Home | History | Annotate | Download | only in Core
      1 //=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines ExprEngine's support for calls and returns.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
     15 #include "PrettyStackTraceLocationContext.h"
     16 #include "clang/AST/CXXInheritance.h"
     17 #include "clang/AST/DeclCXX.h"
     18 #include "clang/AST/ParentMap.h"
     19 #include "clang/Analysis/Analyses/LiveVariables.h"
     20 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
     21 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
     22 #include "llvm/ADT/SmallSet.h"
     23 #include "llvm/ADT/Statistic.h"
     24 #include "llvm/Support/SaveAndRestore.h"
     25 
     26 using namespace clang;
     27 using namespace ento;
     28 
     29 #define DEBUG_TYPE "ExprEngine"
     30 
     31 STATISTIC(NumOfDynamicDispatchPathSplits,
     32   "The # of times we split the path due to imprecise dynamic dispatch info");
     33 
     34 STATISTIC(NumInlinedCalls,
     35   "The # of times we inlined a call");
     36 
     37 STATISTIC(NumReachedInlineCountMax,
     38   "The # of times we reached inline count maximum");
     39 
     40 void ExprEngine::processCallEnter(CallEnter CE, ExplodedNode *Pred) {
     41   // Get the entry block in the CFG of the callee.
     42   const StackFrameContext *calleeCtx = CE.getCalleeContext();
     43   PrettyStackTraceLocationContext CrashInfo(calleeCtx);
     44 
     45   const CFG *CalleeCFG = calleeCtx->getCFG();
     46   const CFGBlock *Entry = &(CalleeCFG->getEntry());
     47 
     48   // Validate the CFG.
     49   assert(Entry->empty());
     50   assert(Entry->succ_size() == 1);
     51 
     52   // Get the solitary successor.
     53   const CFGBlock *Succ = *(Entry->succ_begin());
     54 
     55   // Construct an edge representing the starting location in the callee.
     56   BlockEdge Loc(Entry, Succ, calleeCtx);
     57 
     58   ProgramStateRef state = Pred->getState();
     59 
     60   // Construct a new node and add it to the worklist.
     61   bool isNew;
     62   ExplodedNode *Node = G.getNode(Loc, state, false, &isNew);
     63   Node->addPredecessor(Pred, G);
     64   if (isNew)
     65     Engine.getWorkList()->enqueue(Node);
     66 }
     67 
     68 // Find the last statement on the path to the exploded node and the
     69 // corresponding Block.
     70 static std::pair<const Stmt*,
     71                  const CFGBlock*> getLastStmt(const ExplodedNode *Node) {
     72   const Stmt *S = nullptr;
     73   const CFGBlock *Blk = nullptr;
     74   const StackFrameContext *SF =
     75           Node->getLocation().getLocationContext()->getCurrentStackFrame();
     76 
     77   // Back up through the ExplodedGraph until we reach a statement node in this
     78   // stack frame.
     79   while (Node) {
     80     const ProgramPoint &PP = Node->getLocation();
     81 
     82     if (PP.getLocationContext()->getCurrentStackFrame() == SF) {
     83       if (Optional<StmtPoint> SP = PP.getAs<StmtPoint>()) {
     84         S = SP->getStmt();
     85         break;
     86       } else if (Optional<CallExitEnd> CEE = PP.getAs<CallExitEnd>()) {
     87         S = CEE->getCalleeContext()->getCallSite();
     88         if (S)
     89           break;
     90 
     91         // If there is no statement, this is an implicitly-generated call.
     92         // We'll walk backwards over it and then continue the loop to find
     93         // an actual statement.
     94         Optional<CallEnter> CE;
     95         do {
     96           Node = Node->getFirstPred();
     97           CE = Node->getLocationAs<CallEnter>();
     98         } while (!CE || CE->getCalleeContext() != CEE->getCalleeContext());
     99 
    100         // Continue searching the graph.
    101       } else if (Optional<BlockEdge> BE = PP.getAs<BlockEdge>()) {
    102         Blk = BE->getSrc();
    103       }
    104     } else if (Optional<CallEnter> CE = PP.getAs<CallEnter>()) {
    105       // If we reached the CallEnter for this function, it has no statements.
    106       if (CE->getCalleeContext() == SF)
    107         break;
    108     }
    109 
    110     if (Node->pred_empty())
    111       return std::make_pair(nullptr, nullptr);
    112 
    113     Node = *Node->pred_begin();
    114   }
    115 
    116   return std::make_pair(S, Blk);
    117 }
    118 
    119 /// Adjusts a return value when the called function's return type does not
    120 /// match the caller's expression type. This can happen when a dynamic call
    121 /// is devirtualized, and the overridding method has a covariant (more specific)
    122 /// return type than the parent's method. For C++ objects, this means we need
    123 /// to add base casts.
    124 static SVal adjustReturnValue(SVal V, QualType ExpectedTy, QualType ActualTy,
    125                               StoreManager &StoreMgr) {
    126   // For now, the only adjustments we handle apply only to locations.
    127   if (!V.getAs<Loc>())
    128     return V;
    129 
    130   // If the types already match, don't do any unnecessary work.
    131   ExpectedTy = ExpectedTy.getCanonicalType();
    132   ActualTy = ActualTy.getCanonicalType();
    133   if (ExpectedTy == ActualTy)
    134     return V;
    135 
    136   // No adjustment is needed between Objective-C pointer types.
