Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief Implements semantic analysis for C++ expressions.
     12 ///
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/Sema/SemaInternal.h"
     16 #include "TypeLocBuilder.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/ASTLambda.h"
     19 #include "clang/AST/CXXInheritance.h"
     20 #include "clang/AST/CharUnits.h"
     21 #include "clang/AST/DeclObjC.h"
     22 #include "clang/AST/EvaluatedExprVisitor.h"
     23 #include "clang/AST/ExprCXX.h"
     24 #include "clang/AST/ExprObjC.h"
     25 #include "clang/AST/RecursiveASTVisitor.h"
     26 #include "clang/AST/TypeLoc.h"
     27 #include "clang/Basic/PartialDiagnostic.h"
     28 #include "clang/Basic/TargetInfo.h"
     29 #include "clang/Lex/Preprocessor.h"
     30 #include "clang/Sema/DeclSpec.h"
     31 #include "clang/Sema/Initialization.h"
     32 #include "clang/Sema/Lookup.h"
     33 #include "clang/Sema/ParsedTemplate.h"
     34 #include "clang/Sema/Scope.h"
     35 #include "clang/Sema/ScopeInfo.h"
     36 #include "clang/Sema/SemaLambda.h"
     37 #include "clang/Sema/TemplateDeduction.h"
     38 #include "llvm/ADT/APInt.h"
     39 #include "llvm/ADT/STLExtras.h"
     40 #include "llvm/Support/ErrorHandling.h"
     41 using namespace clang;
     42 using namespace sema;
     43 
     44 /// \brief Handle the result of the special case name lookup for inheriting
     45 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
     46 /// constructor names in member using declarations, even if 'X' is not the
     47 /// name of the corresponding type.
     48 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
     49                                               SourceLocation NameLoc,
     50                                               IdentifierInfo &Name) {
     51   NestedNameSpecifier *NNS = SS.getScopeRep();
     52 
     53   // Convert the nested-name-specifier into a type.
     54   QualType Type;
     55   switch (NNS->getKind()) {
     56   case NestedNameSpecifier::TypeSpec:
     57   case NestedNameSpecifier::TypeSpecWithTemplate:
     58     Type = QualType(NNS->getAsType(), 0);
     59     break;
     60 
     61   case NestedNameSpecifier::Identifier:
     62     // Strip off the last layer of the nested-name-specifier and build a
     63     // typename type for it.
     64     assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
     65     Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
     66                                         NNS->getAsIdentifier());
     67     break;
     68 
     69   case NestedNameSpecifier::Global:
     70   case NestedNameSpecifier::Namespace:
     71   case NestedNameSpecifier::NamespaceAlias:
     72     llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
     73   }
     74 
     75   // This reference to the type is located entirely at the location of the
     76   // final identifier in the qualified-id.
     77   return CreateParsedType(Type,
     78                           Context.getTrivialTypeSourceInfo(Type, NameLoc));
     79 }
     80 
     81 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
     82                                    IdentifierInfo &II,
     83                                    SourceLocation NameLoc,
     84                                    Scope *S, CXXScopeSpec &SS,
     85                                    ParsedType ObjectTypePtr,
     86                                    bool EnteringContext) {
     87   // Determine where to perform name lookup.
     88 
     89   // FIXME: This area of the standard is very messy, and the current
     90   // wording is rather unclear about which scopes we search for the
     91   // destructor name; see core issues 399 and 555. Issue 399 in
     92   // particular shows where the current description of destructor name
     93   // lookup is completely out of line with existing practice, e.g.,
     94   // this appears to be ill-formed:
     95   //
     96   //   namespace N {
     97   //     template <typename T> struct S {
     98   //       ~S();
     99   //     };
    100   //   }
    101   //
    102   //   void f(N::S<int>* s) {
    103   //     s->N::S<int>::~S();
    104   //   }
    105   //
    106   // See also PR6358 and PR6359.
    107   // For this reason, we're currently only doing the C++03 version of this
    108   // code; the C++0x version has to wait until we get a proper spec.
    109   QualType SearchType;
    110   DeclContext *LookupCtx = nullptr;
    111   bool isDependent = false;
    112   bool LookInScope = false;
    113 
    114   // If we have an object type, it's because we are in a
    115   // pseudo-destructor-expression or a member access expression, and
    116   // we know what type we're looking for.
    117   if (ObjectTypePtr)
    118     SearchType = GetTypeFromParser(ObjectTypePtr);
    119 
    120   if (SS.isSet()) {
    121     NestedNameSpecifier *NNS = SS.getScopeRep();
    122 
    123     bool AlreadySearched = false;
    124     bool LookAtPrefix = true;
    125     // C++11 [basic.lookup.qual]p6:
    126     //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
    127     //   the type-names are looked up as types in the scope designated by the
    128     //   nested-name-specifier. Similarly, in a qualified-id of the form:
    129     //
    130     //     nested-name-specifier[opt] class-name :: ~ class-name
    131     //
    132     //   the second class-name is looked up in the same scope as the first.
    133     //
    134     // Here, we determine whether the code below is permitted to look at the
    135     // prefix of the nested-name-specifier.
    136     DeclContext *DC = computeDeclContext(SS, EnteringContext);
    137     if (DC && DC->isFileContext()) {
    138       AlreadySearched = true;
    139       LookupCtx = DC;
    140       isDependent = false;
    141     } else if (DC && isa<CXXRecordDecl>(DC)) {
    142       LookAtPrefix = false;
    143       LookInScope = true;
    144     }
    145 
    146     // The second case from the C++03 rules quoted further above.
    147     NestedNameSpecifier *Prefix = nullptr;
    148     if (AlreadySearched) {
    149       // Nothing left to do.
    150     } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
    151       CXXScopeSpec PrefixSS;
    152       PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
    153       LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
    154       isDependent = isDependentScopeSpecifier(PrefixSS);
    155     } else if (ObjectTypePtr) {
    156       LookupCtx = computeDeclContext(SearchType);
    157       isDependent = SearchType->isDependentType();
    158     } else {
    159       LookupCtx = computeDeclContext(SS, EnteringContext);
    160       isDependent = LookupCtx && LookupCtx->isDependentContext();
    161     }
    162   } else if (ObjectTypePtr) {
    163     // C++ [basic.lookup.classref]p3:
    164     //   If the unqualified-id is ~type-name, the type-name is looked up
    165     //   in the context of the entire postfix-expression. If the type T
    166     //   of the object expression is of a class type C, the type-name is
    167     //   also looked up in the scope of class C. At least one of the
    168     //   lookups shall find a name that refers to (possibly
    169     //   cv-qualified) T.
    170     LookupCtx = computeDeclContext(SearchType);
    171     isDependent = SearchType->isDependentType();
    172     assert((isDependent || !SearchType->isIncompleteType()) &&
    173            "Caller should have completed object type");
    174 
    175     LookInScope = true;
    176   } else {
    177     // Perform lookup into the current scope (only).
    178     LookInScope = true;
    179   }
    180 
    181   TypeDecl *NonMatchingTypeDecl = nullptr;
    182   LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
    183   for (unsigned Step = 0; Step != 2; ++Step) {
    184     // Look for the name first in the computed lookup context (if we
    185     // have one) and, if that fails to find a match, in the scope (if
    186     // we're allowed to look there).
    187     Found.clear();
    188     if (Step == 0 && LookupCtx)
    189       LookupQualifiedName(Found, LookupCtx);
    190     else if (Step == 1 && LookInScope && S)
    191       LookupName(Found, S);
    192     else
    193       continue;
    194 
    195     // FIXME: Should we be suppressing ambiguities here?
    196     if (Found.isAmbiguous())
    197       return ParsedType();
    198 
    199     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
    200       QualType T = Context.getTypeDeclType(Type);
    201 
    202       if (SearchType.isNull() || SearchType->isDependentType() ||
    203           Context.hasSameUnqualifiedType(T, SearchType)) {
    204         // We found our type!
    205 
    206         return CreateParsedType(T,
    207                                 Context.getTrivialTypeSourceInfo(T, NameLoc));
    208       }
    209 
    210       if (!SearchType.isNull())
    211         NonMatchingTypeDecl = Type;
    212     }
    213 
    214     // If the name that we found is a class template name, and it is
    215     // the same name as the template name in the last part of the
    216     // nested-name-specifier (if present) or the object type, then
    217     // this is the destructor for that class.
    218     // FIXME: This is a workaround until we get real drafting for core
    219     // issue 399, for which there isn't even an obvious direction.
    220     if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
    221       QualType MemberOfType;
    222       if (SS.isSet()) {
    223         if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
    224           // Figure out the type of the context, if it has one.
    225           if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
    226             MemberOfType = Context.getTypeDeclType(Record);
    227         }
    228       }
    229       if (MemberOfType.isNull())
    230         MemberOfType = SearchType;
    231 
    232       if (MemberOfType.isNull())
    233         continue;
    234 
    235       // We're referring into a class template specialization. If the
    236       // class template we found is the same as the template being
    237       // specialized, we found what we are looking for.
    238       if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
    239         if (ClassTemplateSpecializationDecl *Spec
    240               = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
    241           if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
    242                 Template->getCanonicalDecl())
    243             return CreateParsedType(
    244                 MemberOfType,
    245                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
    246         }
    247 
    248         continue;
    249       }
    250 
    251       // We're referring to an unresolved class template
    252       // specialization. Determine whether we class template we found
    253       // is the same as the template being specialized or, if we don't
    254       // know which template is being specialized, that it at least
    255       // has the same name.
    256       if (const TemplateSpecializationType *SpecType
    257             = MemberOfType->getAs<TemplateSpecializationType>()) {
    258         TemplateName SpecName = SpecType->getTemplateName();
    259 
    260         // The class template we found is the same template being
    261         // specialized.
    262         if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
    263           if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
    264             return CreateParsedType(
    265                 MemberOfType,
    266                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
    267 
    268           continue;
    269         }
    270 
    271         // The class template we found has the same name as the
    272         // (dependent) template name being specialized.
    273         if (DependentTemplateName *DepTemplate
    274                                     = SpecName.getAsDependentTemplateName()) {
    275           if (DepTemplate->isIdentifier() &&
    276               DepTemplate->getIdentifier() == Template->getIdentifier())
    277             return CreateParsedType(
    278                 MemberOfType,
    279                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
    280 
    281           continue;
    282         }
    283       }
    284     }
    285   }
    286 
    287   if (isDependent) {
    288     // We didn't find our type, but that's okay: it's dependent
    289     // anyway.
    290 
    291     // FIXME: What if we have no nested-name-specifier?
    292     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
    293                                    SS.getWithLocInContext(Context),
    294                                    II, NameLoc);
    295     return ParsedType::make(T);
    296   }
    297 
    298   if (NonMatchingTypeDecl) {
    299     QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
    300     Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
    301       << T << SearchType;
    302     Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
    303       << T;
    304   } else if (ObjectTypePtr)
    305     Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
    306       << &II;
    307   else {
    308     SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
    309                                           diag::err_destructor_class_name);
    310     if (S) {
    311       const DeclContext *Ctx = S->getEntity();
    312       if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
    313         DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
    314                                                  Class->getNameAsString());
    315     }
    316   }
    317 
    318   return ParsedType();
    319 }
    320 
    321 ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
    322     if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
    323       return ParsedType();
    324     assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
    325            && "only get destructor types from declspecs");
    326     QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
    327     QualType SearchType = GetTypeFromParser(ObjectType);
    328     if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
    329       return ParsedType::make(T);
    330     }
    331 
    332     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
    333       << T << SearchType;
    334     return ParsedType();
    335 }
    336 
    337 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
    338                                   const UnqualifiedId &Name) {
    339   assert(Name.getKind() == UnqualifiedId::IK_LiteralOperatorId);
    340 
    341   if (!SS.isValid())
    342     return false;
    343 
    344   switch (SS.getScopeRep()->getKind()) {
    345   case NestedNameSpecifier::Identifier:
    346   case NestedNameSpecifier::TypeSpec:
    347   case NestedNameSpecifier::TypeSpecWithTemplate:
    348     // Per C++11 [over.literal]p2, literal operators can only be declared at
    349     // namespace scope. Therefore, this unqualified-id cannot name anything.
    350     // Reject it early, because we have no AST representation for this in the
    351     // case where the scope is dependent.
    352     Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace)
    353       << SS.getScopeRep();
    354     return true;
    355 
    356   case NestedNameSpecifier::Global:
    357   case NestedNameSpecifier::Namespace:
    358   case NestedNameSpecifier::NamespaceAlias:
    359     return false;
    360   }
    361 
    362   llvm_unreachable("unknown nested name specifier kind");
    363 }
    364 
    365 /// \brief Build a C++ typeid expression with a type operand.
    366 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
    367                                 SourceLocation TypeidLoc,
    368                                 TypeSourceInfo *Operand,
    369                                 SourceLocation RParenLoc) {
    370   // C++ [expr.typeid]p4:
    371   //   The top-level cv-qualifiers of the lvalue expression or the type-id
    372   //   that is the operand of typeid are always ignored.
    373   //   If the type of the type-id is a class type or a reference to a class
    374   //   type, the class shall be completely-defined.
    375   Qualifiers Quals;
    376   QualType T
    377     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
    378                                       Quals);
    379   if (T->getAs<RecordType>() &&
    380       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
    381     return ExprError();
    382 
    383   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
    384                                      SourceRange(TypeidLoc, RParenLoc));
    385 }
    386 
    387 /// \brief Build a C++ typeid expression with an expression operand.
    388 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
    389                                 SourceLocation TypeidLoc,
    390                                 Expr *E,
    391                                 SourceLocation RParenLoc) {
    392   if (E && !E->isTypeDependent()) {
    393     if (E->getType()->isPlaceholderType()) {
    394       ExprResult result = CheckPlaceholderExpr(E);
    395       if (result.isInvalid()) return ExprError();
    396       E = result.get();
    397     }
    398 
    399     QualType T = E->getType();
    400     if (const RecordType *RecordT = T->getAs<RecordType>()) {
    401       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
    402       // C++ [expr.typeid]p3:
    403       //   [...] If the type of the expression is a class type, the class
    404       //   shall be completely-defined.
    405       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
    406         return ExprError();
    407 
    408       // C++ [expr.typeid]p3:
    409       //   When typeid is applied to an expression other than an glvalue of a
    410       //   polymorphic class type [...] [the] expression is an unevaluated
    411       //   operand. [...]
    412       if (RecordD->isPolymorphic() && E->isGLValue()) {
    413         // The subexpression is potentially evaluated; switch the context
    414         // and recheck the subexpression.
    415         ExprResult Result = TransformToPotentiallyEvaluated(E);
    416         if (Result.isInvalid()) return ExprError();
    417         E = Result.get();
    418 
    419         // We require a vtable to query the type at run time.
    420         MarkVTableUsed(TypeidLoc, RecordD);
    421       }
    422     }
    423 
    424     // C++ [expr.typeid]p4:
    425     //   [...] If the type of the type-id is a reference to a possibly
    426     //   cv-qualified type, the result of the typeid expression refers to a
    427     //   std::type_info object representing the cv-unqualified referenced
    428     //   type.
    429     Qualifiers Quals;
    430     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
    431     if (!Context.hasSameType(T, UnqualT)) {
    432       T = UnqualT;
    433       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
    434     }
    435   }
    436 
    437   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
    438                                      SourceRange(TypeidLoc, RParenLoc));
    439 }
    440 
    441 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
    442 ExprResult
    443 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
    444                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
    445   // Find the std::type_info type.
    446   if (!getStdNamespace())
    447     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
    448 
    449   if (!CXXTypeInfoDecl) {
    450     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
    451     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
    452     LookupQualifiedName(R, getStdNamespace());
    453     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
    454     // Microsoft's typeinfo doesn't have type_info in std but in the global
    455     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
    456     if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
    457       LookupQualifiedName(R, Context.getTranslationUnitDecl());
    458       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
    459     }
    460     if (!CXXTypeInfoDecl)
    461       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
    462   }
    463 
    464   if (!getLangOpts().RTTI) {
    465     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
    466   }
    467 
    468   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
    469 
    470   if (isType) {
    471     // The operand is a type; handle it as such.
    472     TypeSourceInfo *TInfo = nullptr;
    473     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
    474                                    &TInfo);
    475     if (T.isNull())
    476       return ExprError();
    477 
    478     if (!TInfo)
    479       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
    480 
    481     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
    482   }
    483 
    484   // The operand is an expression.
    485   return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
    486 }
    487 
    488 /// \brief Build a Microsoft __uuidof expression with a type operand.
    489 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
    490                                 SourceLocation TypeidLoc,
    491                                 TypeSourceInfo *Operand,
    492                                 SourceLocation RParenLoc) {
    493   if (!Operand->getType()->isDependentType()) {
    494     bool HasMultipleGUIDs = false;
    495     if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType(),
    496                                           &HasMultipleGUIDs)) {
    497       if (HasMultipleGUIDs)
    498         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
    499       else
    500         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
    501     }
    502   }
    503 
    504   return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand,
    505                                      SourceRange(TypeidLoc, RParenLoc));
    506 }
    507 
    508 /// \brief Build a Microsoft __uuidof expression with an expression operand.
    509 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
    510                                 SourceLocation TypeidLoc,
    511                                 Expr *E,
    512                                 SourceLocation RParenLoc) {
    513   if (!E->getType()->isDependentType()) {
    514     bool HasMultipleGUIDs = false;
    515     if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType(), &HasMultipleGUIDs) &&
    516         !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
    517       if (HasMultipleGUIDs)
    518         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
    519       else
    520         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
    521     }
    522   }
    523 
    524   return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E,
    525                                      SourceRange(TypeidLoc, RParenLoc));
    526 }
    527 
    528 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
    529 ExprResult
    530 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
    531                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
    532   // If MSVCGuidDecl has not been cached, do the lookup.
    533   if (!MSVCGuidDecl) {
    534     IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
    535     LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
    536     LookupQualifiedName(R, Context.getTranslationUnitDecl());
    537     MSVCGuidDecl = R.getAsSingle<RecordDecl>();
    538     if (!MSVCGuidDecl)
    539       return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
    540   }
    541 
    542   QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
    543 
    544   if (isType) {
    545     // The operand is a type; handle it as such.
    546     TypeSourceInfo *TInfo = nullptr;
    547     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
    548                                    &TInfo);
    549     if (T.isNull())
    550       return ExprError();
    551 
    552     if (!TInfo)
    553       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
    554 
    555     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
    556   }
    557 
    558   // The operand is an expression.
    559   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
    560 }
    561 
    562 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
    563 ExprResult
    564 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
    565   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
    566          "Unknown C++ Boolean value!");
    567   return new (Context)
    568       CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
    569 }
    570 
    571 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
    572 ExprResult
    573 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
    574   return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
    575 }
    576 
    577 /// ActOnCXXThrow - Parse throw expressions.
    578 ExprResult
    579 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
    580   bool IsThrownVarInScope = false;
    581   if (Ex) {
    582     // C++0x [class.copymove]p31:
    583     //   When certain criteria are met, an implementation is allowed to omit the
    584     //   copy/move construction of a class object [...]
    585     //
    586     //     - in a throw-expression, when the operand is the name of a
    587     //       non-volatile automatic object (other than a function or catch-
    588     //       clause parameter) whose scope does not extend beyond the end of the
    589     //       innermost enclosing try-block (if there is one), the copy/move
    590     //       operation from the operand to the exception object (15.1) can be
    591     //       omitted by constructing the automatic object directly into the
    592     //       exception object
    593     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
    594       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
    595         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
    596           for( ; S; S = S->getParent()) {
    597             if (S->isDeclScope(Var)) {
    598               IsThrownVarInScope = true;
    599               break;
    600             }
    601 
    602             if (S->getFlags() &
    603                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
    604                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
    605                  Scope::TryScope))
    606               break;
    607           }
    608         }
    609       }
    610   }
    611 
    612   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
    613 }
    614 
    615 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
    616                                bool IsThrownVarInScope) {
    617   // Don't report an error if 'throw' is used in system headers.
    618   if (!getLangOpts().CXXExceptions &&
    619       !getSourceManager().isInSystemHeader(OpLoc))
    620     Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
    621 
    622   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
    623     Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
    624 
    625   if (Ex && !Ex->isTypeDependent()) {
    626     ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
    627     if (ExRes.isInvalid())
    628       return ExprError();
    629     Ex = ExRes.get();
    630   }
    631 
    632   return new (Context)
    633       CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
    634 }
    635 
    636 /// CheckCXXThrowOperand - Validate the operand of a throw.
    637 ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
    638                                       bool IsThrownVarInScope) {
    639   // C++ [except.throw]p3:
    640   //   A throw-expression initializes a temporary object, called the exception
    641   //   object, the type of which is determined by removing any top-level
    642   //   cv-qualifiers from the static type of the operand of throw and adjusting
    643   //   the type from "array of T" or "function returning T" to "pointer to T"
    644   //   or "pointer to function returning T", [...]
    645   if (E->getType().hasQualifiers())
    646     E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
    647                           E->getValueKind()).get();
    648 
    649   ExprResult Res = DefaultFunctionArrayConversion(E);
    650   if (Res.isInvalid())
    651     return ExprError();
    652   E = Res.get();
    653 
    654   //   If the type of the exception would be an incomplete type or a pointer
    655   //   to an incomplete type other than (cv) void the program is ill-formed.
    656   QualType Ty = E->getType();
    657   bool isPointer = false;
    658   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
    659     Ty = Ptr->getPointeeType();
    660     isPointer = true;
    661   }
    662   if (!isPointer || !Ty->isVoidType()) {
    663     if (RequireCompleteType(ThrowLoc, Ty,
    664                             isPointer? diag::err_throw_incomplete_ptr
    665                                      : diag::err_throw_incomplete,
    666                             E->getSourceRange()))
    667       return ExprError();
    668 
    669     if (RequireNonAbstractType(ThrowLoc, E->getType(),
    670                                diag::err_throw_abstract_type, E))
    671       return ExprError();
    672   }
    673 
    674   // Initialize the exception result.  This implicitly weeds out
    675   // abstract types or types with inaccessible copy constructors.
    676 
    677   // C++0x [class.copymove]p31:
    678   //   When certain criteria are met, an implementation is allowed to omit the
    679   //   copy/move construction of a class object [...]
