s = tab[b >>  4 & 0xF]; l ^= s <<  4; h  = s >> 60;
    181 	s = tab[b >>  8 & 0xF]; l ^= s <<  8; h ^= s >> 56;
    182 	s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
    183 	s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
    184 	s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
    185 	s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
    186 	s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
    187 	s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
    188 	s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
    189 	s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
    190 	s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
    191 	s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
    192 	s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
    193 	s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >>  8;
    194 	s = tab[b >> 60      ]; l ^= s << 60; h ^= s >>  4;
    195 
    196 	/* compensate for the top three bits of a */
    197 
    198 	if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
    199 	if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
    200 	if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
    201 
    202 	*r1 = h; *r0 = l;
    203 	}
    204 #endif
    205 
    206 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
    207  * result is a polynomial r with degree < 4 * BN_BITS2 - 1
    208  * The caller MUST ensure that the variables have the right amount
    209  * of space allocated.
    210  */
    211 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
    212 	{
    213 	BN_ULONG m1, m0;
    214 	/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
    215 	bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
    216 	bn_GF2m_mul_1x1(r+1, r, a0, b0);
    217 	bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
    218 	/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
    219 	r[2] ^= m1 ^ r[1] ^ r[3];  /* h0 ^= m1 ^ l1 ^ h1; */
    220 	r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0;  /* l1 ^= l0 ^ h0 ^ m0; */
    221 	}
    222 #else
    223 void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0);
    224 #endif
    225 
    226 /* Add polynomials a and b and store result in r; r could be a or b, a and b
    227  * could be equal; r is the bitwise XOR of a and b.
    228  */
    229 int	BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
    230 	{
    231 	int i;
    232 	const BIGNUM *at, *bt;
    233 
    234 	bn_check_top(a);
    235 	bn_check_top(b);
    236 
    237 	if (a->top < b->top) { at = b; bt = a; }
    238 	else { at = a; bt = b; }
    239 
    240 	if(bn_wexpand(r, at->top) == NULL)
    241 		return 0;
    242 
    243 	for (i = 0; i < bt->top; i++)
    244 		{
    245 		r->d[i] = at->d[i] ^ bt->d[i];
    246 		}
    247 	for (; i < at->top; i++)
    248 		{
    249 		r->d[i] = at->d[i];
    250 		}
    251 
    252 	r->top = at->top;
    253 	bn_correct_top(r);
    254 
    255 	return 1;
    256 	}
    257 
    258 
    259 /* Some functions allow for representation of the irreducible polynomials
    260  * as an int[], say p.  The irreducible f(t) is then of the form:
    261  *     t^p[0] + t^p[1] + ... + t^p[k]
    262  * where m = p[0] > p[1] > ... > p[k] = 0.
    263  */
    264 
    265 
    266 /* Performs modular reduction of a and store result in r.  r could be a. */
    267 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
    268 	{
    269 	int j, k;
    270 	int n, dN, d0, d1;
    271 	BN_ULONG zz, *z;
    272 
    273 	bn_check_top(a);
    274 
    275 	if (!p[0])
    276 		{
    277 		/* reduction mod 1 => return 0 */
    278 		BN_zero(r);
    279 		return 1;
    280 		}
    281 
    282 	/* Since the algorithm does reduction in the r value, if a != r, copy
    283 	 * the contents of a into r so we can do reduction in r.