    137   if (ExpectedTy->isObjCObjectPointerType() &&
    138       ActualTy->isObjCObjectPointerType())
    139     return V;
    140 
    141   // C++ object pointers may need "derived-to-base" casts.
    142   const CXXRecordDecl *ExpectedClass = ExpectedTy->getPointeeCXXRecordDecl();
    143   const CXXRecordDecl *ActualClass = ActualTy->getPointeeCXXRecordDecl();
    144   if (ExpectedClass && ActualClass) {
    145     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
    146                        /*DetectVirtual=*/false);
    147     if (ActualClass->isDerivedFrom(ExpectedClass, Paths) &&
    148         !Paths.isAmbiguous(ActualTy->getCanonicalTypeUnqualified())) {
    149       return StoreMgr.evalDerivedToBase(V, Paths.front());
    150     }
    151   }
    152 
    153   // Unfortunately, Objective-C does not enforce that overridden methods have
    154   // covariant return types, so we can't assert that that never happens.
    155   // Be safe and return UnknownVal().
    156   return UnknownVal();
    157 }
    158 
    159 void ExprEngine::removeDeadOnEndOfFunction(NodeBuilderContext& BC,
    160                                            ExplodedNode *Pred,
    161                                            ExplodedNodeSet &Dst) {
    162   // Find the last statement in the function and the corresponding basic block.
    163   const Stmt *LastSt = nullptr;
    164   const CFGBlock *Blk = nullptr;
    165   std::tie(LastSt, Blk) = getLastStmt(Pred);
    166   if (!Blk || !LastSt) {
    167     Dst.Add(Pred);
    168     return;
    169   }
    170 
    171   // Here, we destroy the current location context. We use the current
    172   // function's entire body as a diagnostic statement, with which the program
    173   // point will be associated. However, we only want to use LastStmt as a
    174   // reference for what to clean up if it's a ReturnStmt; otherwise, everything
    175   // is dead.
    176   SaveAndRestore<const NodeBuilderContext *> NodeContextRAII(currBldrCtx, &BC);
    177   const LocationContext *LCtx = Pred->getLocationContext();
    178   removeDead(Pred, Dst, dyn_cast<ReturnStmt>(LastSt), LCtx,
    179              LCtx->getAnalysisDeclContext()->getBody(),
    180              ProgramPoint::PostStmtPurgeDeadSymbolsKind);
    181 }
    182 
    183 static bool wasDifferentDeclUsedForInlining(CallEventRef<> Call,
    184     const StackFrameContext *calleeCtx) {
    185   const Decl *RuntimeCallee = calleeCtx->getDecl();
    186   const Decl *StaticDecl = Call->getDecl();
    187   assert(RuntimeCallee);
    188   if (!StaticDecl)
    189     return true;
    190   return RuntimeCallee->getCanonicalDecl() != StaticDecl->getCanonicalDecl();
    191 }
    192 
    193 /// Returns true if the CXXConstructExpr \p E was intended to construct a
    194 /// prvalue for the region in \p V.
    195 ///
    196 /// Note that we can't just test for rvalue vs. glvalue because
    197 /// CXXConstructExprs embedded in DeclStmts and initializers are considered
    198 /// rvalues by the AST, and the analyzer would like to treat them as lvalues.
    199 static bool isTemporaryPRValue(const CXXConstructExpr *E, SVal V) {
    200   if (E->isGLValue())
    201     return false;
    202 
    203   const MemRegion *MR = V.getAsRegion();
    204   if (!MR)
    205     return false;
    206 
    207   return isa<CXXTempObjectRegion>(MR);
    208 }
    209 
    210 /// The call exit is simulated with a sequence of nodes, which occur between
    211 /// CallExitBegin and CallExitEnd. The following operations occur between the
    212 /// two program points:
    213 /// 1. CallExitBegin (triggers the start of call exit sequence)
    214 /// 2. Bind the return value
    215 /// 3. Run Remove dead bindings to clean up the dead symbols from the callee.
    216 /// 4. CallExitEnd (switch to the caller context)
    217 /// 5. PostStmt<CallExpr>
    218 void ExprEngine::processCallExit(ExplodedNode *CEBNode) {
    219   // Step 1 CEBNode was generated before the call.
    220   PrettyStackTraceLocationContext CrashInfo(CEBNode->getLocationContext());
    221   const StackFrameContext *calleeCtx =
    222       CEBNode->getLocationContext()->getCurrentStackFrame();
    223 
    224   // The parent context might not be a stack frame, so make sure we
    225   // look up the first enclosing stack frame.
    226   const StackFrameContext *callerCtx =
    227     calleeCtx->getParent()->getCurrentStackFrame();
    228 
    229   const Stmt *CE = calleeCtx->getCallSite();
    230   ProgramStateRef state = CEBNode->getState();
    231   // Find the last statement in the function and the corresponding basic block.
    232   const Stmt *LastSt = nullptr;
    233   const CFGBlock *Blk = nullptr;
    234   std::tie(LastSt, Blk) = getLastStmt(CEBNode);
    235 
    236   // Generate a CallEvent /before/ cleaning the state, so that we can get the
    237   // correct value for 'this' (if necessary).
    238   CallEventManager &CEMgr = getStateManager().getCallEventManager();
    239   CallEventRef<> Call = CEMgr.getCaller(calleeCtx, state);
    240 
    241   // Step 2: generate node with bound return value: CEBNode -> BindedRetNode.