    680   //
    681   //     - in a throw-expression, when the operand is the name of a
    682   //       non-volatile automatic object (other than a function or catch-clause
    683   //       parameter) whose scope does not extend beyond the end of the
    684   //       innermost enclosing try-block (if there is one), the copy/move
    685   //       operation from the operand to the exception object (15.1) can be
    686   //       omitted by constructing the automatic object directly into the
    687   //       exception object
    688   const VarDecl *NRVOVariable = nullptr;
    689   if (IsThrownVarInScope)
    690     NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
    691 
    692   InitializedEntity Entity =
    693       InitializedEntity::InitializeException(ThrowLoc, E->getType(),
    694                                              /*NRVO=*/NRVOVariable != nullptr);
    695   Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
    696                                         QualType(), E,
    697                                         IsThrownVarInScope);
    698   if (Res.isInvalid())
    699     return ExprError();
    700   E = Res.get();
    701 
    702   // If the exception has class type, we need additional handling.
    703   const RecordType *RecordTy = Ty->getAs<RecordType>();
    704   if (!RecordTy)
    705     return E;
    706   CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
    707 
    708   // If we are throwing a polymorphic class type or pointer thereof,
    709   // exception handling will make use of the vtable.
    710   MarkVTableUsed(ThrowLoc, RD);
    711 
    712   // If a pointer is thrown, the referenced object will not be destroyed.
    713   if (isPointer)
    714     return E;
    715 
    716   // If the class has a destructor, we must be able to call it.
    717   if (RD->hasIrrelevantDestructor())
    718     return E;
    719 
    720   CXXDestructorDecl *Destructor = LookupDestructor(RD);
    721   if (!Destructor)
    722     return E;
    723 
    724   MarkFunctionReferenced(E->getExprLoc(), Destructor);
    725   CheckDestructorAccess(E->getExprLoc(), Destructor,
    726                         PDiag(diag::err_access_dtor_exception) << Ty);
    727   if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
    728     return ExprError();
    729   return E;
    730 }
    731 
    732 QualType Sema::getCurrentThisType() {
    733   DeclContext *DC = getFunctionLevelDeclContext();
    734   QualType ThisTy = CXXThisTypeOverride;
    735   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
    736     if (method && method->isInstance())
    737       ThisTy = method->getThisType(Context);
    738   }
    739   if (ThisTy.isNull()) {
    740     if (isGenericLambdaCallOperatorSpecialization(CurContext) &&
    741         CurContext->getParent()->getParent()->isRecord()) {
    742       // This is a generic lambda call operator that is being instantiated
    743       // within a default initializer - so use the enclosing class as 'this'.
    744       // There is no enclosing member function to retrieve the 'this' pointer
    745       // from.
    746       QualType ClassTy = Context.getTypeDeclType(
    747           cast<CXXRecordDecl>(CurContext->getParent()->getParent()));
    748       // There are no cv-qualifiers for 'this' within default initializers,
    749       // per [expr.prim.general]p4.
    750       return Context.getPointerType(ClassTy);
    751     }
    752   }
    753   return ThisTy;
    754 }
    755 
    756 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
    757                                          Decl *ContextDecl,
    758                                          unsigned CXXThisTypeQuals,
    759                                          bool Enabled)
    760   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
    761 {
    762   if (!Enabled || !ContextDecl)
    763     return;
    764 
    765   CXXRecordDecl *Record = nullptr;
    766   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
    767     Record = Template->getTemplatedDecl();
    768   else
    769     Record = cast<CXXRecordDecl>(ContextDecl);
    770 
    771   S.CXXThisTypeOverride
    772     = S.Context.getPointerType(
    773         S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
    774 
    775   this->Enabled = true;
    776 }
    777 
    778 
    779 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
    780   if (Enabled) {
    781     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
    782   }
    783 }
    784 
    785 static Expr *captureThis(ASTContext &Context, RecordDecl *RD,
    786                          QualType ThisTy, SourceLocation Loc) {
    787   FieldDecl *Field
    788     = FieldDecl::Create(Context, RD, Loc, Loc, nullptr, ThisTy,
    789                         Context.getTrivialTypeSourceInfo(ThisTy, Loc),
    790                         nullptr, false, ICIS_NoInit);
    791   Field->setImplicit(true);
    792   Field->setAccess(AS_private);
    793   RD->addDecl(Field);
    794   return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true);
    795 }
    796 
    797 bool Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit,
    798     bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt) {
    799   // We don't need to capture this in an unevaluated context.
    800   if (isUnevaluatedContext() && !Explicit)
    801     return true;
    802 
    803   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ?
    804     *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
    805  // Otherwise, check that we can capture 'this'.
    806   unsigned NumClosures = 0;
    807   for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) {
    808     if (CapturingScopeInfo *CSI =
    809             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
    810       if (CSI->CXXThisCaptureIndex != 0) {
    811         // 'this' is already being captured; there isn't anything more to do.
    812         break;
    813       }
    814       LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
    815       if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
    816         // This context can't implicitly capture 'this'; fail out.
    817         if (BuildAndDiagnose)
    818           Diag(Loc, diag::err_this_capture) << Explicit;
    819         return true;
    820       }
    821       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
    822           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
    823           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
    824           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
    825           Explicit) {
    826         // This closure can capture 'this'; continue looking upwards.
    827         NumClosures++;
    828         Explicit = false;
    829         continue;
    830       }
    831       // This context can't implicitly capture 'this'; fail out.
    832       if (BuildAndDiagnose)
    833         Diag(Loc, diag::err_this_capture) << Explicit;
    834       return true;
    835     }
    836     break;
    837   }
    838   if (!BuildAndDiagnose) return false;
    839   // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
    840   // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
    841   // contexts.
    842   for (unsigned idx = MaxFunctionScopesIndex; NumClosures;
    843       --idx, --NumClosures) {
    844     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
    845     Expr *ThisExpr = nullptr;
    846     QualType ThisTy = getCurrentThisType();
    847     if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI))
    848       // For lambda expressions, build a field and an initializing expression.
    849       ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc);
    850     else if (CapturedRegionScopeInfo *RSI
    851         = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
    852       ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc);
    853 
    854     bool isNested = NumClosures > 1;
    855     CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
    856   }
    857   return false;
    858 }
    859 
    860 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
    861   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
    862   /// is a non-lvalue expression whose value is the address of the object for
    863   /// which the function is called.
    864 
    865   QualType ThisTy = getCurrentThisType();
    866   if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
    867 
    868   CheckCXXThisCapture(Loc);
    869   return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
    870 }
    871 
    872 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
    873   // If we're outside the body of a member function, then we'll have a specified
    874   // type for 'this'.
    875   if (CXXThisTypeOverride.isNull())
    876     return false;
    877 
    878   // Determine whether we're looking into a class that's currently being
    879   // defined.
    880   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
    881   return Class && Class->isBeingDefined();
    882 }
    883 
    884 ExprResult
    885 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
    886                                 SourceLocation LParenLoc,
    887                                 MultiExprArg exprs,
    888                                 SourceLocation RParenLoc) {
    889   if (!TypeRep)
    890     return ExprError();
    891 
    892   TypeSourceInfo *TInfo;
    893   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
    894   if (!TInfo)
    895     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
    896 
    897   return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
    898 }
    899 
    900 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
    901 /// Can be interpreted either as function-style casting ("int(x)")
    902 /// or class type construction ("ClassType(x,y,z)")
    903 /// or creation of a value-initialized type ("int()").
    904 ExprResult
    905 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
    906                                 SourceLocation LParenLoc,
    907                                 MultiExprArg Exprs,
    908                                 SourceLocation RParenLoc) {
    909   QualType Ty = TInfo->getType();
    910   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
    911 
    912   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
    913     return CXXUnresolvedConstructExpr::Create(Context, TInfo, LParenLoc, Exprs,
    914                                               RParenLoc);
    915   }
    916 
    917   bool ListInitialization = LParenLoc.isInvalid();
    918   assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0])))
    919          && "List initialization must have initializer list as expression.");
    920   SourceRange FullRange = SourceRange(TyBeginLoc,
    921       ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
    922 
    923   // C++ [expr.type.conv]p1:
    924   // If the expression list is a single expression, the type conversion
    925   // expression is equivalent (in definedness, and if defined in meaning) to the
    926   // corresponding cast expression.
    927   if (Exprs.size() == 1 && !ListInitialization) {
    928     Expr *Arg = Exprs[0];
    929     return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
    930   }
    931 
    932   QualType ElemTy = Ty;
    933   if (Ty->isArrayType()) {
    934     if (!ListInitialization)
    935       return ExprError(Diag(TyBeginLoc,
    936                             diag::err_value_init_for_array_type) << FullRange);
    937     ElemTy = Context.getBaseElementType(Ty);
    938   }
    939 
    940   if (!Ty->isVoidType() &&
    941       RequireCompleteType(TyBeginLoc, ElemTy,
    942                           diag::err_invalid_incomplete_type_use, FullRange))
    943     return ExprError();
    944 
    945   if (RequireNonAbstractType(TyBeginLoc, Ty,
    946                              diag::err_allocation_of_abstract_type))
    947     return ExprError();
    948 
    949   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
    950   InitializationKind Kind =
    951       Exprs.size() ? ListInitialization
    952       ? InitializationKind::CreateDirectList(TyBeginLoc)
    953       : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc)
    954       : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
    955   InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
    956   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
    957 
    958   if (Result.isInvalid() || !ListInitialization)
    959     return Result;
    960 
    961   Expr *Inner = Result.get();
    962   if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
    963     Inner = BTE->getSubExpr();
    964   if (isa<InitListExpr>(Inner)) {
    965     // If the list-initialization doesn't involve a constructor call, we'll get
    966     // the initializer-list (with corrected type) back, but that's not what we
    967     // want, since it will be treated as an initializer list in further
    968     // processing. Explicitly insert a cast here.
    969     QualType ResultType = Result.get()->getType();
    970     Result = CXXFunctionalCastExpr::Create(
    971         Context, ResultType, Expr::getValueKindForType(TInfo->getType()), TInfo,
    972         CK_NoOp, Result.get(), /*Path=*/nullptr, LParenLoc, RParenLoc);
    973   }
    974 
    975   // FIXME: Improve AST representation?
    976   return Result;
    977 }
    978 
    979 /// doesUsualArrayDeleteWantSize - Answers whether the usual
    980 /// operator delete[] for the given type has a size_t parameter.
    981 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
    982                                          QualType allocType) {
    983   const RecordType *record =
    984     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
    985   if (!record) return false;
    986 
    987   // Try to find an operator delete[] in class scope.
    988 
    989   DeclarationName deleteName =
    990     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
    991   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
    992   S.LookupQualifiedName(ops, record->getDecl());
    993 
    994   // We're just doing this for information.
    995   ops.suppressDiagnostics();
    996 
    997   // Very likely: there's no operator delete[].
    998   if (ops.empty()) return false;
    999 
   1000   // If it's ambiguous, it should be illegal to call operator delete[]
   1001   // on this thing, so it doesn't matter if we allocate extra space or not.
   1002   if (ops.isAmbiguous()) return false;
   1003 
   1004   LookupResult::Filter filter = ops.makeFilter();
   1005   while (filter.hasNext()) {
   1006     NamedDecl *del = filter.next()->getUnderlyingDecl();
   1007 
   1008     // C++0x [basic.stc.dynamic.deallocation]p2:
   1009     //   A template instance is never a usual deallocation function,
   1010     //   regardless of its signature.
   1011     if (isa<FunctionTemplateDecl>(del)) {
   1012       filter.erase();
   1013       continue;
   1014     }
   1015 
   1016     // C++0x [basic.stc.dynamic.deallocation]p2:
   1017     //   If class T does not declare [an operator delete[] with one
   1018     //   parameter] but does declare a member deallocation function
   1019     //   named operator delete[] with exactly two parameters, the
   1020     //   second of which has type std::size_t, then this function
   1021     //   is a usual deallocation function.
   1022     if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
   1023       filter.erase();
   1024       continue;
   1025     }
   1026   }
   1027   filter.done();
   1028 
   1029   if (!ops.isSingleResult()) return false;
   1030 
   1031   const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
   1032   return (del->getNumParams() == 2);
   1033 }
   1034 
   1035 /// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
   1036 ///
   1037 /// E.g.:
   1038 /// @code new (memory) int[size][4] @endcode
   1039 /// or
   1040 /// @code ::new Foo(23, "hello") @endcode
   1041 ///
   1042 /// \param StartLoc The first location of the expression.
   1043 /// \param UseGlobal True if 'new' was prefixed with '::'.
   1044 /// \param PlacementLParen Opening paren of the placement arguments.
   1045 /// \param PlacementArgs Placement new arguments.
   1046 /// \param PlacementRParen Closing paren of the placement arguments.
   1047 /// \param TypeIdParens If the type is in parens, the source range.
   1048 /// \param D The type to be allocated, as well as array dimensions.
   1049 /// \param Initializer The initializing expression or initializer-list, or null
   1050 ///   if there is none.
   1051 ExprResult
   1052 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
   1053                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
   1054                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
   1055                   Declarator &D, Expr *Initializer) {
   1056   bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
   1057 
   1058   Expr *ArraySize = nullptr;
   1059   // If the specified type is an array, unwrap it and save the expression.
   1060   if (D.getNumTypeObjects() > 0 &&
   1061       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
   1062      DeclaratorChunk &Chunk = D.getTypeObject(0);
   1063     if (TypeContainsAuto)
   1064       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
   1065         << D.getSourceRange());
   1066     if (Chunk.Arr.hasStatic)
   1067       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
   1068         << D.getSourceRange());
   1069     if (!Chunk.Arr.NumElts)
   1070       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
   1071         << D.getSourceRange());
   1072 
   1073     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
   1074     D.DropFirstTypeObject();
   1075   }
   1076 
   1077   // Every dimension shall be of constant size.
   1078   if (ArraySize) {
   1079     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
   1080       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
   1081         break;
   1082 
   1083       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
   1084       if (Expr *NumElts = (Expr *)Array.NumElts) {
   1085         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
   1086           if (getLangOpts().CPlusPlus1y) {
   1087 	    // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
   1088 	    //   shall be a converted constant expression (5.19) of type std::size_t
   1089 	    //   and shall evaluate to a strictly positive value.
   1090             unsigned IntWidth = Context.getTargetInfo().getIntWidth();
   1091             assert(IntWidth && "Builtin type of size 0?");
   1092             llvm::APSInt Value(IntWidth);
   1093             Array.NumElts
   1094              = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
   1095                                                 CCEK_NewExpr)
   1096                  .get();
   1097           } else {
   1098             Array.NumElts
   1099               = VerifyIntegerConstantExpression(NumElts, nullptr,
   1100                                                 diag::err_new_array_nonconst)
   1101                   .get();
   1102           }
   1103           if (!Array.NumElts)
   1104             return ExprError();
   1105         }
   1106       }
   1107     }
   1108   }
   1109 
   1110   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
   1111   QualType AllocType = TInfo->getType();
   1112   if (D.isInvalidType())
   1113     return ExprError();
   1114 
   1115   SourceRange DirectInitRange;
   1116   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
   1117     DirectInitRange = List->getSourceRange();
   1118 
   1119   return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
   1120                      PlacementLParen,
   1121                      PlacementArgs,
   1122                      PlacementRParen,
   1123                      TypeIdParens,
   1124                      AllocType,
   1125                      TInfo,
   1126                      ArraySize,
   1127                      DirectInitRange,
   1128                      Initializer,
   1129                      TypeContainsAuto);
   1130 }
   1131 
   1132 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
   1133                                        Expr *Init) {
   1134   if (!Init)
   1135     return true;
   1136   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
   1137     return PLE->getNumExprs() == 0;
   1138   if (isa<ImplicitValueInitExpr>(Init))
   1139     return true;
   1140   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
   1141     return !CCE->isListInitialization() &&
   1142            CCE->getConstructor()->isDefaultConstructor();
   1143   else if (Style == CXXNewExpr::ListInit) {
   1144     assert(isa<InitListExpr>(Init) &&
   1145            "Shouldn't create list CXXConstructExprs for arrays.");
   1146     return true;
   1147   }
   1148   return false;
   1149 }
   1150 
   1151 ExprResult
   1152 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
   1153                   SourceLocation PlacementLParen,
   1154                   MultiExprArg PlacementArgs,
   1155                   SourceLocation PlacementRParen,
   1156                   SourceRange TypeIdParens,
   1157                   QualType AllocType,
   1158                   TypeSourceInfo *AllocTypeInfo,
   1159                   Expr *ArraySize,
   1160                   SourceRange DirectInitRange,
   1161                   Expr *Initializer,
   1162                   bool TypeMayContainAuto) {
   1163   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
   1164   SourceLocation StartLoc = Range.getBegin();
   1165 
   1166   CXXNewExpr::InitializationStyle initStyle;
   1167   if (DirectInitRange.isValid()) {
   1168     assert(Initializer && "Have parens but no initializer.");
   1169     initStyle = CXXNewExpr::CallInit;
   1170   } else if (Initializer && isa<InitListExpr>(Initializer))
   1171     initStyle = CXXNewExpr::ListInit;
   1172   else {
   1173     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
   1174             isa<CXXConstructExpr>(Initializer)) &&
   1175            "Initializer expression that cannot have been implicitly created.");
   1176     initStyle = CXXNewExpr::NoInit;
   1177   }
   1178 
   1179   Expr **Inits = &Initializer;
   1180   unsigned NumInits = Initializer ? 1 : 0;
   1181   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
   1182     assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
   1183     Inits = List->getExprs();
   1184     NumInits = List->getNumExprs();
   1185   }
   1186 
   1187   // Determine whether we've already built the initializer.
   1188   bool HaveCompleteInit = false;
   1189   if (Initializer && isa<CXXConstructExpr>(Initializer) &&
   1190       !isa<CXXTemporaryObjectExpr>(Initializer))
   1191     HaveCompleteInit = true;
   1192   else if (Initializer && isa<ImplicitValueInitExpr>(Initializer))
   1193     HaveCompleteInit = true;
   1194 
   1195   // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
   1196   if (TypeMayContainAuto && AllocType->isUndeducedType()) {
   1197     if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
   1198       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
   1199                        << AllocType << TypeRange);
   1200     if (initStyle == CXXNewExpr::ListInit ||
   1201         (NumInits == 1 && isa<InitListExpr>(Inits[0])))
   1202       return ExprError(Diag(Inits[0]->getLocStart(),
   1203                             diag::err_auto_new_list_init)
   1204                        << AllocType << TypeRange);
   1205     if (NumInits > 1) {
   1206       Expr *FirstBad = Inits[1];
   1207       return ExprError(Diag(FirstBad->getLocStart(),
   1208                             diag::err_auto_new_ctor_multiple_expressions)
   1209                        << AllocType << TypeRange);
   1210     }
   1211     Expr *Deduce = Inits[0];
   1212     QualType DeducedType;
   1213     if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
   1214       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
   1215                        << AllocType << Deduce->getType()
   1216                        << TypeRange << Deduce->getSourceRange());
   1217     if (DeducedType.isNull())
   1218       return ExprError();
   1219     AllocType = DeducedType;
   1220   }
   1221 
   1222   // Per C++0x [expr.new]p5, the type being constructed may be a
   1223   // typedef of an array type.
   1224   if (!ArraySize) {
   1225     if (const ConstantArrayType *Array
   1226                               = Context.getAsConstantArrayType(AllocType)) {
   1227       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
   1228                                          Context.getSizeType(),
   1229                                          TypeRange.getEnd());
   1230       AllocType = Array->getElementType();
   1231     }
   1232   }
   1233 
   1234   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
   1235     return ExprError();
   1236 
   1237   if (initStyle == CXXNewExpr::ListInit &&
   1238       isStdInitializerList(AllocType, nullptr)) {
   1239     Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
   1240          diag::warn_dangling_std_initializer_list)
   1241         << /*at end of FE*/0 << Inits[0]->getSourceRange();
   1242   }
   1243 
   1244   // In ARC, infer 'retaining' for the allocated
   1245   if (getLangOpts().ObjCAutoRefCount &&
   1246       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
   1247       AllocType->isObjCLifetimeType()) {
   1248     AllocType = Context.getLifetimeQualifiedType(AllocType,
   1249                                     AllocType->getObjCARCImplicitLifetime());
   1250   }
   1251 
   1252   QualType ResultType = Context.getPointerType(AllocType);
   1253 
   1254   if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
   1255     ExprResult result = CheckPlaceholderExpr(ArraySize);
   1256     if (result.isInvalid()) return ExprError();
   1257     ArraySize = result.get();
   1258   }
   1259   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
   1260   //   integral or enumeration type with a non-negative value."
   1261   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
   1262   //   enumeration type, or a class type for which a single non-explicit
   1263   //   conversion function to integral or unscoped enumeration type exists.
   1264   // C++1y [expr.new]p6: The expression [...] is implicitly converted to
   1265   //   std::size_t.
   1266   if (ArraySize && !ArraySize->isTypeDependent()) {
   1267     ExprResult ConvertedSize;
   1268     if (getLangOpts().CPlusPlus1y) {
   1269       assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
   1270 
   1271       ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
   1272 						AA_Converting);
   1273 
   1274       if (!ConvertedSize.isInvalid() &&
   1275           ArraySize->getType()->getAs<RecordType>())
   1276         // Diagnose the compatibility of this conversion.