    284 	 */
    285 	if (a != r)
    286 		{
    287 		if (!bn_wexpand(r, a->top)) return 0;
    288 		for (j = 0; j < a->top; j++)
    289 			{
    290 			r->d[j] = a->d[j];
    291 			}
    292 		r->top = a->top;
    293 		}
    294 	z = r->d;
    295 
    296 	/* start reduction */
    297 	dN = p[0] / BN_BITS2;
    298 	for (j = r->top - 1; j > dN;)
    299 		{
    300 		zz = z[j];
    301 		if (z[j] == 0) { j--; continue; }
    302 		z[j] = 0;
    303 
    304 		for (k = 1; p[k] != 0; k++)
    305 			{
    306 			/* reducing component t^p[k] */
    307 			n = p[0] - p[k];
    308 			d0 = n % BN_BITS2;  d1 = BN_BITS2 - d0;
    309 			n /= BN_BITS2;
    310 			z[j-n] ^= (zz>>d0);
    311 			if (d0) z[j-n-1] ^= (zz<<d1);
    312 			}
    313 
    314 		/* reducing component t^0 */
    315 		n = dN;
    316 		d0 = p[0] % BN_BITS2;
    317 		d1 = BN_BITS2 - d0;
    318 		z[j-n] ^= (zz >> d0);
    319 		if (d0) z[j-n-1] ^= (zz << d1);
    320 		}
    321 
    322 	/* final round of reduction */
    323 	while (j == dN)
    324 		{
    325 
    326 		d0 = p[0] % BN_BITS2;
    327 		zz = z[dN] >> d0;
    328 		if (zz == 0) break;
    329 		d1 = BN_BITS2 - d0;
    330 
    331 		/* clear up the top d1 bits */
    332 		if (d0)
    333 			z[dN] = (z[dN] << d1) >> d1;
    334 		else
    335 			z[dN] = 0;
    336 		z[0] ^= zz; /* reduction t^0 component */
    337 
    338 		for (k = 1; p[k] != 0; k++)
    339 			{
    340 			BN_ULONG tmp_ulong;
    341 
    342 			/* reducing component t^p[k]*/
    343 			n = p[k] / BN_BITS2;
    344 			d0 = p[k] % BN_BITS2;
    345 			d1 = BN_BITS2 - d0;
    346 			z[n] ^= (zz << d0);
    347 			tmp_ulong = zz >> d1;
    348                         if (d0 && tmp_ulong)
    349                                 z[n+1] ^= tmp_ulong;
    350 			}
    351 
    352 
    353 		}
    354 
    355 	bn_correct_top(r);
    356 	return 1;
    357 	}
    358 
    359 /* Performs modular reduction of a by p and store result in r.  r could be a.
    360  *
    361  * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
    362  * function is only provided for convenience; for best performance, use the
    363  * BN_GF2m_mod_arr function.
    364  */
    365 int	BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
    366 	{
    367 	int ret = 0;
    368 	int arr[6];
    369 	bn_check_top(a);
    370 	bn_check_top(p);
    371 	ret = BN_GF2m_poly2arr(p, arr, sizeof(arr)/sizeof(arr[0]));
    372 	if (!ret || ret > (int)(sizeof(arr)/sizeof(arr[0])))
    373 		{
    374 		BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
    375 		return 0;
    376 		}
    377 	ret = BN_GF2m_mod_arr(r, a, arr);
    378 	bn_check_top(r);
    379 	return ret;
    380 	}
    381 
    382 
    383 /* Compute the product of two polynomials a and b, reduce modulo p, and store
    384  * the result in r.  r could be a or b; a could be b.
    385  */
    386 int	BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
    387 	{
    388 	int zlen, i, j, k, ret = 0;
    389 	BIGNUM *s;
    390 	BN_ULONG x1, x0, y1, y0, zz[4];
    391 
    392 	bn_check_top(a);
    393 	bn_check_top(b);
    394 
    395 	if (a == b)
    396 		{
    397 		return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
    398 		}
    399 
    400 	BN_CTX_start(ctx);
    401 	if ((s = BN_CTX_get(ctx)) == NULL) goto err;
    402 
    403 	zlen = a->top + b->top + 4;
    404 	if (!bn_wexpand(s, zlen)) goto err;
    405 	s->top = zlen;
    406 
    407 	for (i = 0; i < zlen; i++) s->d[i] = 0;
    408 
    409 	for (j = 0; j < b->top; j += 2)
    410 		{
    411 		y0 = b->d[j];
    412 		y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
    413 		for (i = 0; i < a->top; i += 2)
    414 			{
    415 			x0 = a->d[i];
    416 			x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
    417 			bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
    418 			for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
    419 			}
    420 		}
    421 
    422 	bn_correct_top(s);
    423 	if (BN_GF2m_mod_arr(r, s, p))
    424 		ret = 1;
    425 	bn_check_top(r);
    426 
    427 err:
    428 	BN_CTX_end(ctx);
    429 	return ret;
    430 	}
    431 
    432 /* Compute the product of two polynomials a and b, reduce modulo p, and store
    433  * the result in r.  r could be a or b; a could equal b.
    434  *
    435  * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
    436  * function is only provided for convenience; for best performance, use the
    437  * BN_GF2m_mod_mul_arr function.