    242 
    243   // If the callee returns an expression, bind its value to CallExpr.
    244   if (CE) {
    245     if (const ReturnStmt *RS = dyn_cast_or_null<ReturnStmt>(LastSt)) {
    246       const LocationContext *LCtx = CEBNode->getLocationContext();
    247       SVal V = state->getSVal(RS, LCtx);
    248 
    249       // Ensure that the return type matches the type of the returned Expr.
    250       if (wasDifferentDeclUsedForInlining(Call, calleeCtx)) {
    251         QualType ReturnedTy =
    252           CallEvent::getDeclaredResultType(calleeCtx->getDecl());
    253         if (!ReturnedTy.isNull()) {
    254           if (const Expr *Ex = dyn_cast<Expr>(CE)) {
    255             V = adjustReturnValue(V, Ex->getType(), ReturnedTy,
    256                                   getStoreManager());
    257           }
    258         }
    259       }
    260 
    261       state = state->BindExpr(CE, callerCtx, V);
    262     }
    263 
    264     // Bind the constructed object value to CXXConstructExpr.
    265     if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
    266       loc::MemRegionVal This =
    267         svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx);
    268       SVal ThisV = state->getSVal(This);
    269 
    270       // If the constructed object is a temporary prvalue, get its bindings.
    271       if (isTemporaryPRValue(CCE, ThisV))
    272         ThisV = state->getSVal(ThisV.castAs<Loc>());
    273 
    274       state = state->BindExpr(CCE, callerCtx, ThisV);
    275     }
    276   }
    277 
    278   // Step 3: BindedRetNode -> CleanedNodes
    279   // If we can find a statement and a block in the inlined function, run remove
    280   // dead bindings before returning from the call. This is important to ensure
    281   // that we report the issues such as leaks in the stack contexts in which
    282   // they occurred.
    283   ExplodedNodeSet CleanedNodes;
    284   if (LastSt && Blk && AMgr.options.AnalysisPurgeOpt != PurgeNone) {
    285     static SimpleProgramPointTag retValBind("ExprEngine", "Bind Return Value");
    286     PostStmt Loc(LastSt, calleeCtx, &retValBind);
    287     bool isNew;
    288     ExplodedNode *BindedRetNode = G.getNode(Loc, state, false, &isNew);
    289     BindedRetNode->addPredecessor(CEBNode, G);
    290     if (!isNew)
    291       return;
    292 
    293     NodeBuilderContext Ctx(getCoreEngine(), Blk, BindedRetNode);
    294     currBldrCtx = &Ctx;
    295     // Here, we call the Symbol Reaper with 0 statement and callee location
    296     // context, telling it to clean up everything in the callee's context
    297     // (and its children). We use the callee's function body as a diagnostic
    298     // statement, with which the program point will be associated.
    299     removeDead(BindedRetNode, CleanedNodes, nullptr, calleeCtx,
    300                calleeCtx->getAnalysisDeclContext()->getBody(),
    301                ProgramPoint::PostStmtPurgeDeadSymbolsKind);
    302     currBldrCtx = nullptr;
    303   } else {
    304     CleanedNodes.Add(CEBNode);
    305   }
    306 
    307   for (ExplodedNodeSet::iterator I = CleanedNodes.begin(),
    308                                  E = CleanedNodes.end(); I != E; ++I) {
    309 
    310     // Step 4: Generate the CallExit and leave the callee's context.
    311     // CleanedNodes -> CEENode
    312     CallExitEnd Loc(calleeCtx, callerCtx);
    313     bool isNew;
    314     ProgramStateRef CEEState = (*I == CEBNode) ? state : (*I)->getState();
    315     ExplodedNode *CEENode = G.getNode(Loc, CEEState, false, &isNew);
    316     CEENode->addPredecessor(*I, G);
    317     if (!isNew)
    318       return;
    319 
    320     // Step 5: Perform the post-condition check of the CallExpr and enqueue the
    321     // result onto the work list.
    322     // CEENode -> Dst -> WorkList
    323     NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode);
    324     SaveAndRestore<const NodeBuilderContext*> NBCSave(currBldrCtx,
    325         &Ctx);
    326     SaveAndRestore<unsigned> CBISave(currStmtIdx, calleeCtx->getIndex());
    327 
    328     CallEventRef<> UpdatedCall = Call.cloneWithState(CEEState);
    329 
    330     ExplodedNodeSet DstPostCall;
    331     getCheckerManager().runCheckersForPostCall(DstPostCall, CEENode,
    332                                                *UpdatedCall, *this,
    333                                                /*WasInlined=*/true);
    334 
    335     ExplodedNodeSet Dst;
    336     if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
    337       getCheckerManager().runCheckersForPostObjCMessage(Dst, DstPostCall, *Msg,
    338                                                         *this,
    339                                                         /*WasInlined=*/true);
    340     } else if (CE) {
    341       getCheckerManager().runCheckersForPostStmt(Dst, DstPostCall, CE,
    342                                                  *this, /*WasInlined=*/true);
    343     } else {
    344       Dst.insert(DstPostCall);
    345     }
    346 
    347     // Enqueue the next element in the block.