   1277         Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
   1278           << ArraySize->getType() << 0 << "'size_t'";
   1279     } else {
   1280       class SizeConvertDiagnoser : public ICEConvertDiagnoser {
   1281       protected:
   1282         Expr *ArraySize;
   1283 
   1284       public:
   1285         SizeConvertDiagnoser(Expr *ArraySize)
   1286             : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
   1287               ArraySize(ArraySize) {}
   1288 
   1289         SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
   1290                                              QualType T) override {
   1291           return S.Diag(Loc, diag::err_array_size_not_integral)
   1292                    << S.getLangOpts().CPlusPlus11 << T;
   1293         }
   1294 
   1295         SemaDiagnosticBuilder diagnoseIncomplete(
   1296             Sema &S, SourceLocation Loc, QualType T) override {
   1297           return S.Diag(Loc, diag::err_array_size_incomplete_type)
   1298                    << T << ArraySize->getSourceRange();
   1299         }
   1300 
   1301         SemaDiagnosticBuilder diagnoseExplicitConv(
   1302             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
   1303           return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
   1304         }
   1305 
   1306         SemaDiagnosticBuilder noteExplicitConv(
   1307             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
   1308           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
   1309                    << ConvTy->isEnumeralType() << ConvTy;
   1310         }
   1311 
   1312         SemaDiagnosticBuilder diagnoseAmbiguous(
   1313             Sema &S, SourceLocation Loc, QualType T) override {
   1314           return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
   1315         }
   1316 
   1317         SemaDiagnosticBuilder noteAmbiguous(
   1318             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
   1319           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
   1320                    << ConvTy->isEnumeralType() << ConvTy;
   1321         }
   1322 
   1323         virtual SemaDiagnosticBuilder diagnoseConversion(
   1324             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
   1325           return S.Diag(Loc,
   1326                         S.getLangOpts().CPlusPlus11
   1327                           ? diag::warn_cxx98_compat_array_size_conversion
   1328                           : diag::ext_array_size_conversion)
   1329                    << T << ConvTy->isEnumeralType() << ConvTy;
   1330         }
   1331       } SizeDiagnoser(ArraySize);
   1332 
   1333       ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
   1334                                                           SizeDiagnoser);
   1335     }
   1336     if (ConvertedSize.isInvalid())
   1337       return ExprError();
   1338 
   1339     ArraySize = ConvertedSize.get();
   1340     QualType SizeType = ArraySize->getType();
   1341 
   1342     if (!SizeType->isIntegralOrUnscopedEnumerationType())
   1343       return ExprError();
   1344 
   1345     // C++98 [expr.new]p7:
   1346     //   The expression in a direct-new-declarator shall have integral type
   1347     //   with a non-negative value.
   1348     //
   1349     // Let's see if this is a constant < 0. If so, we reject it out of
   1350     // hand. Otherwise, if it's not a constant, we must have an unparenthesized
   1351     // array type.
   1352     //
   1353     // Note: such a construct has well-defined semantics in C++11: it throws
   1354     // std::bad_array_new_length.
   1355     if (!ArraySize->isValueDependent()) {
   1356       llvm::APSInt Value;
   1357       // We've already performed any required implicit conversion to integer or
   1358       // unscoped enumeration type.
   1359       if (ArraySize->isIntegerConstantExpr(Value, Context)) {
   1360         if (Value < llvm::APSInt(
   1361                         llvm::APInt::getNullValue(Value.getBitWidth()),
   1362                                  Value.isUnsigned())) {
   1363           if (getLangOpts().CPlusPlus11)
   1364             Diag(ArraySize->getLocStart(),
   1365                  diag::warn_typecheck_negative_array_new_size)
   1366               << ArraySize->getSourceRange();
   1367           else
   1368             return ExprError(Diag(ArraySize->getLocStart(),
   1369                                   diag::err_typecheck_negative_array_size)
   1370                              << ArraySize->getSourceRange());
   1371         } else if (!AllocType->isDependentType()) {
   1372           unsigned ActiveSizeBits =
   1373             ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
   1374           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
   1375             if (getLangOpts().CPlusPlus11)
   1376               Diag(ArraySize->getLocStart(),
   1377                    diag::warn_array_new_too_large)
   1378                 << Value.toString(10)
   1379                 << ArraySize->getSourceRange();
   1380             else
   1381               return ExprError(Diag(ArraySize->getLocStart(),
   1382                                     diag::err_array_too_large)
   1383                                << Value.toString(10)
   1384                                << ArraySize->getSourceRange());
   1385           }
   1386         }
   1387       } else if (TypeIdParens.isValid()) {
   1388         // Can't have dynamic array size when the type-id is in parentheses.
   1389         Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
   1390           << ArraySize->getSourceRange()
   1391           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
   1392           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
   1393 
   1394         TypeIdParens = SourceRange();
   1395       }
   1396     }
   1397 
   1398     // Note that we do *not* convert the argument in any way.  It can
   1399     // be signed, larger than size_t, whatever.
   1400   }
   1401 
   1402   FunctionDecl *OperatorNew = nullptr;
   1403   FunctionDecl *OperatorDelete = nullptr;
   1404 
   1405   if (!AllocType->isDependentType() &&
   1406       !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
   1407       FindAllocationFunctions(StartLoc,
   1408                               SourceRange(PlacementLParen, PlacementRParen),
   1409                               UseGlobal, AllocType, ArraySize, PlacementArgs,
   1410                               OperatorNew, OperatorDelete))
   1411     return ExprError();
   1412 
   1413   // If this is an array allocation, compute whether the usual array
   1414   // deallocation function for the type has a size_t parameter.
   1415   bool UsualArrayDeleteWantsSize = false;
   1416   if (ArraySize && !AllocType->isDependentType())
   1417     UsualArrayDeleteWantsSize
   1418       = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
   1419 
   1420   SmallVector<Expr *, 8> AllPlaceArgs;
   1421   if (OperatorNew) {
   1422     const FunctionProtoType *Proto =
   1423         OperatorNew->getType()->getAs<FunctionProtoType>();
   1424     VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
   1425                                                     : VariadicDoesNotApply;
   1426 
   1427     // We've already converted the placement args, just fill in any default
   1428     // arguments. Skip the first parameter because we don't have a corresponding
   1429     // argument.
   1430     if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1,
   1431                                PlacementArgs, AllPlaceArgs, CallType))
   1432       return ExprError();
   1433 
   1434     if (!AllPlaceArgs.empty())
   1435       PlacementArgs = AllPlaceArgs;
   1436 
   1437     // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
   1438     DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
   1439 
   1440     // FIXME: Missing call to CheckFunctionCall or equivalent
   1441   }
   1442 
   1443   // Warn if the type is over-aligned and is being allocated by global operator
   1444   // new.
   1445   if (PlacementArgs.empty() && OperatorNew &&
   1446       (OperatorNew->isImplicit() ||
   1447        getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
   1448     if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
   1449       unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
   1450       if (Align > SuitableAlign)
   1451         Diag(StartLoc, diag::warn_overaligned_type)
   1452             << AllocType
   1453             << unsigned(Align / Context.getCharWidth())
   1454             << unsigned(SuitableAlign / Context.getCharWidth());
   1455     }
   1456   }
   1457 
   1458   QualType InitType = AllocType;
   1459   // Array 'new' can't have any initializers except empty parentheses.
   1460   // Initializer lists are also allowed, in C++11. Rely on the parser for the
   1461   // dialect distinction.
   1462   if (ResultType->isArrayType() || ArraySize) {
   1463     if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
   1464       SourceRange InitRange(Inits[0]->getLocStart(),
   1465                             Inits[NumInits - 1]->getLocEnd());
   1466       Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
   1467       return ExprError();
   1468     }
   1469     if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
   1470       // We do the initialization typechecking against the array type
   1471       // corresponding to the number of initializers + 1 (to also check
   1472       // default-initialization).
   1473       unsigned NumElements = ILE->getNumInits() + 1;
   1474       InitType = Context.getConstantArrayType(AllocType,
   1475           llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
   1476                                               ArrayType::Normal, 0);
   1477     }
   1478   }
   1479 
   1480   // If we can perform the initialization, and we've not already done so,
   1481   // do it now.
   1482   if (!AllocType->isDependentType() &&
   1483       !Expr::hasAnyTypeDependentArguments(
   1484         llvm::makeArrayRef(Inits, NumInits)) &&
   1485       !HaveCompleteInit) {
   1486     // C++11 [expr.new]p15:
   1487     //   A new-expression that creates an object of type T initializes that
   1488     //   object as follows:
   1489     InitializationKind Kind
   1490     //     - If the new-initializer is omitted, the object is default-
   1491     //       initialized (8.5); if no initialization is performed,
   1492     //       the object has indeterminate value
   1493       = initStyle == CXXNewExpr::NoInit
   1494           ? InitializationKind::CreateDefault(TypeRange.getBegin())
   1495     //     - Otherwise, the new-initializer is interpreted according to the
   1496     //       initialization rules of 8.5 for direct-initialization.
   1497           : initStyle == CXXNewExpr::ListInit
   1498               ? InitializationKind::CreateDirectList(TypeRange.getBegin())
   1499               : InitializationKind::CreateDirect(TypeRange.getBegin(),
   1500                                                  DirectInitRange.getBegin(),
   1501                                                  DirectInitRange.getEnd());
   1502 
   1503     InitializedEntity Entity
   1504       = InitializedEntity::InitializeNew(StartLoc, InitType);
   1505     InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
   1506     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
   1507                                           MultiExprArg(Inits, NumInits));
   1508     if (FullInit.isInvalid())
   1509       return ExprError();
   1510 
   1511     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
   1512     // we don't want the initialized object to be destructed.
   1513     if (CXXBindTemporaryExpr *Binder =
   1514             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
   1515       FullInit = Binder->getSubExpr();
   1516 
   1517     Initializer = FullInit.get();
   1518   }
   1519 
   1520   // Mark the new and delete operators as referenced.
   1521   if (OperatorNew) {
   1522     if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
   1523       return ExprError();
   1524     MarkFunctionReferenced(StartLoc, OperatorNew);
   1525   }
   1526   if (OperatorDelete) {
   1527     if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
   1528       return ExprError();
   1529     MarkFunctionReferenced(StartLoc, OperatorDelete);
   1530   }
   1531 
   1532   // C++0x [expr.new]p17:
   1533   //   If the new expression creates an array of objects of class type,
   1534   //   access and ambiguity control are done for the destructor.
   1535   QualType BaseAllocType = Context.getBaseElementType(AllocType);
   1536   if (ArraySize && !BaseAllocType->isDependentType()) {
   1537     if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
   1538       if (CXXDestructorDecl *dtor = LookupDestructor(
   1539               cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
   1540         MarkFunctionReferenced(StartLoc, dtor);
   1541         CheckDestructorAccess(StartLoc, dtor,
   1542                               PDiag(diag::err_access_dtor)
   1543                                 << BaseAllocType);
   1544         if (DiagnoseUseOfDecl(dtor, StartLoc))
   1545           return ExprError();
   1546       }
   1547     }
   1548   }
   1549 
   1550   return new (Context)
   1551       CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete,
   1552                  UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens,
   1553                  ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo,
   1554                  Range, DirectInitRange);
   1555 }
   1556 
   1557 /// \brief Checks that a type is suitable as the allocated type
   1558 /// in a new-expression.
   1559 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
   1560                               SourceRange R) {
   1561   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
   1562   //   abstract class type or array thereof.
   1563   if (AllocType->isFunctionType())
   1564     return Diag(Loc, diag::err_bad_new_type)
   1565       << AllocType << 0 << R;
   1566   else if (AllocType->isReferenceType())
   1567     return Diag(Loc, diag::err_bad_new_type)
   1568       << AllocType << 1 << R;
   1569   else if (!AllocType->isDependentType() &&
   1570            RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
   1571     return true;
   1572   else if (RequireNonAbstractType(Loc, AllocType,
   1573                                   diag::err_allocation_of_abstract_type))
   1574     return true;
   1575   else if (AllocType->isVariablyModifiedType())
   1576     return Diag(Loc, diag::err_variably_modified_new_type)
   1577              << AllocType;
   1578   else if (unsigned AddressSpace = AllocType.getAddressSpace())
   1579     return Diag(Loc, diag::err_address_space_qualified_new)
   1580       << AllocType.getUnqualifiedType() << AddressSpace;
   1581   else if (getLangOpts().ObjCAutoRefCount) {
   1582     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
   1583       QualType BaseAllocType = Context.getBaseElementType(AT);
   1584       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
   1585           BaseAllocType->isObjCLifetimeType())
   1586         return Diag(Loc, diag::err_arc_new_array_without_ownership)
   1587           << BaseAllocType;
   1588     }
   1589   }
   1590 
   1591   return false;
   1592 }
   1593 
   1594 /// \brief Determine whether the given function is a non-placement
   1595 /// deallocation function.
   1596 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
   1597   if (FD->isInvalidDecl())
   1598     return false;
   1599 
   1600   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
   1601     return Method->isUsualDeallocationFunction();
   1602 
   1603   if (FD->getOverloadedOperator() != OO_Delete &&
   1604       FD->getOverloadedOperator() != OO_Array_Delete)
   1605     return false;
   1606 
   1607   if (FD->getNumParams() == 1)
   1608     return true;
   1609 
   1610   return S.getLangOpts().SizedDeallocation && FD->getNumParams() == 2 &&
   1611          S.Context.hasSameUnqualifiedType(FD->getParamDecl(1)->getType(),
   1612                                           S.Context.getSizeType());
   1613 }
   1614 
   1615 /// FindAllocationFunctions - Finds the overloads of operator new and delete
   1616 /// that are appropriate for the allocation.
   1617 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
   1618                                    bool UseGlobal, QualType AllocType,
   1619                                    bool IsArray, MultiExprArg PlaceArgs,
   1620                                    FunctionDecl *&OperatorNew,
   1621                                    FunctionDecl *&OperatorDelete) {
   1622   // --- Choosing an allocation function ---
   1623   // C++ 5.3.4p8 - 14 & 18
   1624   // 1) If UseGlobal is true, only look in the global scope. Else, also look
   1625   //   in the scope of the allocated class.
   1626   // 2) If an array size is given, look for operator new[], else look for
   1627   //   operator new.
   1628   // 3) The first argument is always size_t. Append the arguments from the
   1629   //   placement form.
   1630 
   1631   SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size());
   1632   // We don't care about the actual value of this argument.
   1633   // FIXME: Should the Sema create the expression and embed it in the syntax
   1634   // tree? Or should the consumer just recalculate the value?
   1635   IntegerLiteral Size(Context, llvm::APInt::getNullValue(
   1636                       Context.getTargetInfo().getPointerWidth(0)),
   1637                       Context.getSizeType(),
   1638                       SourceLocation());
   1639   AllocArgs[0] = &Size;
   1640   std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1);
   1641 
   1642   // C++ [expr.new]p8:
   1643   //   If the allocated type is a non-array type, the allocation
   1644   //   function's name is operator new and the deallocation function's
   1645   //   name is operator delete. If the allocated type is an array
   1646   //   type, the allocation function's name is operator new[] and the
   1647   //   deallocation function's name is operator delete[].
   1648   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
   1649                                         IsArray ? OO_Array_New : OO_New);
   1650   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
   1651                                         IsArray ? OO_Array_Delete : OO_Delete);
   1652 
   1653   QualType AllocElemType = Context.getBaseElementType(AllocType);
   1654 
   1655   if (AllocElemType->isRecordType() && !UseGlobal) {
   1656     CXXRecordDecl *Record
   1657       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
   1658     if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record,
   1659                                /*AllowMissing=*/true, OperatorNew))
   1660       return true;
   1661   }
   1662 
   1663   if (!OperatorNew) {
   1664     // Didn't find a member overload. Look for a global one.
   1665     DeclareGlobalNewDelete();
   1666     DeclContext *TUDecl = Context.getTranslationUnitDecl();
   1667     bool FallbackEnabled = IsArray && Context.getLangOpts().MSVCCompat;
   1668     if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
   1669                                /*AllowMissing=*/FallbackEnabled, OperatorNew,
   1670                                /*Diagnose=*/!FallbackEnabled)) {
   1671       if (!FallbackEnabled)
   1672         return true;
   1673 
   1674       // MSVC will fall back on trying to find a matching global operator new
   1675       // if operator new[] cannot be found.  Also, MSVC will leak by not
   1676       // generating a call to operator delete or operator delete[], but we
   1677       // will not replicate that bug.
   1678       NewName = Context.DeclarationNames.getCXXOperatorName(OO_New);
   1679       DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
   1680       if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
   1681                                /*AllowMissing=*/false, OperatorNew))
   1682       return true;
   1683     }
   1684   }
   1685 
   1686   // We don't need an operator delete if we're running under
   1687   // -fno-exceptions.
   1688   if (!getLangOpts().Exceptions) {
   1689     OperatorDelete = nullptr;
   1690     return false;
   1691   }
   1692 
   1693   // C++ [expr.new]p19:
   1694   //
   1695   //   If the new-expression begins with a unary :: operator, the
   1696   //   deallocation function's name is looked up in the global
   1697   //   scope. Otherwise, if the allocated type is a class type T or an
   1698   //   array thereof, the deallocation function's name is looked up in
   1699   //   the scope of T. If this lookup fails to find the name, or if
   1700   //   the allocated type is not a class type or array thereof, the
   1701   //   deallocation function's name is looked up in the global scope.
   1702   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
   1703   if (AllocElemType->isRecordType() && !UseGlobal) {
   1704     CXXRecordDecl *RD
   1705       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
   1706     LookupQualifiedName(FoundDelete, RD);
   1707   }
   1708   if (FoundDelete.isAmbiguous())
   1709     return true; // FIXME: clean up expressions?
   1710 
   1711   if (FoundDelete.empty()) {
   1712     DeclareGlobalNewDelete();
   1713     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
   1714   }
   1715 
   1716   FoundDelete.suppressDiagnostics();
   1717 
   1718   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
   1719 
   1720   // Whether we're looking for a placement operator delete is dictated
   1721   // by whether we selected a placement operator new, not by whether
   1722   // we had explicit placement arguments.  This matters for things like
   1723   //   struct A { void *operator new(size_t, int = 0); ... };
   1724   //   A *a = new A()
   1725   bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1);
   1726 
   1727   if (isPlacementNew) {
   1728     // C++ [expr.new]p20:
   1729     //   A declaration of a placement deallocation function matches the
   1730     //   declaration of a placement allocation function if it has the
   1731     //   same number of parameters and, after parameter transformations
   1732     //   (8.3.5), all parameter types except the first are
   1733     //   identical. [...]
   1734     //
   1735     // To perform this comparison, we compute the function type that
   1736     // the deallocation function should have, and use that type both
   1737     // for template argument deduction and for comparison purposes.
   1738     //
   1739     // FIXME: this comparison should ignore CC and the like.
   1740     QualType ExpectedFunctionType;
   1741     {
   1742       const FunctionProtoType *Proto
   1743         = OperatorNew->getType()->getAs<FunctionProtoType>();
   1744 
   1745       SmallVector<QualType, 4> ArgTypes;
   1746       ArgTypes.push_back(Context.VoidPtrTy);
   1747       for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
   1748         ArgTypes.push_back(Proto->getParamType(I));
   1749 
   1750       FunctionProtoType::ExtProtoInfo EPI;
   1751       EPI.Variadic = Proto->isVariadic();
   1752 
   1753       ExpectedFunctionType
   1754         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
   1755     }
   1756 
   1757     for (LookupResult::iterator D = FoundDelete.begin(),
   1758                              DEnd = FoundDelete.end();
   1759          D != DEnd; ++D) {
   1760       FunctionDecl *Fn = nullptr;
   1761       if (FunctionTemplateDecl *FnTmpl
   1762             = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
   1763         // Perform template argument deduction to try to match the
   1764         // expected function type.
   1765         TemplateDeductionInfo Info(StartLoc);
   1766         if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
   1767                                     Info))
   1768           continue;
   1769       } else
   1770         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
   1771 
   1772       if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
   1773         Matches.push_back(std::make_pair(D.getPair(), Fn));
   1774     }
   1775   } else {
   1776     // C++ [expr.new]p20:
   1777     //   [...] Any non-placement deallocation function matches a
   1778     //   non-placement allocation function. [...]
   1779     for (LookupResult::iterator D = FoundDelete.begin(),
   1780                              DEnd = FoundDelete.end();
   1781          D != DEnd; ++D) {
   1782       if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
   1783         if (isNonPlacementDeallocationFunction(*this, Fn))
   1784           Matches.push_back(std::make_pair(D.getPair(), Fn));
   1785     }
   1786 
   1787     // C++1y [expr.new]p22:
   1788     //   For a non-placement allocation function, the normal deallocation
   1789     //   function lookup is used
   1790     // C++1y [expr.delete]p?:
   1791     //   If [...] deallocation function lookup finds both a usual deallocation
   1792     //   function with only a pointer parameter and a usual deallocation
   1793     //   function with both a pointer parameter and a size parameter, then the
   1794     //   selected deallocation function shall be the one with two parameters.
   1795     //   Otherwise, the selected deallocation function shall be the function
   1796     //   with one parameter.
   1797     if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
   1798       if (Matches[0].second->getNumParams() == 1)
   1799         Matches.erase(Matches.begin());
   1800       else
   1801         Matches.erase(Matches.begin() + 1);
   1802       assert(Matches[0].second->getNumParams() == 2 &&
   1803              "found an unexpected usual deallocation function");
   1804     }
   1805   }
   1806 
   1807   // C++ [expr.new]p20:
   1808   //   [...] If the lookup finds a single matching deallocation
   1809   //   function, that function will be called; otherwise, no
   1810   //   deallocation function will be called.
   1811   if (Matches.size() == 1) {
   1812     OperatorDelete = Matches[0].second;
   1813 
   1814     // C++0x [expr.new]p20:
   1815     //   If the lookup finds the two-parameter form of a usual
   1816     //   deallocation function (3.7.4.2) and that function, considered
   1817     //   as a placement deallocation function, would have been
   1818     //   selected as a match for the allocation function, the program
   1819     //   is ill-formed.
   1820     if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 &&
   1821         isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
   1822       Diag(StartLoc, diag::err_placement_new_non_placement_delete)
   1823         << SourceRange(PlaceArgs.front()->getLocStart(),
   1824                        PlaceArgs.back()->getLocEnd());
   1825       if (!OperatorDelete->isImplicit())
   1826         Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
   1827           << DeleteName;
   1828     } else {
   1829       CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
   1830                             Matches[0].first);
   1831     }
   1832   }
   1833 
   1834   return false;
   1835 }
   1836 
   1837 /// \brief Find an fitting overload for the allocation function
   1838 /// in the specified scope.
   1839 ///
   1840 /// \param StartLoc The location of the 'new' token.
   1841 /// \param Range The range of the placement arguments.
   1842 /// \param Name The name of the function ('operator new' or 'operator new[]').
   1843 /// \param Args The placement arguments specified.
   1844 /// \param Ctx The scope in which we should search; either a class scope or the
   1845 ///        translation unit.
   1846 /// \param AllowMissing If \c true, report an error if we can't find any
   1847 ///        allocation functions. Otherwise, succeed but don't fill in \p
   1848 ///        Operator.
   1849 /// \param Operator Filled in with the found allocation function. Unchanged if
   1850 ///        no allocation function was found.
   1851 /// \param Diagnose If \c true, issue errors if the allocation function is not
   1852 ///        usable.