    438  */
    439 int	BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
    440 	{
    441 	int ret = 0;
    442 	const int max = BN_num_bits(p) + 1;
    443 	int *arr=NULL;
    444 	bn_check_top(a);
    445 	bn_check_top(b);
    446 	bn_check_top(p);
    447 	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
    448 	ret = BN_GF2m_poly2arr(p, arr, max);
    449 	if (!ret || ret > max)
    450 		{
    451 		BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
    452 		goto err;
    453 		}
    454 	ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
    455 	bn_check_top(r);
    456 err:
    457 	if (arr) OPENSSL_free(arr);
    458 	return ret;
    459 	}
    460 
    461 
    462 /* Square a, reduce the result mod p, and store it in a.  r could be a. */
    463 int	BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
    464 	{
    465 	int i, ret = 0;
    466 	BIGNUM *s;
    467 
    468 	bn_check_top(a);
    469 	BN_CTX_start(ctx);
    470 	if ((s = BN_CTX_get(ctx)) == NULL) return 0;
    471 	if (!bn_wexpand(s, 2 * a->top)) goto err;
    472 
    473 	for (i = a->top - 1; i >= 0; i--)
    474 		{
    475 		s->d[2*i+1] = SQR1(a->d[i]);
    476 		s->d[2*i  ] = SQR0(a->d[i]);
    477 		}
    478 
    479 	s->top = 2 * a->top;
    480 	bn_correct_top(s);
    481 	if (!BN_GF2m_mod_arr(r, s, p)) goto err;
    482 	bn_check_top(r);
    483 	ret = 1;
    484 err:
    485 	BN_CTX_end(ctx);
    486 	return ret;
    487 	}
    488 
    489 /* Square a, reduce the result mod p, and store it in a.  r could be a.
    490  *
    491  * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
    492  * function is only provided for convenience; for best performance, use the
    493  * BN_GF2m_mod_sqr_arr function.
    494  */
    495 int	BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
    496 	{
    497 	int ret = 0;
    498 	const int max = BN_num_bits(p) + 1;
    499 	int *arr=NULL;
    500 
    501 	bn_check_top(a);
    502 	bn_check_top(p);
    503 	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
    504 	ret = BN_GF2m_poly2arr(p, arr, max);
    505 	if (!ret || ret > max)
    506 		{
    507 		BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
    508 		goto err;
    509 		}
    510 	ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
    511 	bn_check_top(r);
    512 err:
    513 	if (arr) OPENSSL_free(arr);
    514 	return ret;
    515 	}
    516 
    517 
    518 /* Invert a, reduce modulo p, and store the result in r. r could be a.
    519  * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
    520  *     Hankerson, D., Hernandez, J.L., and Menezes, A.  "Software Implementation
    521  *     of Elliptic Curve Cryptography Over Binary Fields".
    522  */
    523 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
    524 	{
    525 	BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
    526 	int ret = 0;
    527 
    528 	bn_check_top(a);
    529 	bn_check_top(p);
    530 
    531 	BN_CTX_start(ctx);
    532 
    533 	if ((b = BN_CTX_get(ctx))==NULL) goto err;
    534 	if ((c = BN_CTX_get(ctx))==NULL) goto err;
    535 	if ((u = BN_CTX_get(ctx))==NULL) goto err;
    536 	if ((v = BN_CTX_get(ctx))==NULL) goto err;
    537 
    538 	if (!BN_GF2m_mod(u, a, p)) goto err;
    539 	if (BN_is_zero(u)) goto err;
    540 
    541 	if (!BN_copy(v, p)) goto err;
    542 #if 0
    543 	if (!BN_one(b)) goto err;
    544 
    545 	while (1)
    546 		{
    547 		while (!BN_is_odd(u))
    548 			{
    549 			if (BN_is_zero(u)) goto err;
    550 			if (!BN_rshift1(u, u)) goto err;
    551 			if (BN_is_odd(b))
    552 				{
    553 				if (!BN_GF2m_add(b, b, p)) goto err;
    554 				}
    555 			if (!BN_rshift1(b, b)) goto err;
    556 			}
    557 
    558 		if (BN_abs_is_word(u, 1)) break;
    559 
    560 		if (BN_num_bits(u) < BN_num_bits(v))
    561 			{
    562 			tmp = u; u = v; v = tmp;
    563 			tmp = b; b = c; c = tmp;
    564 			}
    565 
    566 		if (!BN_GF2m_add(u, u, v)) goto err;
    567 		if (!BN_GF2m_add(b, b, c)) goto err;
    568 		}
    569 #else
    570 	{
    571 	int i,	ubits = BN_num_bits(u),
    572 		vbits = BN_num_bits(v),	/* v is copy of p */
    573 		top = p->top;
    574 	BN_ULONG *udp,*bdp,*vdp,*cdp;
    575 
    576 	bn_wexpand(u,top);	udp = u->d;
    577 				for (i=u->top;i<top;i++) udp[i] = 0;
    578 				u->top = top;
    579 	bn_wexpand(b,top);	bdp = b->d;
    580 				bdp[0] = 1;
    581 				for (i=1;i<top;i++) bdp[i] = 0;
    582 				b->top = top;
    583 	bn_wexpand(c,top);	cdp = c->d;
    584 				for (i=0;i<top;i++) cdp[i] = 0;
    585 				c->top = top;
    586 	vdp = v->d;	/* It pays off to "cache" *->d pointers, because
    587 			 * it allows optimizer to be more aggressive.