    348     for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end();
    349                                    PSI != PSE; ++PSI) {
    350       Engine.getWorkList()->enqueue(*PSI, calleeCtx->getCallSiteBlock(),
    351                                     calleeCtx->getIndex()+1);
    352     }
    353   }
    354 }
    355 
    356 void ExprEngine::examineStackFrames(const Decl *D, const LocationContext *LCtx,
    357                                bool &IsRecursive, unsigned &StackDepth) {
    358   IsRecursive = false;
    359   StackDepth = 0;
    360 
    361   while (LCtx) {
    362     if (const StackFrameContext *SFC = dyn_cast<StackFrameContext>(LCtx)) {
    363       const Decl *DI = SFC->getDecl();
    364 
    365       // Mark recursive (and mutually recursive) functions and always count
    366       // them when measuring the stack depth.
    367       if (DI == D) {
    368         IsRecursive = true;
    369         ++StackDepth;
    370         LCtx = LCtx->getParent();
    371         continue;
    372       }
    373 
    374       // Do not count the small functions when determining the stack depth.
    375       AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(DI);
    376       const CFG *CalleeCFG = CalleeADC->getCFG();
    377       if (CalleeCFG->getNumBlockIDs() > AMgr.options.getAlwaysInlineSize())
    378         ++StackDepth;
    379     }
    380     LCtx = LCtx->getParent();
    381   }
    382 
    383 }
    384 
    385 static bool IsInStdNamespace(const FunctionDecl *FD) {
    386   const DeclContext *DC = FD->getEnclosingNamespaceContext();
    387   const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
    388   if (!ND)
    389     return false;
    390 
    391   while (const DeclContext *Parent = ND->getParent()) {
    392     if (!isa<NamespaceDecl>(Parent))
    393       break;
    394     ND = cast<NamespaceDecl>(Parent);
    395   }
    396 
    397   return ND->isStdNamespace();
    398 }
    399 
    400 // The GDM component containing the dynamic dispatch bifurcation info. When
    401 // the exact type of the receiver is not known, we want to explore both paths -
    402 // one on which we do inline it and the other one on which we don't. This is
    403 // done to ensure we do not drop coverage.
    404 // This is the map from the receiver region to a bool, specifying either we
    405 // consider this region's information precise or not along the given path.
    406 namespace {
    407   enum DynamicDispatchMode {
    408     DynamicDispatchModeInlined = 1,
    409     DynamicDispatchModeConservative
    410   };
    411 }
    412 REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicDispatchBifurcationMap,
    413                                  CLANG_ENTO_PROGRAMSTATE_MAP(const MemRegion *,
    414                                                              unsigned))
    415 
    416 bool ExprEngine::inlineCall(const CallEvent &Call, const Decl *D,
    417                             NodeBuilder &Bldr, ExplodedNode *Pred,
    418                             ProgramStateRef State) {
    419   assert(D);
    420 
    421   const LocationContext *CurLC = Pred->getLocationContext();
    422   const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame();
    423   const LocationContext *ParentOfCallee = CallerSFC;
    424   if (Call.getKind() == CE_Block) {
    425     const BlockDataRegion *BR = cast<BlockCall>(Call).getBlockRegion();
    426     assert(BR && "If we have the block definition we should have its region");
    427     AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D);
    428     ParentOfCallee = BlockCtx->getBlockInvocationContext(CallerSFC,
    429                                                          cast<BlockDecl>(D),
    430                                                          BR);
    431   }
    432 
    433   // This may be NULL, but that's fine.
    434   const Expr *CallE = Call.getOriginExpr();
    435 
    436   // Construct a new stack frame for the callee.
    437   AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
    438   const StackFrameContext *CalleeSFC =
    439     CalleeADC->getStackFrame(ParentOfCallee, CallE,
    440                              currBldrCtx->getBlock(),
    441                              currStmtIdx);
    442 
    443 
    444   CallEnter Loc(CallE, CalleeSFC, CurLC);
    445 
    446   // Construct a new state which contains the mapping from actual to
    447   // formal arguments.
    448   State = State->enterStackFrame(Call, CalleeSFC);
    449 
    450   bool isNew;
    451   if (ExplodedNode *N = G.getNode(Loc, State, false, &isNew)) {
    452     N->addPredecessor(Pred, G);
    453     if (isNew)
    454       Engine.getWorkList()->enqueue(N);
    455   }
    456 
    457   // If we decided to inline the call, the successor has been manually
    458   // added onto the work list so remove it from the node builder.
    459   Bldr.takeNodes(Pred);
    460 
    461   NumInlinedCalls++;
    462 
    463   // Mark the decl as visited.
    464   if (VisitedCallees)
    465     VisitedCallees->insert(D);
    466 
    467   return true;
    468 }
    469 
    470 static ProgramStateRef getInlineFailedState(ProgramStateRef State,
    471                                             const Stmt *CallE) {
    472   const void *ReplayState = State->get<ReplayWithoutInlining>();
    473   if (!ReplayState)
    474     return nullptr;
    475 
    476   assert(ReplayState == CallE && "Backtracked to the wrong call.");
    477   (void)CallE;
    478 
    479   return State->remove<ReplayWithoutInlining>();
    480 }
    481 
    482 void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
    483                                ExplodedNodeSet &dst) {
    484   // Perform the previsit of the CallExpr.
    485   ExplodedNodeSet dstPreVisit;
    486   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
    487 
    488   // Get the call in its initial state. We use this as a template to perform
    489   // all the checks.
    490   CallEventManager &CEMgr = getStateManager().getCallEventManager();
    491   CallEventRef<> CallTemplate
    492     = CEMgr.getSimpleCall(CE, Pred->getState(), Pred->getLocationContext());
    493 
    494   // Evaluate the function call.  We try each of the checkers
    495   // to see if the can evaluate the function call.