   1853 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
   1854                                   DeclarationName Name, MultiExprArg Args,
   1855                                   DeclContext *Ctx,
   1856                                   bool AllowMissing, FunctionDecl *&Operator,
   1857                                   bool Diagnose) {
   1858   LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
   1859   LookupQualifiedName(R, Ctx);
   1860   if (R.empty()) {
   1861     if (AllowMissing || !Diagnose)
   1862       return false;
   1863     return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
   1864       << Name << Range;
   1865   }
   1866 
   1867   if (R.isAmbiguous())
   1868     return true;
   1869 
   1870   R.suppressDiagnostics();
   1871 
   1872   OverloadCandidateSet Candidates(StartLoc, OverloadCandidateSet::CSK_Normal);
   1873   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
   1874        Alloc != AllocEnd; ++Alloc) {
   1875     // Even member operator new/delete are implicitly treated as
   1876     // static, so don't use AddMemberCandidate.
   1877     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
   1878 
   1879     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
   1880       AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
   1881                                    /*ExplicitTemplateArgs=*/nullptr,
   1882                                    Args, Candidates,
   1883                                    /*SuppressUserConversions=*/false);
   1884       continue;
   1885     }
   1886 
   1887     FunctionDecl *Fn = cast<FunctionDecl>(D);
   1888     AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
   1889                          /*SuppressUserConversions=*/false);
   1890   }
   1891 
   1892   // Do the resolution.
   1893   OverloadCandidateSet::iterator Best;
   1894   switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
   1895   case OR_Success: {
   1896     // Got one!
   1897     FunctionDecl *FnDecl = Best->Function;
   1898     if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
   1899                               Best->FoundDecl, Diagnose) == AR_inaccessible)
   1900       return true;
   1901 
   1902     Operator = FnDecl;
   1903     return false;
   1904   }
   1905 
   1906   case OR_No_Viable_Function:
   1907     if (Diagnose) {
   1908       Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
   1909         << Name << Range;
   1910       Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
   1911     }
   1912     return true;
   1913 
   1914   case OR_Ambiguous:
   1915     if (Diagnose) {
   1916       Diag(StartLoc, diag::err_ovl_ambiguous_call)
   1917         << Name << Range;
   1918       Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args);
   1919     }
   1920     return true;
   1921 
   1922   case OR_Deleted: {
   1923     if (Diagnose) {
   1924       Diag(StartLoc, diag::err_ovl_deleted_call)
   1925         << Best->Function->isDeleted()
   1926         << Name
   1927         << getDeletedOrUnavailableSuffix(Best->Function)
   1928         << Range;
   1929       Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
   1930     }
   1931     return true;
   1932   }
   1933   }
   1934   llvm_unreachable("Unreachable, bad result from BestViableFunction");
   1935 }
   1936 
   1937 
   1938 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
   1939 /// delete. These are:
   1940 /// @code
   1941 ///   // C++03:
   1942 ///   void* operator new(std::size_t) throw(std::bad_alloc);
   1943 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
   1944 ///   void operator delete(void *) throw();
   1945 ///   void operator delete[](void *) throw();
   1946 ///   // C++11:
   1947 ///   void* operator new(std::size_t);
   1948 ///   void* operator new[](std::size_t);
   1949 ///   void operator delete(void *) noexcept;
   1950 ///   void operator delete[](void *) noexcept;
   1951 ///   // C++1y:
   1952 ///   void* operator new(std::size_t);
   1953 ///   void* operator new[](std::size_t);
   1954 ///   void operator delete(void *) noexcept;
   1955 ///   void operator delete[](void *) noexcept;
   1956 ///   void operator delete(void *, std::size_t) noexcept;
   1957 ///   void operator delete[](void *, std::size_t) noexcept;
   1958 /// @endcode
   1959 /// Note that the placement and nothrow forms of new are *not* implicitly
   1960 /// declared. Their use requires including \<new\>.
   1961 void Sema::DeclareGlobalNewDelete() {
   1962   if (GlobalNewDeleteDeclared)
   1963     return;
   1964 
   1965   // C++ [basic.std.dynamic]p2:
   1966   //   [...] The following allocation and deallocation functions (18.4) are
   1967   //   implicitly declared in global scope in each translation unit of a
   1968   //   program
   1969   //
   1970   //     C++03:
   1971   //     void* operator new(std::size_t) throw(std::bad_alloc);
   1972   //     void* operator new[](std::size_t) throw(std::bad_alloc);
   1973   //     void  operator delete(void*) throw();
   1974   //     void  operator delete[](void*) throw();
   1975   //     C++11:
   1976   //     void* operator new(std::size_t);
   1977   //     void* operator new[](std::size_t);
   1978   //     void  operator delete(void*) noexcept;
   1979   //     void  operator delete[](void*) noexcept;
   1980   //     C++1y:
   1981   //     void* operator new(std::size_t);
   1982   //     void* operator new[](std::size_t);
   1983   //     void  operator delete(void*) noexcept;
   1984   //     void  operator delete[](void*) noexcept;
   1985   //     void  operator delete(void*, std::size_t) noexcept;
   1986   //     void  operator delete[](void*, std::size_t) noexcept;
   1987   //
   1988   //   These implicit declarations introduce only the function names operator
   1989   //   new, operator new[], operator delete, operator delete[].
   1990   //
   1991   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
   1992   // "std" or "bad_alloc" as necessary to form the exception specification.
   1993   // However, we do not make these implicit declarations visible to name
   1994   // lookup.
   1995   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
   1996     // The "std::bad_alloc" class has not yet been declared, so build it
   1997     // implicitly.
   1998     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
   1999                                         getOrCreateStdNamespace(),
   2000                                         SourceLocation(), SourceLocation(),
   2001                                       &PP.getIdentifierTable().get("bad_alloc"),
   2002                                         nullptr);
   2003     getStdBadAlloc()->setImplicit(true);
   2004   }
   2005 
   2006   GlobalNewDeleteDeclared = true;
   2007 
   2008   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
   2009   QualType SizeT = Context.getSizeType();
   2010   bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
   2011 
   2012   DeclareGlobalAllocationFunction(
   2013       Context.DeclarationNames.getCXXOperatorName(OO_New),
   2014       VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
   2015   DeclareGlobalAllocationFunction(
   2016       Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
   2017       VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
   2018   DeclareGlobalAllocationFunction(
   2019       Context.DeclarationNames.getCXXOperatorName(OO_Delete),
   2020       Context.VoidTy, VoidPtr);
   2021   DeclareGlobalAllocationFunction(
   2022       Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
   2023       Context.VoidTy, VoidPtr);
   2024   if (getLangOpts().SizedDeallocation) {
   2025     DeclareGlobalAllocationFunction(
   2026         Context.DeclarationNames.getCXXOperatorName(OO_Delete),
   2027         Context.VoidTy, VoidPtr, Context.getSizeType());
   2028     DeclareGlobalAllocationFunction(
   2029         Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
   2030         Context.VoidTy, VoidPtr, Context.getSizeType());
   2031   }
   2032 }
   2033 
   2034 /// DeclareGlobalAllocationFunction - Declares a single implicit global
   2035 /// allocation function if it doesn't already exist.
   2036 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
   2037                                            QualType Return,
   2038                                            QualType Param1, QualType Param2,
   2039                                            bool AddMallocAttr) {
   2040   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
   2041   unsigned NumParams = Param2.isNull() ? 1 : 2;
   2042 
   2043   // Check if this function is already declared.
   2044   DeclContext::lookup_result R = GlobalCtx->lookup(Name);
   2045   for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
   2046        Alloc != AllocEnd; ++Alloc) {
   2047     // Only look at non-template functions, as it is the predefined,
   2048     // non-templated allocation function we are trying to declare here.
   2049     if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
   2050       if (Func->getNumParams() == NumParams) {
   2051         QualType InitialParam1Type =
   2052             Context.getCanonicalType(Func->getParamDecl(0)
   2053                                          ->getType().getUnqualifiedType());
   2054         QualType InitialParam2Type =
   2055             NumParams == 2
   2056                 ? Context.getCanonicalType(Func->getParamDecl(1)
   2057                                                ->getType().getUnqualifiedType())
   2058                 : QualType();
   2059         // FIXME: Do we need to check for default arguments here?
   2060         if (InitialParam1Type == Param1 &&
   2061             (NumParams == 1 || InitialParam2Type == Param2)) {
   2062           if (AddMallocAttr && !Func->hasAttr<MallocAttr>())
   2063             Func->addAttr(MallocAttr::CreateImplicit(Context));
   2064           // Make the function visible to name lookup, even if we found it in
   2065           // an unimported module. It either is an implicitly-declared global
   2066           // allocation function, or is suppressing that function.
   2067           Func->setHidden(false);
   2068           return;
   2069         }
   2070       }
   2071     }
   2072   }
   2073 
   2074   FunctionProtoType::ExtProtoInfo EPI;
   2075 
   2076   QualType BadAllocType;
   2077   bool HasBadAllocExceptionSpec
   2078     = (Name.getCXXOverloadedOperator() == OO_New ||
   2079        Name.getCXXOverloadedOperator() == OO_Array_New);
   2080   if (HasBadAllocExceptionSpec) {
   2081     if (!getLangOpts().CPlusPlus11) {
   2082       BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
   2083       assert(StdBadAlloc && "Must have std::bad_alloc declared");
   2084       EPI.ExceptionSpecType = EST_Dynamic;
   2085       EPI.NumExceptions = 1;
   2086       EPI.Exceptions = &BadAllocType;
   2087     }
   2088   } else {
   2089     EPI.ExceptionSpecType = getLangOpts().CPlusPlus11 ?
   2090                                 EST_BasicNoexcept : EST_DynamicNone;
   2091   }
   2092 
   2093   QualType Params[] = { Param1, Param2 };
   2094 
   2095   QualType FnType = Context.getFunctionType(
   2096       Return, ArrayRef<QualType>(Params, NumParams), EPI);
   2097   FunctionDecl *Alloc =
   2098     FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
   2099                          SourceLocation(), Name,
   2100                          FnType, /*TInfo=*/nullptr, SC_None, false, true);
   2101   Alloc->setImplicit();
   2102 
   2103   if (AddMallocAttr)
   2104     Alloc->addAttr(MallocAttr::CreateImplicit(Context));
   2105 
   2106   ParmVarDecl *ParamDecls[2];
   2107   for (unsigned I = 0; I != NumParams; ++I) {
   2108     ParamDecls[I] = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
   2109                                         SourceLocation(), nullptr,
   2110                                         Params[I], /*TInfo=*/nullptr,
   2111                                         SC_None, nullptr);
   2112     ParamDecls[I]->setImplicit();
   2113   }
   2114   Alloc->setParams(ArrayRef<ParmVarDecl*>(ParamDecls, NumParams));
   2115 
   2116   Context.getTranslationUnitDecl()->addDecl(Alloc);
   2117   IdResolver.tryAddTopLevelDecl(Alloc, Name);
   2118 }
   2119 
   2120 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
   2121                                                   bool CanProvideSize,
   2122                                                   DeclarationName Name) {
   2123   DeclareGlobalNewDelete();
   2124 
   2125   LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
   2126   LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
   2127 
   2128   // C++ [expr.new]p20:
   2129   //   [...] Any non-placement deallocation function matches a
   2130   //   non-placement allocation function. [...]
   2131   llvm::SmallVector<FunctionDecl*, 2> Matches;
   2132   for (LookupResult::iterator D = FoundDelete.begin(),
   2133                            DEnd = FoundDelete.end();
   2134        D != DEnd; ++D) {
   2135     if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*D))
   2136       if (isNonPlacementDeallocationFunction(*this, Fn))
   2137         Matches.push_back(Fn);
   2138   }
   2139 
   2140   // C++1y [expr.delete]p?:
   2141   //   If the type is complete and deallocation function lookup finds both a
   2142   //   usual deallocation function with only a pointer parameter and a usual
   2143   //   deallocation function with both a pointer parameter and a size
   2144   //   parameter, then the selected deallocation function shall be the one
   2145   //   with two parameters.  Otherwise, the selected deallocation function
   2146   //   shall be the function with one parameter.
   2147   if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
   2148     unsigned NumArgs = CanProvideSize ? 2 : 1;
   2149     if (Matches[0]->getNumParams() != NumArgs)
   2150       Matches.erase(Matches.begin());
   2151     else
   2152       Matches.erase(Matches.begin() + 1);
   2153     assert(Matches[0]->getNumParams() == NumArgs &&
   2154            "found an unexpected usual deallocation function");
   2155   }
   2156 
   2157   assert(Matches.size() == 1 &&
   2158          "unexpectedly have multiple usual deallocation functions");
   2159   return Matches.front();
   2160 }
   2161 
   2162 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
   2163                                     DeclarationName Name,
   2164                                     FunctionDecl* &Operator, bool Diagnose) {
   2165   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
   2166   // Try to find operator delete/operator delete[] in class scope.
   2167   LookupQualifiedName(Found, RD);
   2168 
   2169   if (Found.isAmbiguous())
   2170     return true;
   2171 
   2172   Found.suppressDiagnostics();
   2173 
   2174   SmallVector<DeclAccessPair,4> Matches;
   2175   for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
   2176        F != FEnd; ++F) {
   2177     NamedDecl *ND = (*F)->getUnderlyingDecl();
   2178 
   2179     // Ignore template operator delete members from the check for a usual
   2180     // deallocation function.
   2181     if (isa<FunctionTemplateDecl>(ND))
   2182       continue;
   2183 
   2184     if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
   2185       Matches.push_back(F.getPair());
   2186   }
   2187 
   2188   // There's exactly one suitable operator;  pick it.
   2189   if (Matches.size() == 1) {
   2190     Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
   2191 
   2192     if (Operator->isDeleted()) {
   2193       if (Diagnose) {
   2194         Diag(StartLoc, diag::err_deleted_function_use);
   2195         NoteDeletedFunction(Operator);
   2196       }
   2197       return true;
   2198     }
   2199 
   2200     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
   2201                               Matches[0], Diagnose) == AR_inaccessible)
   2202       return true;
   2203 
   2204     return false;
   2205 
   2206   // We found multiple suitable operators;  complain about the ambiguity.
   2207   } else if (!Matches.empty()) {
   2208     if (Diagnose) {
   2209       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
   2210         << Name << RD;
   2211 
   2212       for (SmallVectorImpl<DeclAccessPair>::iterator
   2213              F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
   2214         Diag((*F)->getUnderlyingDecl()->getLocation(),
   2215              diag::note_member_declared_here) << Name;
   2216     }
   2217     return true;
   2218   }
   2219 
   2220   // We did find operator delete/operator delete[] declarations, but
   2221   // none of them were suitable.
   2222   if (!Found.empty()) {
   2223     if (Diagnose) {
   2224       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
   2225         << Name << RD;
   2226 
   2227       for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
   2228            F != FEnd; ++F)
   2229         Diag((*F)->getUnderlyingDecl()->getLocation(),
   2230              diag::note_member_declared_here) << Name;
   2231     }
   2232     return true;
   2233   }
   2234 
   2235   Operator = nullptr;
   2236   return false;
   2237 }
   2238 
   2239 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
   2240 /// @code ::delete ptr; @endcode
   2241 /// or
   2242 /// @code delete [] ptr; @endcode
   2243 ExprResult
   2244 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
   2245                      bool ArrayForm, Expr *ExE) {
   2246   // C++ [expr.delete]p1:
   2247   //   The operand shall have a pointer type, or a class type having a single
   2248   //   non-explicit conversion function to a pointer type. The result has type
   2249   //   void.
   2250   //
   2251   // DR599 amends "pointer type" to "pointer to object type" in both cases.
   2252 
   2253   ExprResult Ex = ExE;
   2254   FunctionDecl *OperatorDelete = nullptr;
   2255   bool ArrayFormAsWritten = ArrayForm;
   2256   bool UsualArrayDeleteWantsSize = false;
   2257 
   2258   if (!Ex.get()->isTypeDependent()) {
   2259     // Perform lvalue-to-rvalue cast, if needed.
   2260     Ex = DefaultLvalueConversion(Ex.get());
   2261     if (Ex.isInvalid())
   2262       return ExprError();
   2263 
   2264     QualType Type = Ex.get()->getType();
   2265 
   2266     class DeleteConverter : public ContextualImplicitConverter {
   2267     public:
   2268       DeleteConverter() : ContextualImplicitConverter(false, true) {}
   2269 
   2270       bool match(QualType ConvType) override {
   2271         // FIXME: If we have an operator T* and an operator void*, we must pick
   2272         // the operator T*.
   2273         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
   2274           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
   2275             return true;
   2276         return false;
   2277       }
   2278 
   2279       SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
   2280                                             QualType T) override {
   2281         return S.Diag(Loc, diag::err_delete_operand) << T;
   2282       }
   2283 
   2284       SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
   2285                                                QualType T) override {
   2286         return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
   2287       }
   2288 
   2289       SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
   2290                                                  QualType T,
   2291                                                  QualType ConvTy) override {
   2292         return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
   2293       }
   2294 
   2295       SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
   2296                                              QualType ConvTy) override {
   2297         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
   2298           << ConvTy;
   2299       }
   2300 
   2301       SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
   2302                                               QualType T) override {
   2303         return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
   2304       }
   2305 
   2306       SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
   2307                                           QualType ConvTy) override {
   2308         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
   2309           << ConvTy;
   2310       }
   2311 
   2312       SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
   2313                                                QualType T,
   2314                                                QualType ConvTy) override {
   2315         llvm_unreachable("conversion functions are permitted");
   2316       }
   2317     } Converter;
   2318 
   2319     Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
   2320     if (Ex.isInvalid())
   2321       return ExprError();
   2322     Type = Ex.get()->getType();
   2323     if (!Converter.match(Type))
   2324       // FIXME: PerformContextualImplicitConversion should return ExprError
   2325       //        itself in this case.
   2326       return ExprError();
   2327 
   2328     QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
   2329     QualType PointeeElem = Context.getBaseElementType(Pointee);
   2330 
   2331     if (unsigned AddressSpace = Pointee.getAddressSpace())
   2332       return Diag(Ex.get()->getLocStart(),
   2333                   diag::err_address_space_qualified_delete)
   2334                << Pointee.getUnqualifiedType() << AddressSpace;
   2335 
   2336     CXXRecordDecl *PointeeRD = nullptr;
   2337     if (Pointee->isVoidType() && !isSFINAEContext()) {
   2338       // The C++ standard bans deleting a pointer to a non-object type, which
   2339       // effectively bans deletion of "void*". However, most compilers support
   2340       // this, so we treat it as a warning unless we're in a SFINAE context.
   2341       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
   2342         << Type << Ex.get()->getSourceRange();
   2343     } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
   2344       return ExprError(Diag(StartLoc, diag::err_delete_operand)
   2345         << Type << Ex.get()->getSourceRange());
   2346     } else if (!Pointee->isDependentType()) {
   2347       if (!RequireCompleteType(StartLoc, Pointee,
   2348                                diag::warn_delete_incomplete, Ex.get())) {
   2349         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
   2350           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
   2351       }
   2352     }
   2353 
   2354     // C++ [expr.delete]p2:
   2355     //   [Note: a pointer to a const type can be the operand of a
   2356     //   delete-expression; it is not necessary to cast away the constness
   2357     //   (5.2.11) of the pointer expression before it is used as the operand
   2358     //   of the delete-expression. ]
   2359 
   2360     if (Pointee->isArrayType() && !ArrayForm) {
   2361       Diag(StartLoc, diag::warn_delete_array_type)
   2362           << Type << Ex.get()->getSourceRange()
   2363           << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
   2364       ArrayForm = true;
   2365     }
   2366 
   2367     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
   2368                                       ArrayForm ? OO_Array_Delete : OO_Delete);
   2369 
   2370     if (PointeeRD) {
   2371       if (!UseGlobal &&
   2372           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
   2373                                    OperatorDelete))
   2374         return ExprError();
   2375 
   2376       // If we're allocating an array of records, check whether the
   2377       // usual operator delete[] has a size_t parameter.
   2378       if (ArrayForm) {
   2379         // If the user specifically asked to use the global allocator,
   2380         // we'll need to do the lookup into the class.
   2381         if (UseGlobal)
   2382           UsualArrayDeleteWantsSize =
   2383             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
   2384 
   2385         // Otherwise, the usual operator delete[] should be the
   2386         // function we just found.
   2387         else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
   2388           UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
   2389       }
   2390 
   2391       if (!PointeeRD->hasIrrelevantDestructor())
   2392         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
   2393           MarkFunctionReferenced(StartLoc,
   2394                                     const_cast<CXXDestructorDecl*>(Dtor));
   2395           if (DiagnoseUseOfDecl(Dtor, StartLoc))
   2396             return ExprError();
   2397         }
   2398 
   2399       // C++ [expr.delete]p3:
   2400       //   In the first alternative (delete object), if the static type of the
   2401       //   object to be deleted is different from its dynamic type, the static
   2402       //   type shall be a base class of the dynamic type of the object to be
   2403       //   deleted and the static type shall have a virtual destructor or the
   2404       //   behavior is undefined.
   2405       //
   2406       // Note: a final class cannot be derived from, no issue there
   2407       if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
   2408         CXXDestructorDecl *dtor = PointeeRD->getDestructor();
   2409         if (dtor && !dtor->isVirtual()) {
   2410           if (PointeeRD->isAbstract()) {
   2411             // If the class is abstract, we warn by default, because we're
   2412             // sure the code has undefined behavior.
   2413             Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
   2414                 << PointeeElem;
   2415           } else if (!ArrayForm) {
   2416             // Otherwise, if this is not an array delete, it's a bit suspect,
   2417             // but not necessarily wrong.
   2418             Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
   2419           }
   2420         }
   2421       }
   2422 
   2423     }
   2424 
   2425     if (!OperatorDelete)
   2426       // Look for a global declaration.
   2427       OperatorDelete = FindUsualDeallocationFunction(
   2428           StartLoc, !RequireCompleteType(StartLoc, Pointee, 0) &&
   2429                     (!ArrayForm || UsualArrayDeleteWantsSize ||
   2430                      Pointee.isDestructedType()),
   2431           DeleteName);
   2432 
   2433     MarkFunctionReferenced(StartLoc, OperatorDelete);
   2434 
   2435     // Check access and ambiguity of operator delete and destructor.
   2436     if (PointeeRD) {
   2437       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
   2438           CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
   2439                       PDiag(diag::err_access_dtor) << PointeeElem);
   2440       }
   2441     }
   2442   }
   2443 
   2444   return new (Context) CXXDeleteExpr(
   2445       Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
   2446       UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
   2447 }
   2448 
   2449 /// \brief Check the use of the given variable as a C++ condition in an if,
   2450 /// while, do-while, or switch statement.