    588 			 * But we don't have to "cache" p->d, because *p
    589 			 * is declared 'const'... */
    590 	while (1)
    591 		{
    592 		while (ubits && !(udp[0]&1))
    593 			{
    594 			BN_ULONG u0,u1,b0,b1,mask;
    595 
    596 			u0   = udp[0];
    597 			b0   = bdp[0];
    598 			mask = (BN_ULONG)0-(b0&1);
    599 			b0  ^= p->d[0]&mask;
    600 			for (i=0;i<top-1;i++)
    601 				{
    602 				u1 = udp[i+1];
    603 				udp[i] = ((u0>>1)|(u1<<(BN_BITS2-1)))&BN_MASK2;
    604 				u0 = u1;
    605 				b1 = bdp[i+1]^(p->d[i+1]&mask);
    606 				bdp[i] = ((b0>>1)|(b1<<(BN_BITS2-1)))&BN_MASK2;
    607 				b0 = b1;
    608 				}
    609 			udp[i] = u0>>1;
    610 			bdp[i] = b0>>1;
    611 			ubits--;
    612 			}
    613 
    614 		if (ubits<=BN_BITS2 && udp[0]==1) break;
    615 
    616 		if (ubits<vbits)
    617 			{
    618 			i = ubits; ubits = vbits; vbits = i;
    619 			tmp = u; u = v; v = tmp;
    620 			tmp = b; b = c; c = tmp;
    621 			udp = vdp; vdp = v->d;
    622 			bdp = cdp; cdp = c->d;
    623 			}
    624 		for(i=0;i<top;i++)
    625 			{
    626 			udp[i] ^= vdp[i];
    627 			bdp[i] ^= cdp[i];
    628 			}
    629 		if (ubits==vbits)
    630 			{
    631 			BN_ULONG ul;
    632 			int utop = (ubits-1)/BN_BITS2;
    633 
    634 			while ((ul=udp[utop])==0 && utop) utop--;
    635 			ubits = utop*BN_BITS2 + BN_num_bits_word(ul);
    636 			}
    637 		}
    638 	bn_correct_top(b);
    639 	}
    640 #endif
    641 
    642 	if (!BN_copy(r, b)) goto err;
    643 	bn_check_top(r);
    644 	ret = 1;
    645 
    646 err:
    647 #ifdef BN_DEBUG /* BN_CTX_end would complain about the expanded form */
    648         bn_correct_top(c);
    649         bn_correct_top(u);
    650         bn_correct_top(v);
    651 #endif
    652   	BN_CTX_end(ctx);
    653 	return ret;
    654 	}
    655 
    656 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
    657  *
    658  * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
    659  * function is only provided for convenience; for best performance, use the
    660  * BN_GF2m_mod_inv function.
    661  */
    662 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
    663 	{
    664 	BIGNUM *field;
    665 	int ret = 0;
    666 
    667 	bn_check_top(xx);
    668 	BN_CTX_start(ctx);
    669 	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
    670 	if (!BN_GF2m_arr2poly(p, field)) goto err;
    671 
    672 	ret = BN_GF2m_mod_inv(r, xx, field, ctx);
    673 	bn_check_top(r);
    674 
    675 err:
    676 	BN_CTX_end(ctx);
    677 	return ret;
    678 	}
    679 
    680 
    681 #ifndef OPENSSL_SUN_GF2M_DIV
    682 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
    683  * or y, x could equal y.