    496   ExplodedNodeSet dstCallEvaluated;
    497   for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
    498        I != E; ++I) {
    499     evalCall(dstCallEvaluated, *I, *CallTemplate);
    500   }
    501 
    502   // Finally, perform the post-condition check of the CallExpr and store
    503   // the created nodes in 'Dst'.
    504   // Note that if the call was inlined, dstCallEvaluated will be empty.
    505   // The post-CallExpr check will occur in processCallExit.
    506   getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
    507                                              *this);
    508 }
    509 
    510 void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred,
    511                           const CallEvent &Call) {
    512   // WARNING: At this time, the state attached to 'Call' may be older than the
    513   // state in 'Pred'. This is a minor optimization since CheckerManager will
    514   // use an updated CallEvent instance when calling checkers, but if 'Call' is
    515   // ever used directly in this function all callers should be updated to pass
    516   // the most recent state. (It is probably not worth doing the work here since
    517   // for some callers this will not be necessary.)
    518 
    519   // Run any pre-call checks using the generic call interface.
    520   ExplodedNodeSet dstPreVisit;
    521   getCheckerManager().runCheckersForPreCall(dstPreVisit, Pred, Call, *this);
    522 
    523   // Actually evaluate the function call.  We try each of the checkers
    524   // to see if the can evaluate the function call, and get a callback at
    525   // defaultEvalCall if all of them fail.
    526   ExplodedNodeSet dstCallEvaluated;
    527   getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit,
    528                                              Call, *this);
    529 
    530   // Finally, run any post-call checks.
    531   getCheckerManager().runCheckersForPostCall(Dst, dstCallEvaluated,
    532                                              Call, *this);
    533 }
    534 
    535 ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call,
    536                                             const LocationContext *LCtx,
    537                                             ProgramStateRef State) {
    538   const Expr *E = Call.getOriginExpr();
    539   if (!E)
    540     return State;
    541 
    542   // Some method families have known return values.
    543   if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
    544     switch (Msg->getMethodFamily()) {
    545     default:
    546       break;
    547     case OMF_autorelease:
    548     case OMF_retain:
    549     case OMF_self: {
    550       // These methods return their receivers.
    551       return State->BindExpr(E, LCtx, Msg->getReceiverSVal());
    552     }
    553     }
    554   } else if (const CXXConstructorCall *C = dyn_cast<CXXConstructorCall>(&Call)){
    555     SVal ThisV = C->getCXXThisVal();
    556 
    557     // If the constructed object is a temporary prvalue, get its bindings.
    558     if (isTemporaryPRValue(cast<CXXConstructExpr>(E), ThisV))
    559       ThisV = State->getSVal(ThisV.castAs<Loc>());
    560 
    561     return State->BindExpr(E, LCtx, ThisV);
    562   }
    563 
    564   // Conjure a symbol if the return value is unknown.
    565   QualType ResultTy = Call.getResultType();
    566   SValBuilder &SVB = getSValBuilder();
    567   unsigned Count = currBldrCtx->blockCount();
    568   SVal R = SVB.conjureSymbolVal(nullptr, E, LCtx, ResultTy, Count);
    569   return State->BindExpr(E, LCtx, R);
    570 }
    571 
    572 // Conservatively evaluate call by invalidating regions and binding
    573 // a conjured return value.
    574 void ExprEngine::conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr,
    575                                       ExplodedNode *Pred,
    576                                       ProgramStateRef State) {
    577   State = Call.invalidateRegions(currBldrCtx->blockCount(), State);
    578   State = bindReturnValue(Call, Pred->getLocationContext(), State);
    579 
    580   // And make the result node.
    581   Bldr.generateNode(Call.getProgramPoint(), State, Pred);
    582 }
    583 
    584 enum CallInlinePolicy {
    585   CIP_Allowed,
    586   CIP_DisallowedOnce,
    587   CIP_DisallowedAlways
    588 };
    589 
    590 static CallInlinePolicy mayInlineCallKind(const CallEvent &Call,
    591                                           const ExplodedNode *Pred,
    592                                           AnalyzerOptions &Opts) {
    593   const LocationContext *CurLC = Pred->getLocationContext();
    594   const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame();
    595   switch (Call.getKind()) {
    596   case CE_Function:
    597   case CE_Block:
    598     break;
    599   case CE_CXXMember:
    600   case CE_CXXMemberOperator:
    601     if (!Opts.mayInlineCXXMemberFunction(CIMK_MemberFunctions))
    602       return CIP_DisallowedAlways;
    603     break;
    604   case CE_CXXConstructor: {
    605     if (!Opts.mayInlineCXXMemberFunction(CIMK_Constructors))
    606       return CIP_DisallowedAlways;
    607 
    608     const CXXConstructorCall &Ctor = cast<CXXConstructorCall>(Call);
    609 
    610     // FIXME: We don't handle constructors or destructors for arrays properly.
    611     // Even once we do, we still need to be careful about implicitly-generated
    612     // initializers for array fields in default move/copy constructors.
    613     const MemRegion *Target = Ctor.getCXXThisVal().getAsRegion();
    614     if (Target && isa<ElementRegion>(Target))
    615       return CIP_DisallowedOnce;
    616 
    617     // FIXME: This is a hack. We don't use the correct region for a new
    618     // expression, so if we inline the constructor its result will just be
    619     // thrown away. This short-term hack is tracked in <rdar://problem/12180598>
    620     // and the longer-term possible fix is discussed in PR12014.