   2451 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
   2452                                         SourceLocation StmtLoc,
   2453                                         bool ConvertToBoolean) {
   2454   if (ConditionVar->isInvalidDecl())
   2455     return ExprError();
   2456 
   2457   QualType T = ConditionVar->getType();
   2458 
   2459   // C++ [stmt.select]p2:
   2460   //   The declarator shall not specify a function or an array.
   2461   if (T->isFunctionType())
   2462     return ExprError(Diag(ConditionVar->getLocation(),
   2463                           diag::err_invalid_use_of_function_type)
   2464                        << ConditionVar->getSourceRange());
   2465   else if (T->isArrayType())
   2466     return ExprError(Diag(ConditionVar->getLocation(),
   2467                           diag::err_invalid_use_of_array_type)
   2468                      << ConditionVar->getSourceRange());
   2469 
   2470   ExprResult Condition = DeclRefExpr::Create(
   2471       Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar,
   2472       /*enclosing*/ false, ConditionVar->getLocation(),
   2473       ConditionVar->getType().getNonReferenceType(), VK_LValue);
   2474 
   2475   MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
   2476 
   2477   if (ConvertToBoolean) {
   2478     Condition = CheckBooleanCondition(Condition.get(), StmtLoc);
   2479     if (Condition.isInvalid())
   2480       return ExprError();
   2481   }
   2482 
   2483   return Condition;
   2484 }
   2485 
   2486 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
   2487 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
   2488   // C++ 6.4p4:
   2489   // The value of a condition that is an initialized declaration in a statement
   2490   // other than a switch statement is the value of the declared variable
   2491   // implicitly converted to type bool. If that conversion is ill-formed, the
   2492   // program is ill-formed.
   2493   // The value of a condition that is an expression is the value of the
   2494   // expression, implicitly converted to bool.
   2495   //
   2496   return PerformContextuallyConvertToBool(CondExpr);
   2497 }
   2498 
   2499 /// Helper function to determine whether this is the (deprecated) C++
   2500 /// conversion from a string literal to a pointer to non-const char or
   2501 /// non-const wchar_t (for narrow and wide string literals,
   2502 /// respectively).
   2503 bool
   2504 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
   2505   // Look inside the implicit cast, if it exists.
   2506   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
   2507     From = Cast->getSubExpr();
   2508 
   2509   // A string literal (2.13.4) that is not a wide string literal can
   2510   // be converted to an rvalue of type "pointer to char"; a wide
   2511   // string literal can be converted to an rvalue of type "pointer
   2512   // to wchar_t" (C++ 4.2p2).
   2513   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
   2514     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
   2515       if (const BuiltinType *ToPointeeType
   2516           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
   2517         // This conversion is considered only when there is an
   2518         // explicit appropriate pointer target type (C++ 4.2p2).
   2519         if (!ToPtrType->getPointeeType().hasQualifiers()) {
   2520           switch (StrLit->getKind()) {
   2521             case StringLiteral::UTF8:
   2522             case StringLiteral::UTF16:
   2523             case StringLiteral::UTF32:
   2524               // We don't allow UTF literals to be implicitly converted
   2525               break;
   2526             case StringLiteral::Ascii:
   2527               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
   2528                       ToPointeeType->getKind() == BuiltinType::Char_S);
   2529             case StringLiteral::Wide:
   2530               return ToPointeeType->isWideCharType();
   2531           }
   2532         }
   2533       }
   2534 
   2535   return false;
   2536 }
   2537 
   2538 static ExprResult BuildCXXCastArgument(Sema &S,
   2539                                        SourceLocation CastLoc,
   2540                                        QualType Ty,
   2541                                        CastKind Kind,
   2542                                        CXXMethodDecl *Method,
   2543                                        DeclAccessPair FoundDecl,
   2544                                        bool HadMultipleCandidates,
   2545                                        Expr *From) {
   2546   switch (Kind) {
   2547   default: llvm_unreachable("Unhandled cast kind!");
   2548   case CK_ConstructorConversion: {
   2549     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
   2550     SmallVector<Expr*, 8> ConstructorArgs;
   2551 
   2552     if (S.RequireNonAbstractType(CastLoc, Ty,
   2553                                  diag::err_allocation_of_abstract_type))
   2554       return ExprError();
   2555 
   2556     if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
   2557       return ExprError();
   2558 
   2559     S.CheckConstructorAccess(CastLoc, Constructor,
   2560                              InitializedEntity::InitializeTemporary(Ty),
   2561                              Constructor->getAccess());
   2562 
   2563     ExprResult Result
   2564       = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
   2565                                 ConstructorArgs, HadMultipleCandidates,
   2566                                 /*ListInit*/ false, /*ZeroInit*/ false,
   2567                                 CXXConstructExpr::CK_Complete, SourceRange());
   2568     if (Result.isInvalid())
   2569       return ExprError();
   2570 
   2571     return S.MaybeBindToTemporary(Result.getAs<Expr>());
   2572   }
   2573 
   2574   case CK_UserDefinedConversion: {
   2575     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
   2576 
   2577     // Create an implicit call expr that calls it.
   2578     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
   2579     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
   2580                                                  HadMultipleCandidates);
   2581     if (Result.isInvalid())
   2582       return ExprError();
   2583     // Record usage of conversion in an implicit cast.
   2584     Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
   2585                                       CK_UserDefinedConversion, Result.get(),
   2586                                       nullptr, Result.get()->getValueKind());
   2587 
   2588     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
   2589 
   2590     return S.MaybeBindToTemporary(Result.get());
   2591   }
   2592   }
   2593 }
   2594 
   2595 /// PerformImplicitConversion - Perform an implicit conversion of the
   2596 /// expression From to the type ToType using the pre-computed implicit
   2597 /// conversion sequence ICS. Returns the converted
   2598 /// expression. Action is the kind of conversion we're performing,
   2599 /// used in the error message.
   2600 ExprResult
   2601 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   2602                                 const ImplicitConversionSequence &ICS,
   2603                                 AssignmentAction Action,
   2604                                 CheckedConversionKind CCK) {
   2605   switch (ICS.getKind()) {
   2606   case ImplicitConversionSequence::StandardConversion: {
   2607     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
   2608                                                Action, CCK);
   2609     if (Res.isInvalid())
   2610       return ExprError();
   2611     From = Res.get();
   2612     break;
   2613   }
   2614 
   2615   case ImplicitConversionSequence::UserDefinedConversion: {
   2616 
   2617       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
   2618       CastKind CastKind;
   2619       QualType BeforeToType;
   2620       assert(FD && "FIXME: aggregate initialization from init list");
   2621       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
   2622         CastKind = CK_UserDefinedConversion;
   2623 
   2624         // If the user-defined conversion is specified by a conversion function,
   2625         // the initial standard conversion sequence converts the source type to
   2626         // the implicit object parameter of the conversion function.
   2627         BeforeToType = Context.getTagDeclType(Conv->getParent());
   2628       } else {
   2629         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
   2630         CastKind = CK_ConstructorConversion;
   2631         // Do no conversion if dealing with ... for the first conversion.
   2632         if (!ICS.UserDefined.EllipsisConversion) {
   2633           // If the user-defined conversion is specified by a constructor, the
   2634           // initial standard conversion sequence converts the source type to the
   2635           // type required by the argument of the constructor
   2636           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
   2637         }
   2638       }
   2639       // Watch out for ellipsis conversion.
   2640       if (!ICS.UserDefined.EllipsisConversion) {
   2641         ExprResult Res =
   2642           PerformImplicitConversion(From, BeforeToType,
   2643                                     ICS.UserDefined.Before, AA_Converting,
   2644                                     CCK);
   2645         if (Res.isInvalid())
   2646           return ExprError();
   2647         From = Res.get();
   2648       }
   2649 
   2650       ExprResult CastArg
   2651         = BuildCXXCastArgument(*this,
   2652                                From->getLocStart(),
   2653                                ToType.getNonReferenceType(),
   2654                                CastKind, cast<CXXMethodDecl>(FD),
   2655                                ICS.UserDefined.FoundConversionFunction,
   2656                                ICS.UserDefined.HadMultipleCandidates,
   2657                                From);
   2658 
   2659       if (CastArg.isInvalid())
   2660         return ExprError();
   2661 
   2662       From = CastArg.get();
   2663 
   2664       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
   2665                                        AA_Converting, CCK);
   2666   }
   2667 
   2668   case ImplicitConversionSequence::AmbiguousConversion:
   2669     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
   2670                           PDiag(diag::err_typecheck_ambiguous_condition)
   2671                             << From->getSourceRange());
   2672      return ExprError();
   2673 
   2674   case ImplicitConversionSequence::EllipsisConversion:
   2675     llvm_unreachable("Cannot perform an ellipsis conversion");
   2676 
   2677   case ImplicitConversionSequence::BadConversion:
   2678     return ExprError();
   2679   }
   2680 
   2681   // Everything went well.
   2682   return From;
   2683 }
   2684 
   2685 /// PerformImplicitConversion - Perform an implicit conversion of the
   2686 /// expression From to the type ToType by following the standard
   2687 /// conversion sequence SCS. Returns the converted
   2688 /// expression. Flavor is the context in which we're performing this
   2689 /// conversion, for use in error messages.
   2690 ExprResult
   2691 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   2692                                 const StandardConversionSequence& SCS,
   2693                                 AssignmentAction Action,
   2694                                 CheckedConversionKind CCK) {
   2695   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
   2696 
   2697   // Overall FIXME: we are recomputing too many types here and doing far too
   2698   // much extra work. What this means is that we need to keep track of more
   2699   // information that is computed when we try the implicit conversion initially,
   2700   // so that we don't need to recompute anything here.
   2701   QualType FromType = From->getType();
   2702 
   2703   if (SCS.CopyConstructor) {
   2704     // FIXME: When can ToType be a reference type?
   2705     assert(!ToType->isReferenceType());
   2706     if (SCS.Second == ICK_Derived_To_Base) {
   2707       SmallVector<Expr*, 8> ConstructorArgs;
   2708       if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
   2709                                   From, /*FIXME:ConstructLoc*/SourceLocation(),
   2710                                   ConstructorArgs))
   2711         return ExprError();
   2712       return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
   2713                                    ToType, SCS.CopyConstructor,
   2714                                    ConstructorArgs,
   2715                                    /*HadMultipleCandidates*/ false,
   2716                                    /*ListInit*/ false, /*ZeroInit*/ false,
   2717                                    CXXConstructExpr::CK_Complete,
   2718                                    SourceRange());
   2719     }
   2720     return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
   2721                                  ToType, SCS.CopyConstructor,
   2722                                  From, /*HadMultipleCandidates*/ false,
   2723                                  /*ListInit*/ false, /*ZeroInit*/ false,
   2724                                  CXXConstructExpr::CK_Complete,
   2725                                  SourceRange());
   2726   }
   2727 
   2728   // Resolve overloaded function references.
   2729   if (Context.hasSameType(FromType, Context.OverloadTy)) {
   2730     DeclAccessPair Found;
   2731     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
   2732                                                           true, Found);
   2733     if (!Fn)
   2734       return ExprError();
   2735 
   2736     if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
   2737       return ExprError();
   2738 
   2739     From = FixOverloadedFunctionReference(From, Found, Fn);
   2740     FromType = From->getType();
   2741   }
   2742 
   2743   // If we're converting to an atomic type, first convert to the corresponding
   2744   // non-atomic type.
   2745   QualType ToAtomicType;
   2746   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
   2747     ToAtomicType = ToType;
   2748     ToType = ToAtomic->getValueType();
   2749   }
   2750 
   2751   // Perform the first implicit conversion.
   2752   switch (SCS.First) {
   2753   case ICK_Identity:
   2754     // Nothing to do.
   2755     break;
   2756 
   2757   case ICK_Lvalue_To_Rvalue: {
   2758     assert(From->getObjectKind() != OK_ObjCProperty);
   2759     FromType = FromType.getUnqualifiedType();
   2760     ExprResult FromRes = DefaultLvalueConversion(From);
   2761     assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
   2762     From = FromRes.get();
   2763     break;
   2764   }
   2765 
   2766   case ICK_Array_To_Pointer:
   2767     FromType = Context.getArrayDecayedType(FromType);
   2768     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
   2769                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
   2770     break;
   2771 
   2772   case ICK_Function_To_Pointer:
   2773     FromType = Context.getPointerType(FromType);
   2774     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
   2775                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
   2776     break;
   2777 
   2778   default:
   2779     llvm_unreachable("Improper first standard conversion");
   2780   }
   2781 
   2782   // Perform the second implicit conversion
   2783   switch (SCS.Second) {
   2784   case ICK_Identity:
   2785     // If both sides are functions (or pointers/references to them), there could
   2786     // be incompatible exception declarations.
   2787     if (CheckExceptionSpecCompatibility(From, ToType))
   2788       return ExprError();
   2789     // Nothing else to do.
   2790     break;
   2791 
   2792   case ICK_NoReturn_Adjustment:
   2793     // If both sides are functions (or pointers/references to them), there could
   2794     // be incompatible exception declarations.
   2795     if (CheckExceptionSpecCompatibility(From, ToType))
   2796       return ExprError();
   2797 
   2798     From = ImpCastExprToType(From, ToType, CK_NoOp,
   2799                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
   2800     break;
   2801 
   2802   case ICK_Integral_Promotion:
   2803   case ICK_Integral_Conversion:
   2804     if (ToType->isBooleanType()) {
   2805       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
   2806              SCS.Second == ICK_Integral_Promotion &&
   2807              "only enums with fixed underlying type can promote to bool");
   2808       From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
   2809                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
   2810     } else {
   2811       From = ImpCastExprToType(From, ToType, CK_IntegralCast,
   2812                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
   2813     }
   2814     break;
   2815 
   2816   case ICK_Floating_Promotion:
   2817   case ICK_Floating_Conversion:
   2818     From = ImpCastExprToType(From, ToType, CK_FloatingCast,
   2819                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
   2820     break;
   2821 
   2822   case ICK_Complex_Promotion:
   2823   case ICK_Complex_Conversion: {
   2824     QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
   2825     QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
   2826     CastKind CK;
   2827     if (FromEl->isRealFloatingType()) {
   2828       if (ToEl->isRealFloatingType())
   2829         CK = CK_FloatingComplexCast;
   2830       else
   2831         CK = CK_FloatingComplexToIntegralComplex;
   2832     } else if (ToEl->isRealFloatingType()) {
   2833       CK = CK_IntegralComplexToFloatingComplex;
   2834     } else {
   2835       CK = CK_IntegralComplexCast;
   2836     }
   2837     From = ImpCastExprToType(From, ToType, CK,
   2838                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
   2839     break;
   2840   }
   2841 
   2842   case ICK_Floating_Integral:
   2843     if (ToType->isRealFloatingType())
   2844       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
   2845                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
   2846     else
   2847       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
   2848                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
   2849     break;
   2850 
   2851   case ICK_Compatible_Conversion:
   2852       From = ImpCastExprToType(From, ToType, CK_NoOp,
   2853                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
   2854     break;
   2855 
   2856   case ICK_Writeback_Conversion:
   2857   case ICK_Pointer_Conversion: {
   2858     if (SCS.IncompatibleObjC && Action != AA_Casting) {
   2859       // Diagnose incompatible Objective-C conversions
   2860       if (Action == AA_Initializing || Action == AA_Assigning)
   2861         Diag(From->getLocStart(),
   2862              diag::ext_typecheck_convert_incompatible_pointer)
   2863           << ToType << From->getType() << Action
   2864           << From->getSourceRange() << 0;
   2865       else
   2866         Diag(From->getLocStart(),
   2867              diag::ext_typecheck_convert_incompatible_pointer)
   2868           << From->getType() << ToType << Action
   2869           << From->getSourceRange() << 0;
   2870 
   2871       if (From->getType()->isObjCObjectPointerType() &&
   2872           ToType->isObjCObjectPointerType())
   2873         EmitRelatedResultTypeNote(From);
   2874     }
   2875     else if (getLangOpts().ObjCAutoRefCount &&
   2876              !CheckObjCARCUnavailableWeakConversion(ToType,
   2877                                                     From->getType())) {
   2878       if (Action == AA_Initializing)
   2879         Diag(From->getLocStart(),
   2880              diag::err_arc_weak_unavailable_assign);
   2881       else
   2882         Diag(From->getLocStart(),
   2883              diag::err_arc_convesion_of_weak_unavailable)
   2884           << (Action == AA_Casting) << From->getType() << ToType
   2885           << From->getSourceRange();
   2886     }
   2887 
   2888     CastKind Kind = CK_Invalid;
   2889     CXXCastPath BasePath;
   2890     if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
   2891       return ExprError();
   2892 
   2893     // Make sure we extend blocks if necessary.
   2894     // FIXME: doing this here is really ugly.
   2895     if (Kind == CK_BlockPointerToObjCPointerCast) {
   2896       ExprResult E = From;
   2897       (void) PrepareCastToObjCObjectPointer(E);
   2898       From = E.get();
   2899     }
   2900     if (getLangOpts().ObjCAutoRefCount)
   2901       CheckObjCARCConversion(SourceRange(), ToType, From, CCK);
   2902     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
   2903              .get();
   2904     break;
   2905   }
   2906 
   2907   case ICK_Pointer_Member: {
   2908     CastKind Kind = CK_Invalid;
   2909     CXXCastPath BasePath;
   2910     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
   2911       return ExprError();
   2912     if (CheckExceptionSpecCompatibility(From, ToType))
   2913       return ExprError();
   2914     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
   2915              .get();
   2916     break;
   2917   }
   2918 
   2919   case ICK_Boolean_Conversion:
   2920     // Perform half-to-boolean conversion via float.
   2921     if (From->getType()->isHalfType()) {
   2922       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
   2923       FromType = Context.FloatTy;
   2924     }
   2925 
   2926     From = ImpCastExprToType(From, Context.BoolTy,
   2927                              ScalarTypeToBooleanCastKind(FromType),
   2928                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
   2929     break;
   2930 
   2931   case ICK_Derived_To_Base: {
   2932     CXXCastPath BasePath;
   2933     if (CheckDerivedToBaseConversion(From->getType(),
   2934                                      ToType.getNonReferenceType(),
   2935                                      From->getLocStart(),
   2936                                      From->getSourceRange(),
   2937                                      &BasePath,
   2938                                      CStyle))
   2939       return ExprError();
   2940 
   2941     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
   2942                       CK_DerivedToBase, From->getValueKind(),
   2943                       &BasePath, CCK).get();
   2944     break;
   2945   }
   2946 
   2947   case ICK_Vector_Conversion:
   2948     From = ImpCastExprToType(From, ToType, CK_BitCast,
   2949                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
   2950     break;
   2951 
   2952   case ICK_Vector_Splat:
   2953     From = ImpCastExprToType(From, ToType, CK_VectorSplat,
   2954                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
   2955     break;
   2956 
   2957   case ICK_Complex_Real:
   2958     // Case 1.  x -> _Complex y
   2959     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
   2960       QualType ElType = ToComplex->getElementType();
   2961       bool isFloatingComplex = ElType->isRealFloatingType();
   2962 
   2963       // x -> y
   2964       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
   2965         // do nothing
   2966       } else if (From->getType()->isRealFloatingType()) {
   2967         From = ImpCastExprToType(From, ElType,
   2968                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
   2969       } else {
   2970         assert(From->getType()->isIntegerType());
   2971         From = ImpCastExprToType(From, ElType,
   2972                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
   2973       }
   2974       // y -> _Complex y
   2975       From = ImpCastExprToType(From, ToType,
   2976                    isFloatingComplex ? CK_FloatingRealToComplex
   2977                                      : CK_IntegralRealToComplex).get();
   2978 
   2979     // Case 2.  _Complex x -> y
   2980     } else {
   2981       const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
   2982       assert(FromComplex);
   2983 
   2984       QualType ElType = FromComplex->getElementType();
   2985       bool isFloatingComplex = ElType->isRealFloatingType();
   2986 
   2987       // _Complex x -> x
   2988       From = ImpCastExprToType(From, ElType,
   2989                    isFloatingComplex ? CK_FloatingComplexToReal
   2990                                      : CK_IntegralComplexToReal,
   2991                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
   2992 
   2993       // x -> y
   2994       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
   2995         // do nothing
   2996       } else if (ToType->isRealFloatingType()) {
   2997         From = ImpCastExprToType(From, ToType,
   2998                    isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
   2999                                  VK_RValue, /*BasePath=*/nullptr, CCK).get();
   3000       } else {
   3001         assert(ToType->isIntegerType());
   3002         From = ImpCastExprToType(From, ToType,
   3003                    isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
   3004                                  VK_RValue, /*BasePath=*/nullptr, CCK).get();
   3005       }
   3006     }
   3007     break;
   3008 
   3009   case ICK_Block_Pointer_Conversion: {
   3010     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
   3011                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
   3012     break;
   3013   }
   3014 
   3015   case ICK_TransparentUnionConversion: {
   3016     ExprResult FromRes = From;
   3017     Sema::AssignConvertType ConvTy =
   3018       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
   3019     if (FromRes.isInvalid())
   3020       return ExprError();
   3021     From = FromRes.get();
   3022     assert ((ConvTy == Sema::Compatible) &&
   3023             "Improper transparent union conversion");
   3024     (void)ConvTy;
   3025     break;
   3026   }
   3027 
   3028   case ICK_Zero_Event_Conversion:
   3029     From = ImpCastExprToType(From, ToType,
   3030                              CK_ZeroToOCLEvent,
   3031                              From->getValueKind()).get();
   3032     break;
   3033 
   3034   case ICK_Lvalue_To_Rvalue:
   3035   case ICK_Array_To_Pointer:
   3036   case ICK_Function_To_Pointer:
   3037   case ICK_Qualification:
   3038   case ICK_Num_Conversion_Kinds:
   3039     llvm_unreachable("Improper second standard conversion");
   3040   }
   3041 
   3042   switch (SCS.Third) {
   3043   case ICK_Identity:
   3044     // Nothing to do.
   3045     break;
   3046 
   3047   case ICK_Qualification: {
   3048     // The qualification keeps the category of the inner expression, unless the
   3049     // target type isn't a reference.