    684  */
    685 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
    686 	{
    687 	BIGNUM *xinv = NULL;
    688 	int ret = 0;
    689 
    690 	bn_check_top(y);
    691 	bn_check_top(x);
    692 	bn_check_top(p);
    693 
    694 	BN_CTX_start(ctx);
    695 	xinv = BN_CTX_get(ctx);
    696 	if (xinv == NULL) goto err;
    697 
    698 	if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
    699 	if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
    700 	bn_check_top(r);
    701 	ret = 1;
    702 
    703 err:
    704 	BN_CTX_end(ctx);
    705 	return ret;
    706 	}
    707 #else
    708 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
    709  * or y, x could equal y.
    710  * Uses algorithm Modular_Division_GF(2^m) from
    711  *     Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to
    712  *     the Great Divide".
    713  */
    714 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
    715 	{
    716 	BIGNUM *a, *b, *u, *v;
    717 	int ret = 0;
    718 
    719 	bn_check_top(y);
    720 	bn_check_top(x);
    721 	bn_check_top(p);
    722 
    723 	BN_CTX_start(ctx);
    724 
    725 	a = BN_CTX_get(ctx);
    726 	b = BN_CTX_get(ctx);
    727 	u = BN_CTX_get(ctx);
    728 	v = BN_CTX_get(ctx);
    729 	if (v == NULL) goto err;
    730 
    731 	/* reduce x and y mod p */
    732 	if (!BN_GF2m_mod(u, y, p)) goto err;
    733 	if (!BN_GF2m_mod(a, x, p)) goto err;
    734 	if (!BN_copy(b, p)) goto err;
    735 
    736 	while (!BN_is_odd(a))
    737 		{
    738 		if (!BN_rshift1(a, a)) goto err;
    739 		if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
    740 		if (!BN_rshift1(u, u)) goto err;
    741 		}
    742 
    743 	do
    744 		{
    745 		if (BN_GF2m_cmp(b, a) > 0)
    746 			{
    747 			if (!BN_GF2m_add(b, b, a)) goto err;
    748 			if (!BN_GF2m_add(v, v, u)) goto err;
    749 			do
    750 				{
    751 				if (!BN_rshift1(b, b)) goto err;
    752 				if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
    753 				if (!BN_rshift1(v, v)) goto err;
    754 				} while (!BN_is_odd(b));
    755 			}
    756 		else if (BN_abs_is_word(a, 1))
    757 			break;
    758 		else
    759 			{
    760 			if (!BN_GF2m_add(a, a, b)) goto err;
    761 			if (!BN_GF2m_add(u, u, v)) goto err;
    762 			do
    763 				{
    764 				if (!BN_rshift1(a, a)) goto err;
    765 				if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
    766 				if (!BN_rshift1(u, u)) goto err;
    767 				} while (!BN_is_odd(a));
    768 			}
    769 		} while (1);
    770 
    771 	if (!BN_copy(r, u)) goto err;
    772 	bn_check_top(r);
    773 	ret = 1;
    774 
    775 err:
    776   	BN_CTX_end(ctx);
    777 	return ret;
    778 	}
    779 #endif
    780 
    781 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
    782  * or yy, xx could equal yy.
    783  *
    784  * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
    785  * function is only provided for convenience; for best performance, use the
    786  * BN_GF2m_mod_div function.
    787  */
    788 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx)
    789 	{
    790 	BIGNUM *field;
    791 	int ret = 0;
    792 
    793 	bn_check_top(yy);
    794 	bn_check_top(xx);
    795 
    796 	BN_CTX_start(ctx);
    797 	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
    798 	if (!BN_GF2m_arr2poly(p, field)) goto err;
    799 
    800 	ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
    801 	bn_check_top(r);
    802 
    803 err:
    804 	BN_CTX_end(ctx);
    805 	return ret;
    806 	}
    807 
    808 
    809 /* Compute the bth power of a, reduce modulo p, and store
    810  * the result in r.  r could be a.