    621     const CXXConstructExpr *CtorExpr = Ctor.getOriginExpr();
    622     if (const Stmt *Parent = CurLC->getParentMap().getParent(CtorExpr))
    623       if (isa<CXXNewExpr>(Parent))
    624         return CIP_DisallowedOnce;
    625 
    626     // Inlining constructors requires including initializers in the CFG.
    627     const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
    628     assert(ADC->getCFGBuildOptions().AddInitializers && "No CFG initializers");
    629     (void)ADC;
    630 
    631     // If the destructor is trivial, it's always safe to inline the constructor.
    632     if (Ctor.getDecl()->getParent()->hasTrivialDestructor())
    633       break;
    634 
    635     // For other types, only inline constructors if destructor inlining is
    636     // also enabled.
    637     if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
    638       return CIP_DisallowedAlways;
    639 
    640     // FIXME: This is a hack. We don't handle temporary destructors
    641     // right now, so we shouldn't inline their constructors.
    642     if (CtorExpr->getConstructionKind() == CXXConstructExpr::CK_Complete)
    643       if (!Target || !isa<DeclRegion>(Target))
    644         return CIP_DisallowedOnce;
    645 
    646     break;
    647   }
    648   case CE_CXXDestructor: {
    649     if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
    650       return CIP_DisallowedAlways;
    651 
    652     // Inlining destructors requires building the CFG correctly.
    653     const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
    654     assert(ADC->getCFGBuildOptions().AddImplicitDtors && "No CFG destructors");
    655     (void)ADC;
    656 
    657     const CXXDestructorCall &Dtor = cast<CXXDestructorCall>(Call);
    658 
    659     // FIXME: We don't handle constructors or destructors for arrays properly.
    660     const MemRegion *Target = Dtor.getCXXThisVal().getAsRegion();
    661     if (Target && isa<ElementRegion>(Target))
    662       return CIP_DisallowedOnce;
    663 
    664     break;
    665   }
    666   case CE_CXXAllocator:
    667     if (Opts.mayInlineCXXAllocator())
    668       break;
    669     // Do not inline allocators until we model deallocators.
    670     // This is unfortunate, but basically necessary for smart pointers and such.
    671     return CIP_DisallowedAlways;
    672   case CE_ObjCMessage:
    673     if (!Opts.mayInlineObjCMethod())
    674       return CIP_DisallowedAlways;
    675     if (!(Opts.getIPAMode() == IPAK_DynamicDispatch ||
    676           Opts.getIPAMode() == IPAK_DynamicDispatchBifurcate))
    677       return CIP_DisallowedAlways;
    678     break;
    679   }
    680 
    681   return CIP_Allowed;
    682 }
    683 
    684 /// Returns true if the given C++ class contains a member with the given name.
    685 static bool hasMember(const ASTContext &Ctx, const CXXRecordDecl *RD,
    686                       StringRef Name) {
    687   const IdentifierInfo &II = Ctx.Idents.get(Name);
    688   DeclarationName DeclName = Ctx.DeclarationNames.getIdentifier(&II);
    689   if (!RD->lookup(DeclName).empty())
    690     return true;
    691 
    692   CXXBasePaths Paths(false, false, false);
    693   if (RD->lookupInBases(&CXXRecordDecl::FindOrdinaryMember,
    694                         DeclName.getAsOpaquePtr(),
    695                         Paths))
    696     return true;
    697 
    698   return false;
    699 }
    700 
    701 /// Returns true if the given C++ class is a container or iterator.
    702 ///
    703 /// Our heuristic for this is whether it contains a method named 'begin()' or a
    704 /// nested type named 'iterator' or 'iterator_category'.
    705 static bool isContainerClass(const ASTContext &Ctx, const CXXRecordDecl *RD) {
    706   return hasMember(Ctx, RD, "begin") ||
    707          hasMember(Ctx, RD, "iterator") ||
    708          hasMember(Ctx, RD, "iterator_category");
    709 }
    710 
    711 /// Returns true if the given function refers to a method of a C++ container
    712 /// or iterator.
    713 ///
    714 /// We generally do a poor job modeling most containers right now, and might
    715 /// prefer not to inline their methods.
    716 static bool isContainerMethod(const ASTContext &Ctx,
    717                               const FunctionDecl *FD) {
    718   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
    719     return isContainerClass(Ctx, MD->getParent());
    720   return false;
    721 }
    722 
    723 /// Returns true if the given function is the destructor of a class named
    724 /// "shared_ptr".
    725 static bool isCXXSharedPtrDtor(const FunctionDecl *FD) {
    726   const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(FD);
    727   if (!Dtor)
    728     return false;
    729 
    730   const CXXRecordDecl *RD = Dtor->getParent();
    731   if (const IdentifierInfo *II = RD->getDeclName().getAsIdentifierInfo())
    732     if (II->isStr("shared_ptr"))
    733         return true;
    734 
    735   return false;
    736 }
    737 
    738 /// Returns true if the function in \p CalleeADC may be inlined in general.
    739 ///
    740 /// This checks static properties of the function, such as its signature and
    741 /// CFG, to determine whether the analyzer should ever consider inlining it,
    742 /// in any context.
    743 static bool mayInlineDecl(AnalysisDeclContext *CalleeADC,
    744                           AnalyzerOptions &Opts) {
    745   // FIXME: Do not inline variadic calls.