   3050     ExprValueKind VK = ToType->isReferenceType() ?
   3051                                   From->getValueKind() : VK_RValue;
   3052     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
   3053                              CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get();
   3054 
   3055     if (SCS.DeprecatedStringLiteralToCharPtr &&
   3056         !getLangOpts().WritableStrings) {
   3057       Diag(From->getLocStart(), getLangOpts().CPlusPlus11
   3058            ? diag::ext_deprecated_string_literal_conversion
   3059            : diag::warn_deprecated_string_literal_conversion)
   3060         << ToType.getNonReferenceType();
   3061     }
   3062 
   3063     break;
   3064   }
   3065 
   3066   default:
   3067     llvm_unreachable("Improper third standard conversion");
   3068   }
   3069 
   3070   // If this conversion sequence involved a scalar -> atomic conversion, perform
   3071   // that conversion now.
   3072   if (!ToAtomicType.isNull()) {
   3073     assert(Context.hasSameType(
   3074         ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
   3075     From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
   3076                              VK_RValue, nullptr, CCK).get();
   3077   }
   3078 
   3079   return From;
   3080 }
   3081 
   3082 /// \brief Check the completeness of a type in a unary type trait.
   3083 ///
   3084 /// If the particular type trait requires a complete type, tries to complete
   3085 /// it. If completing the type fails, a diagnostic is emitted and false
   3086 /// returned. If completing the type succeeds or no completion was required,
   3087 /// returns true.
   3088 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
   3089                                                 SourceLocation Loc,
   3090                                                 QualType ArgTy) {
   3091   // C++0x [meta.unary.prop]p3:
   3092   //   For all of the class templates X declared in this Clause, instantiating
   3093   //   that template with a template argument that is a class template
   3094   //   specialization may result in the implicit instantiation of the template
   3095   //   argument if and only if the semantics of X require that the argument
   3096   //   must be a complete type.
   3097   // We apply this rule to all the type trait expressions used to implement
   3098   // these class templates. We also try to follow any GCC documented behavior
   3099   // in these expressions to ensure portability of standard libraries.
   3100   switch (UTT) {
   3101   default: llvm_unreachable("not a UTT");
   3102     // is_complete_type somewhat obviously cannot require a complete type.
   3103   case UTT_IsCompleteType:
   3104     // Fall-through
   3105 
   3106     // These traits are modeled on the type predicates in C++0x
   3107     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
   3108     // requiring a complete type, as whether or not they return true cannot be
   3109     // impacted by the completeness of the type.
   3110   case UTT_IsVoid:
   3111   case UTT_IsIntegral:
   3112   case UTT_IsFloatingPoint:
   3113   case UTT_IsArray:
   3114   case UTT_IsPointer:
   3115   case UTT_IsLvalueReference:
   3116   case UTT_IsRvalueReference:
   3117   case UTT_IsMemberFunctionPointer:
   3118   case UTT_IsMemberObjectPointer:
   3119   case UTT_IsEnum:
   3120   case UTT_IsUnion:
   3121   case UTT_IsClass:
   3122   case UTT_IsFunction:
   3123   case UTT_IsReference:
   3124   case UTT_IsArithmetic:
   3125   case UTT_IsFundamental:
   3126   case UTT_IsObject:
   3127   case UTT_IsScalar:
   3128   case UTT_IsCompound:
   3129   case UTT_IsMemberPointer:
   3130     // Fall-through
   3131 
   3132     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
   3133     // which requires some of its traits to have the complete type. However,
   3134     // the completeness of the type cannot impact these traits' semantics, and
   3135     // so they don't require it. This matches the comments on these traits in
   3136     // Table 49.
   3137   case UTT_IsConst:
   3138   case UTT_IsVolatile:
   3139   case UTT_IsSigned:
   3140   case UTT_IsUnsigned:
   3141     return true;
   3142 
   3143     // C++0x [meta.unary.prop] Table 49 requires the following traits to be
   3144     // applied to a complete type.
   3145   case UTT_IsTrivial:
   3146   case UTT_IsTriviallyCopyable:
   3147   case UTT_IsStandardLayout:
   3148   case UTT_IsPOD:
   3149   case UTT_IsLiteral:
   3150   case UTT_IsEmpty:
   3151   case UTT_IsPolymorphic:
   3152   case UTT_IsAbstract:
   3153   case UTT_IsInterfaceClass:
   3154   case UTT_IsDestructible:
   3155   case UTT_IsNothrowDestructible:
   3156     // Fall-through
   3157 
   3158   // These traits require a complete type.
   3159   case UTT_IsFinal:
   3160   case UTT_IsSealed:
   3161 
   3162     // These trait expressions are designed to help implement predicates in
   3163     // [meta.unary.prop] despite not being named the same. They are specified
   3164     // by both GCC and the Embarcadero C++ compiler, and require the complete
   3165     // type due to the overarching C++0x type predicates being implemented
   3166     // requiring the complete type.
   3167   case UTT_HasNothrowAssign:
   3168   case UTT_HasNothrowMoveAssign:
   3169   case UTT_HasNothrowConstructor:
   3170   case UTT_HasNothrowCopy:
   3171   case UTT_HasTrivialAssign:
   3172   case UTT_HasTrivialMoveAssign:
   3173   case UTT_HasTrivialDefaultConstructor:
   3174   case UTT_HasTrivialMoveConstructor:
   3175   case UTT_HasTrivialCopy:
   3176   case UTT_HasTrivialDestructor:
   3177   case UTT_HasVirtualDestructor:
   3178     // Arrays of unknown bound are expressly allowed.
   3179     QualType ElTy = ArgTy;
   3180     if (ArgTy->isIncompleteArrayType())
   3181       ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
   3182 
   3183     // The void type is expressly allowed.
   3184     if (ElTy->isVoidType())
   3185       return true;
   3186 
   3187     return !S.RequireCompleteType(
   3188       Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
   3189   }
   3190 }
   3191 
   3192 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
   3193                                Sema &Self, SourceLocation KeyLoc, ASTContext &C,
   3194                                bool (CXXRecordDecl::*HasTrivial)() const,
   3195                                bool (CXXRecordDecl::*HasNonTrivial)() const,
   3196                                bool (CXXMethodDecl::*IsDesiredOp)() const)
   3197 {
   3198   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   3199   if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
   3200     return true;
   3201 
   3202   DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
   3203   DeclarationNameInfo NameInfo(Name, KeyLoc);
   3204   LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
   3205   if (Self.LookupQualifiedName(Res, RD)) {
   3206     bool FoundOperator = false;
   3207     Res.suppressDiagnostics();
   3208     for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
   3209          Op != OpEnd; ++Op) {
   3210       if (isa<FunctionTemplateDecl>(*Op))
   3211         continue;
   3212 
   3213       CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
   3214       if((Operator->*IsDesiredOp)()) {
   3215         FoundOperator = true;
   3216         const FunctionProtoType *CPT =
   3217           Operator->getType()->getAs<FunctionProtoType>();
   3218         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
   3219         if (!CPT || !CPT->isNothrow(C))
   3220           return false;
   3221       }
   3222     }
   3223     return FoundOperator;
   3224   }
   3225   return false;
   3226 }
   3227 
   3228 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
   3229                                    SourceLocation KeyLoc, QualType T) {
   3230   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
   3231 
   3232   ASTContext &C = Self.Context;
   3233   switch(UTT) {
   3234   default: llvm_unreachable("not a UTT");
   3235     // Type trait expressions corresponding to the primary type category
   3236     // predicates in C++0x [meta.unary.cat].
   3237   case UTT_IsVoid:
   3238     return T->isVoidType();
   3239   case UTT_IsIntegral:
   3240     return T->isIntegralType(C);
   3241   case UTT_IsFloatingPoint:
   3242     return T->isFloatingType();
   3243   case UTT_IsArray:
   3244     return T->isArrayType();
   3245   case UTT_IsPointer:
   3246     return T->isPointerType();
   3247   case UTT_IsLvalueReference:
   3248     return T->isLValueReferenceType();
   3249   case UTT_IsRvalueReference:
   3250     return T->isRValueReferenceType();
   3251   case UTT_IsMemberFunctionPointer:
   3252     return T->isMemberFunctionPointerType();
   3253   case UTT_IsMemberObjectPointer:
   3254     return T->isMemberDataPointerType();
   3255   case UTT_IsEnum:
   3256     return T->isEnumeralType();
   3257   case UTT_IsUnion:
   3258     return T->isUnionType();
   3259   case UTT_IsClass:
   3260     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
   3261   case UTT_IsFunction:
   3262     return T->isFunctionType();
   3263 
   3264     // Type trait expressions which correspond to the convenient composition
   3265     // predicates in C++0x [meta.unary.comp].
   3266   case UTT_IsReference:
   3267     return T->isReferenceType();
   3268   case UTT_IsArithmetic:
   3269     return T->isArithmeticType() && !T->isEnumeralType();
   3270   case UTT_IsFundamental:
   3271     return T->isFundamentalType();
   3272   case UTT_IsObject:
   3273     return T->isObjectType();
   3274   case UTT_IsScalar:
   3275     // Note: semantic analysis depends on Objective-C lifetime types to be
   3276     // considered scalar types. However, such types do not actually behave
   3277     // like scalar types at run time (since they may require retain/release
   3278     // operations), so we report them as non-scalar.
   3279     if (T->isObjCLifetimeType()) {
   3280       switch (T.getObjCLifetime()) {
   3281       case Qualifiers::OCL_None:
   3282       case Qualifiers::OCL_ExplicitNone:
   3283         return true;
   3284 
   3285       case Qualifiers::OCL_Strong:
   3286       case Qualifiers::OCL_Weak:
   3287       case Qualifiers::OCL_Autoreleasing:
   3288         return false;
   3289       }
   3290     }
   3291 
   3292     return T->isScalarType();
   3293   case UTT_IsCompound:
   3294     return T->isCompoundType();
   3295   case UTT_IsMemberPointer:
   3296     return T->isMemberPointerType();
   3297 
   3298     // Type trait expressions which correspond to the type property predicates
   3299     // in C++0x [meta.unary.prop].
   3300   case UTT_IsConst:
   3301     return T.isConstQualified();
   3302   case UTT_IsVolatile:
   3303     return T.isVolatileQualified();
   3304   case UTT_IsTrivial:
   3305     return T.isTrivialType(Self.Context);
   3306   case UTT_IsTriviallyCopyable:
   3307     return T.isTriviallyCopyableType(Self.Context);
   3308   case UTT_IsStandardLayout:
   3309     return T->isStandardLayoutType();
   3310   case UTT_IsPOD:
   3311     return T.isPODType(Self.Context);
   3312   case UTT_IsLiteral:
   3313     return T->isLiteralType(Self.Context);
   3314   case UTT_IsEmpty:
   3315     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3316       return !RD->isUnion() && RD->isEmpty();
   3317     return false;
   3318   case UTT_IsPolymorphic:
   3319     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3320       return RD->isPolymorphic();
   3321     return false;
   3322   case UTT_IsAbstract:
   3323     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3324       return RD->isAbstract();
   3325     return false;
   3326   case UTT_IsInterfaceClass:
   3327     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3328       return RD->isInterface();
   3329     return false;
   3330   case UTT_IsFinal:
   3331     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3332       return RD->hasAttr<FinalAttr>();
   3333     return false;
   3334   case UTT_IsSealed:
   3335     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3336       if (FinalAttr *FA = RD->getAttr<FinalAttr>())
   3337         return FA->isSpelledAsSealed();
   3338     return false;
   3339   case UTT_IsSigned:
   3340     return T->isSignedIntegerType();
   3341   case UTT_IsUnsigned:
   3342     return T->isUnsignedIntegerType();
   3343 
   3344     // Type trait expressions which query classes regarding their construction,
   3345     // destruction, and copying. Rather than being based directly on the
   3346     // related type predicates in the standard, they are specified by both
   3347     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
   3348     // specifications.
   3349     //
   3350     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
   3351     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
   3352     //
   3353     // Note that these builtins do not behave as documented in g++: if a class
   3354     // has both a trivial and a non-trivial special member of a particular kind,
   3355     // they return false! For now, we emulate this behavior.
   3356     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
   3357     // does not correctly compute triviality in the presence of multiple special
   3358     // members of the same kind. Revisit this once the g++ bug is fixed.
   3359   case UTT_HasTrivialDefaultConstructor:
   3360     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3361     //   If __is_pod (type) is true then the trait is true, else if type is
   3362     //   a cv class or union type (or array thereof) with a trivial default
   3363     //   constructor ([class.ctor]) then the trait is true, else it is false.
   3364     if (T.isPODType(Self.Context))
   3365       return true;
   3366     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
   3367       return RD->hasTrivialDefaultConstructor() &&
   3368              !RD->hasNonTrivialDefaultConstructor();
   3369     return false;
   3370   case UTT_HasTrivialMoveConstructor:
   3371     //  This trait is implemented by MSVC 2012 and needed to parse the
   3372     //  standard library headers. Specifically this is used as the logic
   3373     //  behind std::is_trivially_move_constructible (20.9.4.3).
   3374     if (T.isPODType(Self.Context))
   3375       return true;
   3376     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
   3377       return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
   3378     return false;
   3379   case UTT_HasTrivialCopy:
   3380     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3381     //   If __is_pod (type) is true or type is a reference type then
   3382     //   the trait is true, else if type is a cv class or union type
   3383     //   with a trivial copy constructor ([class.copy]) then the trait
   3384     //   is true, else it is false.
   3385     if (T.isPODType(Self.Context) || T->isReferenceType())
   3386       return true;
   3387     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3388       return RD->hasTrivialCopyConstructor() &&
   3389              !RD->hasNonTrivialCopyConstructor();
   3390     return false;
   3391   case UTT_HasTrivialMoveAssign:
   3392     //  This trait is implemented by MSVC 2012 and needed to parse the
   3393     //  standard library headers. Specifically it is used as the logic
   3394     //  behind std::is_trivially_move_assignable (20.9.4.3)
   3395     if (T.isPODType(Self.Context))
   3396       return true;
   3397     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
   3398       return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
   3399     return false;
   3400   case UTT_HasTrivialAssign:
   3401     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3402     //   If type is const qualified or is a reference type then the
   3403     //   trait is false. Otherwise if __is_pod (type) is true then the
   3404     //   trait is true, else if type is a cv class or union type with
   3405     //   a trivial copy assignment ([class.copy]) then the trait is
   3406     //   true, else it is false.
   3407     // Note: the const and reference restrictions are interesting,
   3408     // given that const and reference members don't prevent a class
   3409     // from having a trivial copy assignment operator (but do cause
   3410     // errors if the copy assignment operator is actually used, q.v.
   3411     // [class.copy]p12).
   3412 
   3413     if (T.isConstQualified())
   3414       return false;
   3415     if (T.isPODType(Self.Context))
   3416       return true;
   3417     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3418       return RD->hasTrivialCopyAssignment() &&
   3419              !RD->hasNonTrivialCopyAssignment();
   3420     return false;
   3421   case UTT_IsDestructible:
   3422   case UTT_IsNothrowDestructible:
   3423     // FIXME: Implement UTT_IsDestructible and UTT_IsNothrowDestructible.
   3424     // For now, let's fall through.
   3425   case UTT_HasTrivialDestructor:
   3426     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
   3427     //   If __is_pod (type) is true or type is a reference type
   3428     //   then the trait is true, else if type is a cv class or union
   3429     //   type (or array thereof) with a trivial destructor
   3430     //   ([class.dtor]) then the trait is true, else it is
   3431     //   false.
   3432     if (T.isPODType(Self.Context) || T->isReferenceType())
   3433       return true;
   3434 
   3435     // Objective-C++ ARC: autorelease types don't require destruction.
   3436     if (T->isObjCLifetimeType() &&
   3437         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
   3438       return true;
   3439 
   3440     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
   3441       return RD->hasTrivialDestructor();
   3442     return false;
   3443   // TODO: Propagate nothrowness for implicitly declared special members.
   3444   case UTT_HasNothrowAssign:
   3445     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3446     //   If type is const qualified or is a reference type then the
   3447     //   trait is false. Otherwise if __has_trivial_assign (type)
   3448     //   is true then the trait is true, else if type is a cv class
   3449     //   or union type with copy assignment operators that are known
   3450     //   not to throw an exception then the trait is true, else it is
   3451     //   false.
   3452     if (C.getBaseElementType(T).isConstQualified())
   3453       return false;
   3454     if (T->isReferenceType())
   3455       return false;
   3456     if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
   3457       return true;
   3458 
   3459     if (const RecordType *RT = T->getAs<RecordType>())
   3460       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
   3461                                 &CXXRecordDecl::hasTrivialCopyAssignment,
   3462                                 &CXXRecordDecl::hasNonTrivialCopyAssignment,
   3463                                 &CXXMethodDecl::isCopyAssignmentOperator);
   3464     return false;
   3465   case UTT_HasNothrowMoveAssign:
   3466     //  This trait is implemented by MSVC 2012 and needed to parse the
   3467     //  standard library headers. Specifically this is used as the logic
   3468     //  behind std::is_nothrow_move_assignable (20.9.4.3).
   3469     if (T.isPODType(Self.Context))
   3470       return true;
   3471 
   3472     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
   3473       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
   3474                                 &CXXRecordDecl::hasTrivialMoveAssignment,
   3475                                 &CXXRecordDecl::hasNonTrivialMoveAssignment,
   3476                                 &CXXMethodDecl::isMoveAssignmentOperator);
   3477     return false;
   3478   case UTT_HasNothrowCopy:
   3479     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3480     //   If __has_trivial_copy (type) is true then the trait is true, else
   3481     //   if type is a cv class or union type with copy constructors that are
   3482     //   known not to throw an exception then the trait is true, else it is
   3483     //   false.
   3484     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
   3485       return true;
   3486     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
   3487       if (RD->hasTrivialCopyConstructor() &&
   3488           !RD->hasNonTrivialCopyConstructor())
   3489         return true;
   3490 
   3491       bool FoundConstructor = false;
   3492       unsigned FoundTQs;
   3493       DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
   3494       for (DeclContext::lookup_const_iterator Con = R.begin(),
   3495            ConEnd = R.end(); Con != ConEnd; ++Con) {
   3496         // A template constructor is never a copy constructor.
   3497         // FIXME: However, it may actually be selected at the actual overload
   3498         // resolution point.
   3499         if (isa<FunctionTemplateDecl>(*Con))
   3500           continue;
   3501         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
   3502         if (Constructor->isCopyConstructor(FoundTQs)) {
   3503           FoundConstructor = true;
   3504           const FunctionProtoType *CPT
   3505               = Constructor->getType()->getAs<FunctionProtoType>();
   3506           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
   3507           if (!CPT)
   3508             return false;
   3509           // TODO: check whether evaluating default arguments can throw.
   3510           // For now, we'll be conservative and assume that they can throw.
   3511           if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 1)
   3512             return false;
   3513         }
   3514       }
   3515 
   3516       return FoundConstructor;
   3517     }
   3518     return false;
   3519   case UTT_HasNothrowConstructor:
   3520     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
   3521     //   If __has_trivial_constructor (type) is true then the trait is
   3522     //   true, else if type is a cv class or union type (or array
   3523     //   thereof) with a default constructor that is known not to
   3524     //   throw an exception then the trait is true, else it is false.
   3525     if (T.isPODType(C) || T->isObjCLifetimeType())
   3526       return true;
   3527     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
   3528       if (RD->hasTrivialDefaultConstructor() &&
   3529           !RD->hasNonTrivialDefaultConstructor())
   3530         return true;
   3531 
   3532       bool FoundConstructor = false;
   3533       DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
   3534       for (DeclContext::lookup_const_iterator Con = R.begin(),
   3535            ConEnd = R.end(); Con != ConEnd; ++Con) {
   3536         // FIXME: In C++0x, a constructor template can be a default constructor.
   3537         if (isa<FunctionTemplateDecl>(*Con))
   3538           continue;
   3539         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
   3540         if (Constructor->isDefaultConstructor()) {
   3541           FoundConstructor = true;
   3542           const FunctionProtoType *CPT
   3543               = Constructor->getType()->getAs<FunctionProtoType>();
   3544           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
   3545           if (!CPT)
   3546             return false;
   3547           // FIXME: check whether evaluating default arguments can throw.
   3548           // For now, we'll be conservative and assume that they can throw.
   3549           if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 0)
   3550             return false;
   3551         }
   3552       }
   3553       return FoundConstructor;
   3554     }
   3555     return false;
   3556   case UTT_HasVirtualDestructor:
   3557     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3558     //   If type is a class type with a virtual destructor ([class.dtor])
   3559     //   then the trait is true, else it is false.
   3560     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3561       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
   3562         return Destructor->isVirtual();
   3563     return false;
   3564 
   3565     // These type trait expressions are modeled on the specifications for the
   3566     // Embarcadero C++0x type trait functions:
   3567     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
   3568   case UTT_IsCompleteType:
   3569     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
   3570     //   Returns True if and only if T is a complete type at the point of the
   3571     //   function call.
   3572     return !T->isIncompleteType();
   3573   }
   3574 }
   3575 
   3576 /// \brief Determine whether T has a non-trivial Objective-C lifetime in
   3577 /// ARC mode.
   3578 static bool hasNontrivialObjCLifetime(QualType T) {
   3579   switch (T.getObjCLifetime()) {
   3580   case Qualifiers::OCL_ExplicitNone:
   3581     return false;
   3582 
   3583   case Qualifiers::OCL_Strong:
   3584   case Qualifiers::OCL_Weak:
   3585   case Qualifiers::OCL_Autoreleasing:
   3586     return true;
   3587 
   3588   case Qualifiers::OCL_None:
   3589     return T->isObjCLifetimeType();
   3590   }
   3591 
   3592   llvm_unreachable("Unknown ObjC lifetime qualifier");
   3593 }
   3594 
   3595 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
   3596                                     QualType RhsT, SourceLocation KeyLoc);
   3597 
   3598 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
   3599                               ArrayRef<TypeSourceInfo *> Args,
   3600                               SourceLocation RParenLoc) {
   3601   if (Kind <= UTT_Last)
   3602     return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
   3603 
   3604   if (Kind <= BTT_Last)
   3605     return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
   3606                                    Args[1]->getType(), RParenLoc);
   3607 
   3608   switch (Kind) {
   3609   case clang::TT_IsConstructible:
   3610   case clang::TT_IsNothrowConstructible:
   3611   case clang::TT_IsTriviallyConstructible: {
   3612     // C++11 [meta.unary.prop]:
   3613     //   is_trivially_constructible is defined as:
   3614     //
   3615     //     is_constructible<T, Args...>::value is true and the variable
   3616     //     definition for is_constructible, as defined below, is known to call
   3617     //     no operation that is not trivial.