    811  * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
    812  */
    813 int	BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
    814 	{
    815 	int ret = 0, i, n;
    816 	BIGNUM *u;
    817 
    818 	bn_check_top(a);
    819 	bn_check_top(b);
    820 
    821 	if (BN_is_zero(b))
    822 		return(BN_one(r));
    823 
    824 	if (BN_abs_is_word(b, 1))
    825 		return (BN_copy(r, a) != NULL);
    826 
    827 	BN_CTX_start(ctx);
    828 	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
    829 
    830 	if (!BN_GF2m_mod_arr(u, a, p)) goto err;
    831 
    832 	n = BN_num_bits(b) - 1;
    833 	for (i = n - 1; i >= 0; i--)
    834 		{
    835 		if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
    836 		if (BN_is_bit_set(b, i))
    837 			{
    838 			if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
    839 			}
    840 		}
    841 	if (!BN_copy(r, u)) goto err;
    842 	bn_check_top(r);
    843 	ret = 1;
    844 err:
    845 	BN_CTX_end(ctx);
    846 	return ret;
    847 	}
    848 
    849 /* Compute the bth power of a, reduce modulo p, and store
    850  * the result in r.  r could be a.
    851  *
    852  * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
    853  * function is only provided for convenience; for best performance, use the
    854  * BN_GF2m_mod_exp_arr function.
    855  */
    856 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
    857 	{
    858 	int ret = 0;
    859 	const int max = BN_num_bits(p) + 1;
    860 	int *arr=NULL;
    861 	bn_check_top(a);
    862 	bn_check_top(b);
    863 	bn_check_top(p);
    864 	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
    865 	ret = BN_GF2m_poly2arr(p, arr, max);
    866 	if (!ret || ret > max)
    867 		{
    868 		BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
    869 		goto err;
    870 		}
    871 	ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
    872 	bn_check_top(r);
    873 err:
    874 	if (arr) OPENSSL_free(arr);
    875 	return ret;
    876 	}
    877 
    878 /* Compute the square root of a, reduce modulo p, and store
    879  * the result in r.  r could be a.
    880  * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
    881  */
    882 int	BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
    883 	{
    884 	int ret = 0;
    885 	BIGNUM *u;
    886 
    887 	bn_check_top(a);
    888 
    889 	if (!p[0])
    890 		{
    891 		/* reduction mod 1 => return 0 */
    892 		BN_zero(r);
    893 		return 1;
    894 		}
    895 
    896 	BN_CTX_start(ctx);
    897 	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
    898 
    899 	if (!BN_set_bit(u, p[0] - 1)) goto err;
    900 	ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
    901 	bn_check_top(r);
    902 
    903 err:
    904 	BN_CTX_end(ctx);
    905 	return ret;
    906 	}
    907 
    908 /* Compute the square root of a, reduce modulo p, and store
    909  * the result in r.  r could be a.
    910  *
    911  * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
    912  * function is only provided for convenience; for best performance, use the
    913  * BN_GF2m_mod_sqrt_arr function.
    914  */
    915 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
    916 	{
    917 	int ret = 0;
    918 	const int max = BN_num_bits(p) + 1;
    919 	int *arr=NULL;
    920 	bn_check_top(a);
    921 	bn_check_top(p);
    922 	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
    923 	ret = BN_GF2m_poly2arr(p, arr, max);
    924 	if (!ret || ret > max)
    925 		{
    926 		BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
    927 		goto err;
    928 		}
    929 	ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
    930 	bn_check_top(r);
    931 err:
    932 	if (arr) OPENSSL_free(arr);
    933 	return ret;
    934 	}
    935 
    936 /* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
    937  * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
    938  */
    939 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx)
    940 	{
    941 	int ret = 0, count = 0, j;
    942 	BIGNUM *a, *z, *rho, *w, *w2, *tmp;
    943 
    944 	bn_check_top(a_);
    945 
    946 	if (!p[0])
    947 		{
    948 		/* reduction mod 1 => return 0 */
    949 		BN_zero(r);
    950 		return 1;
    951 		}
    952 
    953 	BN_CTX_start(ctx);
    954 	a = BN_CTX_get(ctx);
    955 	z = BN_CTX_get(ctx);
    956 	w = BN_CTX_get(ctx);
    957 	if (w == NULL) goto err;
    958 
    959 	if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
    960 
    961 	if (BN_is_zero(a))