    746   if (CallEvent::isVariadic(CalleeADC->getDecl()))
    747     return false;
    748 
    749   // Check certain C++-related inlining policies.
    750   ASTContext &Ctx = CalleeADC->getASTContext();
    751   if (Ctx.getLangOpts().CPlusPlus) {
    752     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeADC->getDecl())) {
    753       // Conditionally control the inlining of template functions.
    754       if (!Opts.mayInlineTemplateFunctions())
    755         if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
    756           return false;
    757 
    758       // Conditionally control the inlining of C++ standard library functions.
    759       if (!Opts.mayInlineCXXStandardLibrary())
    760         if (Ctx.getSourceManager().isInSystemHeader(FD->getLocation()))
    761           if (IsInStdNamespace(FD))
    762             return false;
    763 
    764       // Conditionally control the inlining of methods on objects that look
    765       // like C++ containers.
    766       if (!Opts.mayInlineCXXContainerMethods())
    767         if (!Ctx.getSourceManager().isInMainFile(FD->getLocation()))
    768           if (isContainerMethod(Ctx, FD))
    769             return false;
    770 
    771       // Conditionally control the inlining of the destructor of C++ shared_ptr.
    772       // We don't currently do a good job modeling shared_ptr because we can't
    773       // see the reference count, so treating as opaque is probably the best
    774       // idea.
    775       if (!Opts.mayInlineCXXSharedPtrDtor())
    776         if (isCXXSharedPtrDtor(FD))
    777           return false;
    778 
    779     }
    780   }
    781 
    782   // It is possible that the CFG cannot be constructed.
    783   // Be safe, and check if the CalleeCFG is valid.
    784   const CFG *CalleeCFG = CalleeADC->getCFG();
    785   if (!CalleeCFG)
    786     return false;
    787 
    788   // Do not inline large functions.
    789   if (CalleeCFG->getNumBlockIDs() > Opts.getMaxInlinableSize())
    790     return false;
    791 
    792   // It is possible that the live variables analysis cannot be
    793   // run.  If so, bail out.
    794   if (!CalleeADC->getAnalysis<RelaxedLiveVariables>())
    795     return false;
    796 
    797   return true;
    798 }
    799 
    800 bool ExprEngine::shouldInlineCall(const CallEvent &Call, const Decl *D,
    801                                   const ExplodedNode *Pred) {
    802   if (!D)
    803     return false;
    804 
    805   AnalysisManager &AMgr = getAnalysisManager();
    806   AnalyzerOptions &Opts = AMgr.options;
    807   AnalysisDeclContextManager &ADCMgr = AMgr.getAnalysisDeclContextManager();
    808   AnalysisDeclContext *CalleeADC = ADCMgr.getContext(D);
    809 
    810   // Temporary object destructor processing is currently broken, so we never
    811   // inline them.
    812   // FIXME: Remove this once temp destructors are working.
    813   if (isa<CXXDestructorCall>(Call)) {
    814     if ((*currBldrCtx->getBlock())[currStmtIdx].getAs<CFGTemporaryDtor>())
    815       return false;
    816   }
    817 
    818   // The auto-synthesized bodies are essential to inline as they are
    819   // usually small and commonly used. Note: we should do this check early on to
    820   // ensure we always inline these calls.
    821   if (CalleeADC->isBodyAutosynthesized())
    822     return true;
    823 
    824   if (!AMgr.shouldInlineCall())
    825     return false;
    826 
    827   // Check if this function has been marked as non-inlinable.
    828   Optional<bool> MayInline = Engine.FunctionSummaries->mayInline(D);
    829   if (MayInline.hasValue()) {
    830     if (!MayInline.getValue())
    831       return false;
    832 
    833   } else {
    834     // We haven't actually checked the static properties of this function yet.
    835     // Do that now, and record our decision in the function summaries.
    836     if (mayInlineDecl(CalleeADC, Opts)) {
    837       Engine.FunctionSummaries->markMayInline(D);
    838     } else {
    839       Engine.FunctionSummaries->markShouldNotInline(D);
    840       return false;
    841     }
    842   }
    843 
    844   // Check if we should inline a call based on its kind.
    845   // FIXME: this checks both static and dynamic properties of the call, which
    846   // means we're redoing a bit of work that could be cached in the function
    847   // summary.
    848   CallInlinePolicy CIP = mayInlineCallKind(Call, Pred, Opts);
    849   if (CIP != CIP_Allowed) {
    850     if (CIP == CIP_DisallowedAlways) {
    851       assert(!MayInline.hasValue() || MayInline.getValue());
    852       Engine.FunctionSummaries->markShouldNotInline(D);
    853     }
    854     return false;
    855   }
    856 
    857   const CFG *CalleeCFG = CalleeADC->getCFG();
    858 
    859   // Do not inline if recursive or we've reached max stack frame count.
    860   bool IsRecursive = false;
    861   unsigned StackDepth = 0;
    862   examineStackFrames(D, Pred->getLocationContext(), IsRecursive, StackDepth);
    863   if ((StackDepth >= Opts.InlineMaxStackDepth) &&
    864       ((CalleeCFG->getNumBlockIDs() > Opts.getAlwaysInlineSize())
    865        || IsRecursive))
    866     return false;
    867 
    868   // Do not inline large functions too many times.