   3618     //
   3619     //   The predicate condition for a template specialization
   3620     //   is_constructible<T, Args...> shall be satisfied if and only if the
   3621     //   following variable definition would be well-formed for some invented
   3622     //   variable t:
   3623     //
   3624     //     T t(create<Args>()...);
   3625     assert(!Args.empty());
   3626 
   3627     // Precondition: T and all types in the parameter pack Args shall be
   3628     // complete types, (possibly cv-qualified) void, or arrays of
   3629     // unknown bound.
   3630     for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   3631       QualType ArgTy = Args[I]->getType();
   3632       if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
   3633         continue;
   3634 
   3635       if (S.RequireCompleteType(KWLoc, ArgTy,
   3636           diag::err_incomplete_type_used_in_type_trait_expr))
   3637         return false;
   3638     }
   3639 
   3640     // Make sure the first argument is a complete type.
   3641     if (Args[0]->getType()->isIncompleteType())
   3642       return false;
   3643 
   3644     // Make sure the first argument is not an abstract type.
   3645     CXXRecordDecl *RD = Args[0]->getType()->getAsCXXRecordDecl();
   3646     if (RD && RD->isAbstract())
   3647       return false;
   3648 
   3649     SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
   3650     SmallVector<Expr *, 2> ArgExprs;
   3651     ArgExprs.reserve(Args.size() - 1);
   3652     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
   3653       QualType T = Args[I]->getType();
   3654       if (T->isObjectType() || T->isFunctionType())
   3655         T = S.Context.getRValueReferenceType(T);
   3656       OpaqueArgExprs.push_back(
   3657         OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
   3658                         T.getNonLValueExprType(S.Context),
   3659                         Expr::getValueKindForType(T)));
   3660       ArgExprs.push_back(&OpaqueArgExprs.back());
   3661     }
   3662 
   3663     // Perform the initialization in an unevaluated context within a SFINAE
   3664     // trap at translation unit scope.
   3665     EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
   3666     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
   3667     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
   3668     InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
   3669     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
   3670                                                                  RParenLoc));
   3671     InitializationSequence Init(S, To, InitKind, ArgExprs);
   3672     if (Init.Failed())
   3673       return false;
   3674 
   3675     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
   3676     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
   3677       return false;
   3678 
   3679     if (Kind == clang::TT_IsConstructible)
   3680       return true;
   3681 
   3682     if (Kind == clang::TT_IsNothrowConstructible)
   3683       return S.canThrow(Result.get()) == CT_Cannot;
   3684 
   3685     if (Kind == clang::TT_IsTriviallyConstructible) {
   3686       // Under Objective-C ARC, if the destination has non-trivial Objective-C
   3687       // lifetime, this is a non-trivial construction.
   3688       if (S.getLangOpts().ObjCAutoRefCount &&
   3689           hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
   3690         return false;
   3691 
   3692       // The initialization succeeded; now make sure there are no non-trivial
   3693       // calls.
   3694       return !Result.get()->hasNonTrivialCall(S.Context);
   3695     }
   3696 
   3697     llvm_unreachable("unhandled type trait");
   3698     return false;
   3699   }
   3700     default: llvm_unreachable("not a TT");
   3701   }
   3702 
   3703   return false;
   3704 }
   3705 
   3706 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
   3707                                 ArrayRef<TypeSourceInfo *> Args,
   3708                                 SourceLocation RParenLoc) {
   3709   QualType ResultType = Context.getLogicalOperationType();
   3710 
   3711   if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
   3712                                *this, Kind, KWLoc, Args[0]->getType()))
   3713     return ExprError();
   3714 
   3715   bool Dependent = false;
   3716   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   3717     if (Args[I]->getType()->isDependentType()) {
   3718       Dependent = true;
   3719       break;
   3720     }
   3721   }
   3722 
   3723   bool Result = false;
   3724   if (!Dependent)
   3725     Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
   3726 
   3727   return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
   3728                                RParenLoc, Result);
   3729 }
   3730 
   3731 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
   3732                                 ArrayRef<ParsedType> Args,
   3733                                 SourceLocation RParenLoc) {
   3734   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
   3735   ConvertedArgs.reserve(Args.size());
   3736 
   3737   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   3738     TypeSourceInfo *TInfo;
   3739     QualType T = GetTypeFromParser(Args[I], &TInfo);
   3740     if (!TInfo)
   3741       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
   3742 
   3743     ConvertedArgs.push_back(TInfo);
   3744   }
   3745 
   3746   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
   3747 }
   3748 
   3749 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
   3750                                     QualType RhsT, SourceLocation KeyLoc) {
   3751   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
   3752          "Cannot evaluate traits of dependent types");
   3753 
   3754   switch(BTT) {
   3755   case BTT_IsBaseOf: {
   3756     // C++0x [meta.rel]p2
   3757     // Base is a base class of Derived without regard to cv-qualifiers or
   3758     // Base and Derived are not unions and name the same class type without
   3759     // regard to cv-qualifiers.
   3760 
   3761     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
   3762     if (!lhsRecord) return false;
   3763 
   3764     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
   3765     if (!rhsRecord) return false;
   3766 
   3767     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
   3768              == (lhsRecord == rhsRecord));
   3769 
   3770     if (lhsRecord == rhsRecord)
   3771       return !lhsRecord->getDecl()->isUnion();
   3772 
   3773     // C++0x [meta.rel]p2:
   3774     //   If Base and Derived are class types and are different types
   3775     //   (ignoring possible cv-qualifiers) then Derived shall be a
   3776     //   complete type.
   3777     if (Self.RequireCompleteType(KeyLoc, RhsT,
   3778                           diag::err_incomplete_type_used_in_type_trait_expr))
   3779       return false;
   3780 
   3781     return cast<CXXRecordDecl>(rhsRecord->getDecl())
   3782       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
   3783   }
   3784   case BTT_IsSame:
   3785     return Self.Context.hasSameType(LhsT, RhsT);
   3786   case BTT_TypeCompatible:
   3787     return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
   3788                                            RhsT.getUnqualifiedType());
   3789   case BTT_IsConvertible:
   3790   case BTT_IsConvertibleTo: {
   3791     // C++0x [meta.rel]p4:
   3792     //   Given the following function prototype:
   3793     //
   3794     //     template <class T>
   3795     //       typename add_rvalue_reference<T>::type create();
   3796     //
   3797     //   the predicate condition for a template specialization
   3798     //   is_convertible<From, To> shall be satisfied if and only if
   3799     //   the return expression in the following code would be
   3800     //   well-formed, including any implicit conversions to the return
   3801     //   type of the function:
   3802     //
   3803     //     To test() {
   3804     //       return create<From>();
   3805     //     }
   3806     //
   3807     //   Access checking is performed as if in a context unrelated to To and
   3808     //   From. Only the validity of the immediate context of the expression
   3809     //   of the return-statement (including conversions to the return type)
   3810     //   is considered.
   3811     //
   3812     // We model the initialization as a copy-initialization of a temporary
   3813     // of the appropriate type, which for this expression is identical to the
   3814     // return statement (since NRVO doesn't apply).
   3815 
   3816     // Functions aren't allowed to return function or array types.
   3817     if (RhsT->isFunctionType() || RhsT->isArrayType())
   3818       return false;
   3819 
   3820     // A return statement in a void function must have void type.
   3821     if (RhsT->isVoidType())
   3822       return LhsT->isVoidType();
   3823 
   3824     // A function definition requires a complete, non-abstract return type.
   3825     if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
   3826         Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
   3827       return false;
   3828 
   3829     // Compute the result of add_rvalue_reference.
   3830     if (LhsT->isObjectType() || LhsT->isFunctionType())
   3831       LhsT = Self.Context.getRValueReferenceType(LhsT);
   3832 
   3833     // Build a fake source and destination for initialization.
   3834     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
   3835     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
   3836                          Expr::getValueKindForType(LhsT));
   3837     Expr *FromPtr = &From;
   3838     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
   3839                                                            SourceLocation()));
   3840 
   3841     // Perform the initialization in an unevaluated context within a SFINAE
   3842     // trap at translation unit scope.
   3843     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
   3844     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
   3845     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
   3846     InitializationSequence Init(Self, To, Kind, FromPtr);
   3847     if (Init.Failed())
   3848       return false;
   3849 
   3850     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
   3851     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
   3852   }
   3853 
   3854   case BTT_IsNothrowAssignable:
   3855   case BTT_IsTriviallyAssignable: {
   3856     // C++11 [meta.unary.prop]p3:
   3857     //   is_trivially_assignable is defined as:
   3858     //     is_assignable<T, U>::value is true and the assignment, as defined by
   3859     //     is_assignable, is known to call no operation that is not trivial
   3860     //
   3861     //   is_assignable is defined as:
   3862     //     The expression declval<T>() = declval<U>() is well-formed when
   3863     //     treated as an unevaluated operand (Clause 5).
   3864     //
   3865     //   For both, T and U shall be complete types, (possibly cv-qualified)
   3866     //   void, or arrays of unknown bound.
   3867     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
   3868         Self.RequireCompleteType(KeyLoc, LhsT,
   3869           diag::err_incomplete_type_used_in_type_trait_expr))
   3870       return false;
   3871     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
   3872         Self.RequireCompleteType(KeyLoc, RhsT,
   3873           diag::err_incomplete_type_used_in_type_trait_expr))
   3874       return false;
   3875 
   3876     // cv void is never assignable.
   3877     if (LhsT->isVoidType() || RhsT->isVoidType())
   3878       return false;
   3879 
   3880     // Build expressions that emulate the effect of declval<T>() and
   3881     // declval<U>().
   3882     if (LhsT->isObjectType() || LhsT->isFunctionType())
   3883       LhsT = Self.Context.getRValueReferenceType(LhsT);
   3884     if (RhsT->isObjectType() || RhsT->isFunctionType())
   3885       RhsT = Self.Context.getRValueReferenceType(RhsT);
   3886     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
   3887                         Expr::getValueKindForType(LhsT));
   3888     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
   3889                         Expr::getValueKindForType(RhsT));
   3890 
   3891     // Attempt the assignment in an unevaluated context within a SFINAE
   3892     // trap at translation unit scope.
   3893     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
   3894     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
   3895     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
   3896     ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
   3897                                         &Rhs);
   3898     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
   3899       return false;
   3900 
   3901     if (BTT == BTT_IsNothrowAssignable)
   3902       return Self.canThrow(Result.get()) == CT_Cannot;
   3903 
   3904     if (BTT == BTT_IsTriviallyAssignable) {
   3905       // Under Objective-C ARC, if the destination has non-trivial Objective-C
   3906       // lifetime, this is a non-trivial assignment.
   3907       if (Self.getLangOpts().ObjCAutoRefCount &&
   3908           hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
   3909         return false;
   3910 
   3911       return !Result.get()->hasNonTrivialCall(Self.Context);
   3912     }
   3913 
   3914     llvm_unreachable("unhandled type trait");
   3915     return false;
   3916   }
   3917     default: llvm_unreachable("not a BTT");
   3918   }
   3919   llvm_unreachable("Unknown type trait or not implemented");
   3920 }
   3921 
   3922 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
   3923                                      SourceLocation KWLoc,
   3924                                      ParsedType Ty,
   3925                                      Expr* DimExpr,
   3926                                      SourceLocation RParen) {
   3927   TypeSourceInfo *TSInfo;
   3928   QualType T = GetTypeFromParser(Ty, &TSInfo);
   3929   if (!TSInfo)
   3930     TSInfo = Context.getTrivialTypeSourceInfo(T);
   3931 
   3932   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
   3933 }
   3934 
   3935 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
   3936                                            QualType T, Expr *DimExpr,
   3937                                            SourceLocation KeyLoc) {
   3938   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
   3939 
   3940   switch(ATT) {
   3941   case ATT_ArrayRank:
   3942     if (T->isArrayType()) {
   3943       unsigned Dim = 0;
   3944       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
   3945         ++Dim;
   3946         T = AT->getElementType();
   3947       }
   3948       return Dim;
   3949     }
   3950     return 0;
   3951 
   3952   case ATT_ArrayExtent: {
   3953     llvm::APSInt Value;
   3954     uint64_t Dim;
   3955     if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
   3956           diag::err_dimension_expr_not_constant_integer,
   3957           false).isInvalid())
   3958       return 0;
   3959     if (Value.isSigned() && Value.isNegative()) {
   3960       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
   3961         << DimExpr->getSourceRange();
   3962       return 0;
   3963     }
   3964     Dim = Value.getLimitedValue();
   3965 
   3966     if (T->isArrayType()) {
   3967       unsigned D = 0;
   3968       bool Matched = false;
   3969       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
   3970         if (Dim == D) {
   3971           Matched = true;
   3972           break;
   3973         }
   3974         ++D;
   3975         T = AT->getElementType();
   3976       }
   3977 
   3978       if (Matched && T->isArrayType()) {
   3979         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
   3980           return CAT->getSize().getLimitedValue();
   3981       }
   3982     }
   3983     return 0;
   3984   }
   3985   }
   3986   llvm_unreachable("Unknown type trait or not implemented");
   3987 }
   3988 
   3989 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
   3990                                      SourceLocation KWLoc,
   3991                                      TypeSourceInfo *TSInfo,
   3992                                      Expr* DimExpr,
   3993                                      SourceLocation RParen) {
   3994   QualType T = TSInfo->getType();
   3995 
   3996   // FIXME: This should likely be tracked as an APInt to remove any host
   3997   // assumptions about the width of size_t on the target.
   3998   uint64_t Value = 0;
   3999   if (!T->isDependentType())
   4000     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
   4001 
   4002   // While the specification for these traits from the Embarcadero C++
   4003   // compiler's documentation says the return type is 'unsigned int', Clang
   4004   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
   4005   // compiler, there is no difference. On several other platforms this is an
   4006   // important distinction.
   4007   return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
   4008                                           RParen, Context.getSizeType());
   4009 }
   4010 
   4011 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
   4012                                       SourceLocation KWLoc,
   4013                                       Expr *Queried,
   4014                                       SourceLocation RParen) {
   4015   // If error parsing the expression, ignore.
   4016   if (!Queried)
   4017     return ExprError();
   4018 
   4019   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
   4020 
   4021   return Result;
   4022 }
   4023 
   4024 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
   4025   switch (ET) {
   4026   case ET_IsLValueExpr: return E->isLValue();
   4027   case ET_IsRValueExpr: return E->isRValue();
   4028   }
   4029   llvm_unreachable("Expression trait not covered by switch");
   4030 }
   4031 
   4032 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
   4033                                       SourceLocation KWLoc,
   4034                                       Expr *Queried,
   4035                                       SourceLocation RParen) {
   4036   if (Queried->isTypeDependent()) {
   4037     // Delay type-checking for type-dependent expressions.
   4038   } else if (Queried->getType()->isPlaceholderType()) {
   4039     ExprResult PE = CheckPlaceholderExpr(Queried);
   4040     if (PE.isInvalid()) return ExprError();
   4041     return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
   4042   }
   4043 
   4044   bool Value = EvaluateExpressionTrait(ET, Queried);
   4045 
   4046   return new (Context)
   4047       ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
   4048 }
   4049 
   4050 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
   4051                                             ExprValueKind &VK,
   4052                                             SourceLocation Loc,
   4053                                             bool isIndirect) {
   4054   assert(!LHS.get()->getType()->isPlaceholderType() &&
   4055          !RHS.get()->getType()->isPlaceholderType() &&
   4056          "placeholders should have been weeded out by now");
   4057 
   4058   // The LHS undergoes lvalue conversions if this is ->*.
   4059   if (isIndirect) {
   4060     LHS = DefaultLvalueConversion(LHS.get());
   4061     if (LHS.isInvalid()) return QualType();
   4062   }
   4063 
   4064   // The RHS always undergoes lvalue conversions.
   4065   RHS = DefaultLvalueConversion(RHS.get());
   4066   if (RHS.isInvalid()) return QualType();
   4067 
   4068   const char *OpSpelling = isIndirect ? "->*" : ".*";
   4069   // C++ 5.5p2
   4070   //   The binary operator .* [p3: ->*] binds its second operand, which shall
   4071   //   be of type "pointer to member of T" (where T is a completely-defined
   4072   //   class type) [...]
   4073   QualType RHSType = RHS.get()->getType();
   4074   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
   4075   if (!MemPtr) {
   4076     Diag(Loc, diag::err_bad_memptr_rhs)
   4077       << OpSpelling << RHSType << RHS.get()->getSourceRange();
   4078     return QualType();
   4079   }
   4080 
   4081   QualType Class(MemPtr->getClass(), 0);
   4082 
   4083   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
   4084   // member pointer points must be completely-defined. However, there is no
   4085   // reason for this semantic distinction, and the rule is not enforced by
   4086   // other compilers. Therefore, we do not check this property, as it is
   4087   // likely to be considered a defect.
   4088 
   4089   // C++ 5.5p2
   4090   //   [...] to its first operand, which shall be of class T or of a class of
   4091   //   which T is an unambiguous and accessible base class. [p3: a pointer to
   4092   //   such a class]
   4093   QualType LHSType = LHS.get()->getType();
   4094   if (isIndirect) {
   4095     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
   4096       LHSType = Ptr->getPointeeType();
   4097     else {
   4098       Diag(Loc, diag::err_bad_memptr_lhs)
   4099         << OpSpelling << 1 << LHSType
   4100         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
   4101       return QualType();
   4102     }
   4103   }
   4104 
   4105   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
   4106     // If we want to check the hierarchy, we need a complete type.
   4107     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
   4108                             OpSpelling, (int)isIndirect)) {
   4109       return QualType();
   4110     }
   4111 
   4112     if (!IsDerivedFrom(LHSType, Class)) {
   4113       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
   4114         << (int)isIndirect << LHS.get()->getType();
   4115       return QualType();
   4116     }
   4117 
   4118     CXXCastPath BasePath;
   4119     if (CheckDerivedToBaseConversion(LHSType, Class, Loc,
   4120                                      SourceRange(LHS.get()->getLocStart(),
   4121                                                  RHS.get()->getLocEnd()),
   4122                                      &BasePath))
   4123       return QualType();
   4124 
   4125     // Cast LHS to type of use.
   4126     QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
   4127     ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
   4128     LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
   4129                             &BasePath);
   4130   }
   4131 
   4132   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
   4133     // Diagnose use of pointer-to-member type which when used as
   4134     // the functional cast in a pointer-to-member expression.
   4135     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
   4136      return QualType();
   4137   }
   4138 
   4139   // C++ 5.5p2
   4140   //   The result is an object or a function of the type specified by the
   4141   //   second operand.
   4142   // The cv qualifiers are the union of those in the pointer and the left side,
   4143   // in accordance with 5.5p5 and 5.2.5.
   4144   QualType Result = MemPtr->getPointeeType();
   4145   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
   4146 
   4147   // C++0x [expr.mptr.oper]p6:
   4148   //   In a .* expression whose object expression is an rvalue, the program is
   4149   //   ill-formed if the second operand is a pointer to member function with
   4150   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
   4151   //   expression is an lvalue, the program is ill-formed if the second operand
   4152   //   is a pointer to member function with ref-qualifier &&.
   4153   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
   4154     switch (Proto->getRefQualifier()) {
   4155     case RQ_None:
   4156       // Do nothing
   4157       break;
   4158 
   4159     case RQ_LValue:
   4160       if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
   4161         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
   4162           << RHSType << 1 << LHS.get()->getSourceRange();
   4163       break;
   4164 
   4165     case RQ_RValue:
   4166       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
   4167         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
   4168           << RHSType << 0 << LHS.get()->getSourceRange();
   4169       break;
   4170     }
   4171   }
   4172 
   4173   // C++ [expr.mptr.oper]p6:
   4174   //   The result of a .* expression whose second operand is a pointer
   4175   //   to a data member is of the same value category as its
   4176   //   first operand. The result of a .* expression whose second
   4177   //   operand is a pointer to a member function is a prvalue. The
   4178   //   result of an ->* expression is an lvalue if its second operand
   4179   //   is a pointer to data member and a prvalue otherwise.
   4180   if (Result->isFunctionType()) {
   4181     VK = VK_RValue;
   4182     return Context.BoundMemberTy;
   4183   } else if (isIndirect) {
   4184     VK = VK_LValue;
   4185   } else {
   4186     VK = LHS.get()->getValueKind();
   4187   }
   4188 
   4189   return Result;
   4190 }
   4191 
   4192 /// \brief Try to convert a type to another according to C++0x 5.16p3.
   4193 ///
   4194 /// This is part of the parameter validation for the ? operator. If either
   4195 /// value operand is a class type, the two operands are attempted to be
   4196 /// converted to each other. This function does the conversion in one direction.
   4197 /// It returns true if the program is ill-formed and has already been diagnosed
   4198 /// as such.
   4199 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
   4200                                 SourceLocation QuestionLoc,
   4201                                 bool &HaveConversion,
   4202                                 QualType &ToType) {
   4203   HaveConversion = false;
   4204   ToType = To->getType();
   4205 
   4206   InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
   4207                                                            SourceLocation());
   4208   // C++0x 5.16p3
   4209   //   The process for determining whether an operand expression E1 of type T1
   4210   //   can be converted to match an operand expression E2 of type T2 is defined
   4211   //   as follows:
   4212   //   -- If E2 is an lvalue:
   4213   bool ToIsLvalue = To->isLValue();
   4214   if (ToIsLvalue) {
   4215     //   E1 can be converted to match E2 if E1 can be implicitly converted to
   4216     //   type "lvalue reference to T2", subject to the constraint that in the
   4217     //   conversion the reference must bind directly to E1.
   4218     QualType T = Self.Context.getLValueReferenceType(ToType);
   4219     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
   4220 
   4221     InitializationSequence InitSeq(Self, Entity, Kind, From);
   4222     if (InitSeq.isDirectReferenceBinding()) {
   4223       ToType = T;
   4224       HaveConversion = true;
   4225       return false;
   4226     }
   4227 
   4228     if (InitSeq.isAmbiguous())
   4229       return InitSeq.Diagnose(Self, Entity, Kind, From);
   4230   }
   4231 
   4232   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
   4233   //      -- if E1 and E2 have class type, and the underlying class types are
   4234   //         the same or one is a base class of the other:
   4235   QualType FTy = From->getType();
   4236   QualType TTy = To->getType();
   4237   const RecordType *FRec = FTy->getAs<RecordType>();
   4238   const RecordType *TRec = TTy->getAs<RecordType>();
   4239   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
   4240                        Self.IsDerivedFrom(FTy, TTy);
   4241   if (FRec && TRec &&
   4242       (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
   4243     //         E1 can be converted to match E2 if the class of T2 is the
   4244     //         same type as, or a base class of, the class of T1, and
   4245     //         [cv2 > cv1].