    962 		{
    963 		BN_zero(r);
    964 		ret = 1;
    965 		goto err;
    966 		}
    967 
    968 	if (p[0] & 0x1) /* m is odd */
    969 		{
    970 		/* compute half-trace of a */
    971 		if (!BN_copy(z, a)) goto err;
    972 		for (j = 1; j <= (p[0] - 1) / 2; j++)
    973 			{
    974 			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
    975 			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
    976 			if (!BN_GF2m_add(z, z, a)) goto err;
    977 			}
    978 
    979 		}
    980 	else /* m is even */
    981 		{
    982 		rho = BN_CTX_get(ctx);
    983 		w2 = BN_CTX_get(ctx);
    984 		tmp = BN_CTX_get(ctx);
    985 		if (tmp == NULL) goto err;
    986 		do
    987 			{
    988 			if (!BN_rand(rho, p[0], 0, 0)) goto err;
    989 			if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
    990 			BN_zero(z);
    991 			if (!BN_copy(w, rho)) goto err;
    992 			for (j = 1; j <= p[0] - 1; j++)
    993 				{
    994 				if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
    995 				if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
    996 				if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
    997 				if (!BN_GF2m_add(z, z, tmp)) goto err;
    998 				if (!BN_GF2m_add(w, w2, rho)) goto err;
    999 				}
   1000 			count++;
   1001 			} while (BN_is_zero(w) && (count < MAX_ITERATIONS));
   1002 		if (BN_is_zero(w))
   1003 			{
   1004 			BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
   1005 			goto err;
   1006 			}
   1007 		}
   1008 
   1009 	if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
   1010 	if (!BN_GF2m_add(w, z, w)) goto err;
   1011 	if (BN_GF2m_cmp(w, a))
   1012 		{
   1013 		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
   1014 		goto err;
   1015 		}
   1016 
   1017 	if (!BN_copy(r, z)) goto err;
   1018 	bn_check_top(r);
   1019 
   1020 	ret = 1;
   1021 
   1022 err:
   1023 	BN_CTX_end(ctx);
   1024 	return ret;
   1025 	}
   1026 
   1027 /* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
   1028  *
   1029  * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
   1030  * function is only provided for convenience; for best performance, use the
   1031  * BN_GF2m_mod_solve_quad_arr function.
   1032  */
   1033 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
   1034 	{
   1035 	int ret = 0;
   1036 	const int max = BN_num_bits(p) + 1;
   1037 	int *arr=NULL;
   1038 	bn_check_top(a);
   1039 	bn_check_top(p);
   1040 	if ((arr = (int *)OPENSSL_malloc(sizeof(int) *
   1041 						max)) == NULL) goto err;
   1042 	ret = BN_GF2m_poly2arr(p, arr, max);
   1043 	if (!ret || ret > max)
   1044 		{
   1045 		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
   1046 		goto err;
   1047 		}
   1048 	ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
   1049 	bn_check_top(r);
   1050 err:
   1051 	if (arr) OPENSSL_free(arr);
   1052 	return ret;
   1053 	}
   1054 
   1055 /* Convert the bit-string representation of a polynomial
   1056  * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding
   1057  * to the bits with non-zero coefficient.  Array is terminated with -1.
   1058  * Up to max elements of the array will be filled.  Return value is total
   1059  * number of array elements that would be filled if array was large enough.
   1060  */
   1061 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
   1062 	{
   1063 	int i, j, k = 0;
   1064 	BN_ULONG mask;
   1065 
   1066 	if (BN_is_zero(a))
   1067 		return 0;
   1068 
   1069 	for (i = a->top - 1; i >= 0; i--)
   1070 		{
   1071 		if (!a->d[i])
   1072 			/* skip word if a->d[i] == 0 */
   1073 			continue;
   1074 		mask = BN_TBIT;
   1075 		for (j = BN_BITS2 - 1; j >= 0; j--)
   1076 			{
   1077 			if (a->d[i] & mask)
   1078 				{
   1079 				if (k < max) p[k] = BN_BITS2 * i + j;
   1080 				k++;
   1081 				}
   1082 			mask >>= 1;
   1083 			}
   1084 		}
   1085 
   1086 	if (k < max) {
   1087 		p[k] = -1;
   1088 		k++;
   1089 	}
   1090 
   1091 	return k;
   1092 	}
   1093 
   1094 /* Convert the coefficient array representation of a polynomial to a
   1095  * bit-string.  The array must be terminated by -1.
   1096  */
   1097 int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
   1098 	{
   1099 	int i;
   1100 
   1101 	bn_check_top(a);
   1102 	BN_zero(a);
   1103 	for (i = 0; p[i] != -1; i++)
   1104 		{
   1105 		if (BN_set_bit(a, p[i]) == 0)
   1106 			return 0;
   1107 		}
   1108 	bn_check_top(a);
   1109 
   1110 	return 1;
   1111 	}
   1112 
   1113 #endif
   1114