    869   if ((Engine.FunctionSummaries->getNumTimesInlined(D) >
    870        Opts.getMaxTimesInlineLarge()) &&
    871       CalleeCFG->getNumBlockIDs() > 13) {
    872     NumReachedInlineCountMax++;
    873     return false;
    874   }
    875 
    876   if (HowToInline == Inline_Minimal &&
    877       (CalleeCFG->getNumBlockIDs() > Opts.getAlwaysInlineSize()
    878       || IsRecursive))
    879     return false;
    880 
    881   Engine.FunctionSummaries->bumpNumTimesInlined(D);
    882 
    883   return true;
    884 }
    885 
    886 static bool isTrivialObjectAssignment(const CallEvent &Call) {
    887   const CXXInstanceCall *ICall = dyn_cast<CXXInstanceCall>(&Call);
    888   if (!ICall)
    889     return false;
    890 
    891   const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(ICall->getDecl());
    892   if (!MD)
    893     return false;
    894   if (!(MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()))
    895     return false;
    896 
    897   return MD->isTrivial();
    898 }
    899 
    900 void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred,
    901                                  const CallEvent &CallTemplate) {
    902   // Make sure we have the most recent state attached to the call.
    903   ProgramStateRef State = Pred->getState();
    904   CallEventRef<> Call = CallTemplate.cloneWithState(State);
    905 
    906   // Special-case trivial assignment operators.
    907   if (isTrivialObjectAssignment(*Call)) {
    908     performTrivialCopy(Bldr, Pred, *Call);
    909     return;
    910   }
    911 
    912   // Try to inline the call.
    913   // The origin expression here is just used as a kind of checksum;
    914   // this should still be safe even for CallEvents that don't come from exprs.
    915   const Expr *E = Call->getOriginExpr();
    916 
    917   ProgramStateRef InlinedFailedState = getInlineFailedState(State, E);
    918   if (InlinedFailedState) {
    919     // If we already tried once and failed, make sure we don't retry later.
    920     State = InlinedFailedState;
    921   } else {
    922     RuntimeDefinition RD = Call->getRuntimeDefinition();
    923     const Decl *D = RD.getDecl();
    924     if (shouldInlineCall(*Call, D, Pred)) {
    925       if (RD.mayHaveOtherDefinitions()) {
    926         AnalyzerOptions &Options = getAnalysisManager().options;
    927 
    928         // Explore with and without inlining the call.
    929         if (Options.getIPAMode() == IPAK_DynamicDispatchBifurcate) {
    930           BifurcateCall(RD.getDispatchRegion(), *Call, D, Bldr, Pred);
    931           return;
    932         }
    933 
    934         // Don't inline if we're not in any dynamic dispatch mode.
    935         if (Options.getIPAMode() != IPAK_DynamicDispatch) {
    936           conservativeEvalCall(*Call, Bldr, Pred, State);
    937           return;
    938         }
    939       }
    940 
    941       // We are not bifurcating and we do have a Decl, so just inline.
    942       if (inlineCall(*Call, D, Bldr, Pred, State))
    943         return;
    944     }
    945   }
    946 
    947   // If we can't inline it, handle the return value and invalidate the regions.
    948   conservativeEvalCall(*Call, Bldr, Pred, State);
    949 }
    950 
    951 void ExprEngine::BifurcateCall(const MemRegion *BifurReg,
    952                                const CallEvent &Call, const Decl *D,
    953                                NodeBuilder &Bldr, ExplodedNode *Pred) {
    954   assert(BifurReg);
    955   BifurReg = BifurReg->StripCasts();
    956 
    957   // Check if we've performed the split already - note, we only want
    958   // to split the path once per memory region.
    959   ProgramStateRef State = Pred->getState();
    960   const unsigned *BState =
    961                         State->get<DynamicDispatchBifurcationMap>(BifurReg);
    962   if (BState) {
    963     // If we are on "inline path", keep inlining if possible.
    964     if (*BState == DynamicDispatchModeInlined)
    965       if (inlineCall(Call, D, Bldr, Pred, State))
    966         return;
    967     // If inline failed, or we are on the path where we assume we
    968     // don't have enough info about the receiver to inline, conjure the
    969     // return value and invalidate the regions.
    970     conservativeEvalCall(Call, Bldr, Pred, State);
    971     return;
    972   }
    973 
    974   // If we got here, this is the first time we process a message to this
    975   // region, so split the path.
    976   ProgramStateRef IState =
    977       State->set<DynamicDispatchBifurcationMap>(BifurReg,
    978                                                DynamicDispatchModeInlined);
    979   inlineCall(Call, D, Bldr, Pred, IState);
    980 
    981   ProgramStateRef NoIState =
    982       State->set<DynamicDispatchBifurcationMap>(BifurReg,
    983                                                DynamicDispatchModeConservative);
    984   conservativeEvalCall(Call, Bldr, Pred, NoIState);
    985 
    986   NumOfDynamicDispatchPathSplits++;
    987   return;
    988 }
    989 
    990 
    991 void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
    992                                  ExplodedNodeSet &Dst) {
    993 
    994   ExplodedNodeSet dstPreVisit;
    995   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this);
    996 
    997   StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
    998 
    999   if (RS->getRetValue()) {
   1000     for (ExplodedNodeSet::iterator it = dstPreVisit.begin(),
   1001                                   ei = dstPreVisit.end(); it != ei; ++it) {
   1002       B.generateNode(RS, *it, (*it)->getState());
   1003     }
   1004   }
   1005 }
   1006