   4246     if (FRec == TRec || FDerivedFromT) {
   4247       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
   4248         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
   4249         InitializationSequence InitSeq(Self, Entity, Kind, From);
   4250         if (InitSeq) {
   4251           HaveConversion = true;
   4252           return false;
   4253         }
   4254 
   4255         if (InitSeq.isAmbiguous())
   4256           return InitSeq.Diagnose(Self, Entity, Kind, From);
   4257       }
   4258     }
   4259 
   4260     return false;
   4261   }
   4262 
   4263   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
   4264   //        implicitly converted to the type that expression E2 would have
   4265   //        if E2 were converted to an rvalue (or the type it has, if E2 is
   4266   //        an rvalue).
   4267   //
   4268   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
   4269   // to the array-to-pointer or function-to-pointer conversions.
   4270   if (!TTy->getAs<TagType>())
   4271     TTy = TTy.getUnqualifiedType();
   4272 
   4273   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
   4274   InitializationSequence InitSeq(Self, Entity, Kind, From);
   4275   HaveConversion = !InitSeq.Failed();
   4276   ToType = TTy;
   4277   if (InitSeq.isAmbiguous())
   4278     return InitSeq.Diagnose(Self, Entity, Kind, From);
   4279 
   4280   return false;
   4281 }
   4282 
   4283 /// \brief Try to find a common type for two according to C++0x 5.16p5.
   4284 ///
   4285 /// This is part of the parameter validation for the ? operator. If either
   4286 /// value operand is a class type, overload resolution is used to find a
   4287 /// conversion to a common type.
   4288 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
   4289                                     SourceLocation QuestionLoc) {
   4290   Expr *Args[2] = { LHS.get(), RHS.get() };
   4291   OverloadCandidateSet CandidateSet(QuestionLoc,
   4292                                     OverloadCandidateSet::CSK_Operator);
   4293   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
   4294                                     CandidateSet);
   4295 
   4296   OverloadCandidateSet::iterator Best;
   4297   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
   4298     case OR_Success: {
   4299       // We found a match. Perform the conversions on the arguments and move on.
   4300       ExprResult LHSRes =
   4301         Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
   4302                                        Best->Conversions[0], Sema::AA_Converting);
   4303       if (LHSRes.isInvalid())
   4304         break;
   4305       LHS = LHSRes;
   4306 
   4307       ExprResult RHSRes =
   4308         Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
   4309                                        Best->Conversions[1], Sema::AA_Converting);
   4310       if (RHSRes.isInvalid())
   4311         break;
   4312       RHS = RHSRes;
   4313       if (Best->Function)
   4314         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
   4315       return false;
   4316     }
   4317 
   4318     case OR_No_Viable_Function:
   4319 
   4320       // Emit a better diagnostic if one of the expressions is a null pointer
   4321       // constant and the other is a pointer type. In this case, the user most
   4322       // likely forgot to take the address of the other expression.
   4323       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
   4324         return true;
   4325 
   4326       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   4327         << LHS.get()->getType() << RHS.get()->getType()
   4328         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4329       return true;
   4330 
   4331     case OR_Ambiguous:
   4332       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
   4333         << LHS.get()->getType() << RHS.get()->getType()
   4334         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4335       // FIXME: Print the possible common types by printing the return types of
   4336       // the viable candidates.
   4337       break;
   4338 
   4339     case OR_Deleted:
   4340       llvm_unreachable("Conditional operator has only built-in overloads");
   4341   }
   4342   return true;
   4343 }
   4344 
   4345 /// \brief Perform an "extended" implicit conversion as returned by
   4346 /// TryClassUnification.
   4347 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
   4348   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
   4349   InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
   4350                                                            SourceLocation());
   4351   Expr *Arg = E.get();
   4352   InitializationSequence InitSeq(Self, Entity, Kind, Arg);
   4353   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
   4354   if (Result.isInvalid())
   4355     return true;
   4356 
   4357   E = Result;
   4358   return false;
   4359 }
   4360 
   4361 /// \brief Check the operands of ?: under C++ semantics.
   4362 ///
   4363 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
   4364 /// extension. In this case, LHS == Cond. (But they're not aliases.)
   4365 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
   4366                                            ExprResult &RHS, ExprValueKind &VK,
   4367                                            ExprObjectKind &OK,
   4368                                            SourceLocation QuestionLoc) {
   4369   // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
   4370   // interface pointers.
   4371 
   4372   // C++11 [expr.cond]p1
   4373   //   The first expression is contextually converted to bool.
   4374   if (!Cond.get()->isTypeDependent()) {
   4375     ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
   4376     if (CondRes.isInvalid())
   4377       return QualType();
   4378     Cond = CondRes;
   4379   }
   4380 
   4381   // Assume r-value.
   4382   VK = VK_RValue;
   4383   OK = OK_Ordinary;
   4384 
   4385   // Either of the arguments dependent?
   4386   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
   4387     return Context.DependentTy;
   4388 
   4389   // C++11 [expr.cond]p2
   4390   //   If either the second or the third operand has type (cv) void, ...
   4391   QualType LTy = LHS.get()->getType();
   4392   QualType RTy = RHS.get()->getType();
   4393   bool LVoid = LTy->isVoidType();
   4394   bool RVoid = RTy->isVoidType();
   4395   if (LVoid || RVoid) {
   4396     //   ... one of the following shall hold:
   4397     //   -- The second or the third operand (but not both) is a (possibly
   4398     //      parenthesized) throw-expression; the result is of the type
   4399     //      and value category of the other.
   4400     bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
   4401     bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
   4402     if (LThrow != RThrow) {
   4403       Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
   4404       VK = NonThrow->getValueKind();
   4405       // DR (no number yet): the result is a bit-field if the
   4406       // non-throw-expression operand is a bit-field.
   4407       OK = NonThrow->getObjectKind();
   4408       return NonThrow->getType();
   4409     }
   4410 
   4411     //   -- Both the second and third operands have type void; the result is of
   4412     //      type void and is a prvalue.
   4413     if (LVoid && RVoid)
   4414       return Context.VoidTy;
   4415 
   4416     // Neither holds, error.
   4417     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
   4418       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
   4419       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4420     return QualType();
   4421   }
   4422 
   4423   // Neither is void.
   4424 
   4425   // C++11 [expr.cond]p3
   4426   //   Otherwise, if the second and third operand have different types, and
   4427   //   either has (cv) class type [...] an attempt is made to convert each of
   4428   //   those operands to the type of the other.
   4429   if (!Context.hasSameType(LTy, RTy) &&
   4430       (LTy->isRecordType() || RTy->isRecordType())) {
   4431     // These return true if a single direction is already ambiguous.
   4432     QualType L2RType, R2LType;
   4433     bool HaveL2R, HaveR2L;
   4434     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
   4435       return QualType();
   4436     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
   4437       return QualType();
   4438 
   4439     //   If both can be converted, [...] the program is ill-formed.
   4440     if (HaveL2R && HaveR2L) {
   4441       Diag(QuestionLoc, diag::err_conditional_ambiguous)
   4442         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4443       return QualType();
   4444     }
   4445 
   4446     //   If exactly one conversion is possible, that conversion is applied to
   4447     //   the chosen operand and the converted operands are used in place of the
   4448     //   original operands for the remainder of this section.
   4449     if (HaveL2R) {
   4450       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
   4451         return QualType();
   4452       LTy = LHS.get()->getType();
   4453     } else if (HaveR2L) {
   4454       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
   4455         return QualType();
   4456       RTy = RHS.get()->getType();
   4457     }
   4458   }
   4459 
   4460   // C++11 [expr.cond]p3
   4461   //   if both are glvalues of the same value category and the same type except
   4462   //   for cv-qualification, an attempt is made to convert each of those
   4463   //   operands to the type of the other.
   4464   ExprValueKind LVK = LHS.get()->getValueKind();
   4465   ExprValueKind RVK = RHS.get()->getValueKind();
   4466   if (!Context.hasSameType(LTy, RTy) &&
   4467       Context.hasSameUnqualifiedType(LTy, RTy) &&
   4468       LVK == RVK && LVK != VK_RValue) {
   4469     // Since the unqualified types are reference-related and we require the
   4470     // result to be as if a reference bound directly, the only conversion
   4471     // we can perform is to add cv-qualifiers.
   4472     Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
   4473     Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
   4474     if (RCVR.isStrictSupersetOf(LCVR)) {
   4475       LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
   4476       LTy = LHS.get()->getType();
   4477     }
   4478     else if (LCVR.isStrictSupersetOf(RCVR)) {
   4479       RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
   4480       RTy = RHS.get()->getType();
   4481     }
   4482   }
   4483 
   4484   // C++11 [expr.cond]p4
   4485   //   If the second and third operands are glvalues of the same value
   4486   //   category and have the same type, the result is of that type and
   4487   //   value category and it is a bit-field if the second or the third
   4488   //   operand is a bit-field, or if both are bit-fields.
   4489   // We only extend this to bitfields, not to the crazy other kinds of
   4490   // l-values.
   4491   bool Same = Context.hasSameType(LTy, RTy);
   4492   if (Same && LVK == RVK && LVK != VK_RValue &&
   4493       LHS.get()->isOrdinaryOrBitFieldObject() &&
   4494       RHS.get()->isOrdinaryOrBitFieldObject()) {
   4495     VK = LHS.get()->getValueKind();
   4496     if (LHS.get()->getObjectKind() == OK_BitField ||
   4497         RHS.get()->getObjectKind() == OK_BitField)
   4498       OK = OK_BitField;
   4499     return LTy;
   4500   }
   4501 
   4502   // C++11 [expr.cond]p5
   4503   //   Otherwise, the result is a prvalue. If the second and third operands
   4504   //   do not have the same type, and either has (cv) class type, ...
   4505   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
   4506     //   ... overload resolution is used to determine the conversions (if any)
   4507     //   to be applied to the operands. If the overload resolution fails, the
   4508     //   program is ill-formed.
   4509     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
   4510       return QualType();
   4511   }
   4512 
   4513   // C++11 [expr.cond]p6
   4514   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
   4515   //   conversions are performed on the second and third operands.
   4516   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
   4517   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
   4518   if (LHS.isInvalid() || RHS.isInvalid())
   4519     return QualType();
   4520   LTy = LHS.get()->getType();
   4521   RTy = RHS.get()->getType();
   4522 
   4523   //   After those conversions, one of the following shall hold:
   4524   //   -- The second and third operands have the same type; the result
   4525   //      is of that type. If the operands have class type, the result
   4526   //      is a prvalue temporary of the result type, which is
   4527   //      copy-initialized from either the second operand or the third
   4528   //      operand depending on the value of the first operand.
   4529   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
   4530     if (LTy->isRecordType()) {
   4531       // The operands have class type. Make a temporary copy.
   4532       if (RequireNonAbstractType(QuestionLoc, LTy,
   4533                                  diag::err_allocation_of_abstract_type))
   4534         return QualType();
   4535       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
   4536 
   4537       ExprResult LHSCopy = PerformCopyInitialization(Entity,
   4538                                                      SourceLocation(),
   4539                                                      LHS);
   4540       if (LHSCopy.isInvalid())
   4541         return QualType();
   4542 
   4543       ExprResult RHSCopy = PerformCopyInitialization(Entity,
   4544                                                      SourceLocation(),
   4545                                                      RHS);
   4546       if (RHSCopy.isInvalid())
   4547         return QualType();
   4548 
   4549       LHS = LHSCopy;
   4550       RHS = RHSCopy;
   4551     }
   4552 
   4553     return LTy;
   4554   }
   4555 
   4556   // Extension: conditional operator involving vector types.
   4557   if (LTy->isVectorType() || RTy->isVectorType())
   4558     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
   4559 
   4560   //   -- The second and third operands have arithmetic or enumeration type;
   4561   //      the usual arithmetic conversions are performed to bring them to a
   4562   //      common type, and the result is of that type.
   4563   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
   4564     UsualArithmeticConversions(LHS, RHS);
   4565     if (LHS.isInvalid() || RHS.isInvalid())
   4566       return QualType();
   4567     return LHS.get()->getType();
   4568   }
   4569 
   4570   //   -- The second and third operands have pointer type, or one has pointer
   4571   //      type and the other is a null pointer constant, or both are null
   4572   //      pointer constants, at least one of which is non-integral; pointer
   4573   //      conversions and qualification conversions are performed to bring them
   4574   //      to their composite pointer type. The result is of the composite
   4575   //      pointer type.
   4576   //   -- The second and third operands have pointer to member type, or one has
   4577   //      pointer to member type and the other is a null pointer constant;
   4578   //      pointer to member conversions and qualification conversions are
   4579   //      performed to bring them to a common type, whose cv-qualification
   4580   //      shall match the cv-qualification of either the second or the third
   4581   //      operand. The result is of the common type.
   4582   bool NonStandardCompositeType = false;
   4583   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
   4584                                  isSFINAEContext() ? nullptr
   4585                                                    : &NonStandardCompositeType);
   4586   if (!Composite.isNull()) {
   4587     if (NonStandardCompositeType)
   4588       Diag(QuestionLoc,
   4589            diag::ext_typecheck_cond_incompatible_operands_nonstandard)
   4590         << LTy << RTy << Composite
   4591         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4592 
   4593     return Composite;
   4594   }
   4595 
   4596   // Similarly, attempt to find composite type of two objective-c pointers.
   4597   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
   4598   if (!Composite.isNull())
   4599     return Composite;
   4600 
   4601   // Check if we are using a null with a non-pointer type.
   4602   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
   4603     return QualType();
   4604 
   4605   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   4606     << LHS.get()->getType() << RHS.get()->getType()
   4607     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4608   return QualType();
   4609 }
   4610 
   4611 /// \brief Find a merged pointer type and convert the two expressions to it.
   4612 ///
   4613 /// This finds the composite pointer type (or member pointer type) for @p E1
   4614 /// and @p E2 according to C++11 5.9p2. It converts both expressions to this
   4615 /// type and returns it.
   4616 /// It does not emit diagnostics.
   4617 ///
   4618 /// \param Loc The location of the operator requiring these two expressions to
   4619 /// be converted to the composite pointer type.
   4620 ///
   4621 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
   4622 /// a non-standard (but still sane) composite type to which both expressions
   4623 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
   4624 /// will be set true.
   4625 QualType Sema::FindCompositePointerType(SourceLocation Loc,
   4626                                         Expr *&E1, Expr *&E2,
   4627                                         bool *NonStandardCompositeType) {
   4628   if (NonStandardCompositeType)
   4629     *NonStandardCompositeType = false;
   4630 
   4631   assert(getLangOpts().CPlusPlus && "This function assumes C++");
   4632   QualType T1 = E1->getType(), T2 = E2->getType();
   4633 
   4634   // C++11 5.9p2
   4635   //   Pointer conversions and qualification conversions are performed on
   4636   //   pointer operands to bring them to their composite pointer type. If
   4637   //   one operand is a null pointer constant, the composite pointer type is
   4638   //   std::nullptr_t if the other operand is also a null pointer constant or,
   4639   //   if the other operand is a pointer, the type of the other operand.
   4640   if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
   4641       !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
   4642     if (T1->isNullPtrType() &&
   4643         E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   4644       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
   4645       return T1;
   4646     }
   4647     if (T2->isNullPtrType() &&
   4648         E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   4649       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
   4650       return T2;
   4651     }
   4652     return QualType();
   4653   }
   4654 
   4655   if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   4656     if (T2->isMemberPointerType())
   4657       E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).get();
   4658     else
   4659       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
   4660     return T2;
   4661   }
   4662   if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   4663     if (T1->isMemberPointerType())
   4664       E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).get();
   4665     else
   4666       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
   4667     return T1;
   4668   }
   4669 
   4670   // Now both have to be pointers or member pointers.
   4671   if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
   4672       (!T2->isPointerType() && !T2->isMemberPointerType()))
   4673     return QualType();
   4674 
   4675   //   Otherwise, of one of the operands has type "pointer to cv1 void," then
   4676   //   the other has type "pointer to cv2 T" and the composite pointer type is
   4677   //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
   4678   //   Otherwise, the composite pointer type is a pointer type similar to the
   4679   //   type of one of the operands, with a cv-qualification signature that is
   4680   //   the union of the cv-qualification signatures of the operand types.
   4681   // In practice, the first part here is redundant; it's subsumed by the second.
   4682   // What we do here is, we build the two possible composite types, and try the
   4683   // conversions in both directions. If only one works, or if the two composite
   4684   // types are the same, we have succeeded.
   4685   // FIXME: extended qualifiers?
   4686   typedef SmallVector<unsigned, 4> QualifierVector;
   4687   QualifierVector QualifierUnion;
   4688   typedef SmallVector<std::pair<const Type *, const Type *>, 4>
   4689       ContainingClassVector;
   4690   ContainingClassVector MemberOfClass;
   4691   QualType Composite1 = Context.getCanonicalType(T1),
   4692            Composite2 = Context.getCanonicalType(T2);
   4693   unsigned NeedConstBefore = 0;
   4694   do {
   4695     const PointerType *Ptr1, *Ptr2;
   4696     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
   4697         (Ptr2 = Composite2->getAs<PointerType>())) {
   4698       Composite1 = Ptr1->getPointeeType();
   4699       Composite2 = Ptr2->getPointeeType();
   4700 
   4701       // If we're allowed to create a non-standard composite type, keep track
   4702       // of where we need to fill in additional 'const' qualifiers.
   4703       if (NonStandardCompositeType &&
   4704           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
   4705         NeedConstBefore = QualifierUnion.size();
   4706 
   4707       QualifierUnion.push_back(
   4708                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
   4709       MemberOfClass.push_back(std::make_pair(nullptr, nullptr));
   4710       continue;
   4711     }
   4712 
   4713     const MemberPointerType *MemPtr1, *MemPtr2;
   4714     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
   4715         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
   4716       Composite1 = MemPtr1->getPointeeType();
   4717       Composite2 = MemPtr2->getPointeeType();
   4718 
   4719       // If we're allowed to create a non-standard composite type, keep track
   4720       // of where we need to fill in additional 'const' qualifiers.
   4721       if (NonStandardCompositeType &&
   4722           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
   4723         NeedConstBefore = QualifierUnion.size();
   4724 
   4725       QualifierUnion.push_back(
   4726                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
   4727       MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
   4728                                              MemPtr2->getClass()));
   4729       continue;
   4730     }
   4731 
   4732     // FIXME: block pointer types?
   4733 
   4734     // Cannot unwrap any more types.
   4735     break;
   4736   } while (true);
   4737 
   4738   if (NeedConstBefore && NonStandardCompositeType) {
   4739     // Extension: Add 'const' to qualifiers that come before the first qualifier
   4740     // mismatch, so that our (non-standard!) composite type meets the
   4741     // requirements of C++ [conv.qual]p4 bullet 3.
   4742     for (unsigned I = 0; I != NeedConstBefore; ++I) {
   4743       if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
   4744         QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
   4745         *NonStandardCompositeType = true;
   4746       }
   4747     }
   4748   }
   4749 
   4750   // Rewrap the composites as pointers or member pointers with the union CVRs.
   4751   ContainingClassVector::reverse_iterator MOC
   4752     = MemberOfClass.rbegin();
   4753   for (QualifierVector::reverse_iterator
   4754          I = QualifierUnion.rbegin(),
   4755          E = QualifierUnion.rend();
   4756        I != E; (void)++I, ++MOC) {
   4757     Qualifiers Quals = Qualifiers::fromCVRMask(*I);
   4758     if (MOC->first && MOC->second) {
   4759       // Rebuild member pointer type
   4760       Composite1 = Context.getMemberPointerType(
   4761                                     Context.getQualifiedType(Composite1, Quals),
   4762                                     MOC->first);
   4763       Composite2 = Context.getMemberPointerType(
   4764                                     Context.getQualifiedType(Composite2, Quals),
   4765                                     MOC->second);
   4766     } else {
   4767       // Rebuild pointer type
   4768       Composite1
   4769         = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
   4770       Composite2
   4771         = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
   4772     }
   4773   }
   4774 
   4775   // Try to convert to the first composite pointer type.
   4776   InitializedEntity Entity1
   4777     = InitializedEntity::InitializeTemporary(Composite1);
   4778   InitializationKind Kind
   4779     = InitializationKind::CreateCopy(Loc, SourceLocation());
   4780   InitializationSequence E1ToC1(*this, Entity1, Kind, E1);
   4781   InitializationSequence E2ToC1(*this, Entity1, Kind, E2);
   4782 
   4783   if (E1ToC1 && E2ToC1) {
   4784     // Conversion to Composite1 is viable.
   4785     if (!Context.hasSameType(Composite1, Composite2)) {
   4786       // Composite2 is a different type from Composite1. Check whether
   4787       // Composite2 is also viable.
   4788       InitializedEntity Entity2
   4789         = InitializedEntity::InitializeTemporary(Composite2);
   4790       InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
   4791       InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
   4792       if (E1ToC2 && E2ToC2) {
   4793         // Both Composite1 and Composite2 are viable and are different;
   4794         // this is an ambiguity.
   4795         return QualType();
   4796       }
   4797     }
   4798 
   4799     // Convert E1 to Composite1
   4800     ExprResult E1Result
   4801       = E1ToC1.Perform(*this, Entity1, Kind, E1);
   4802     if (E1Result.isInvalid())
   4803       return QualType();
   4804     E1 = E1Result.getAs<Expr>();
   4805 
   4806     // Convert E2 to Composite1
   4807     ExprResult E2Result
   4808       = E2ToC1.Perform(*this, Entity1, Kind, E2);
   4809     if (E2Result.isInvalid())
   4810       return QualType();
   4811     E2 = E2Result.getAs<Expr>();
   4812 
   4813     return Composite1;
   4814   }
   4815 
   4816   // Check whether Composite2 is viable.
   4817   InitializedEntity Entity2
   4818     = InitializedEntity::InitializeTemporary(Composite2);
   4819   InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
   4820   InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
   4821   if (!E1ToC2 || !E2ToC2)
   4822     return QualType();
   4823 
   4824   // Convert E1 to Composite2
   4825   ExprResult E1Result
   4826     = E1ToC2.Perform(*this, Entity2, Kind, E1);
   4827   if (E1Result.isInvalid())
   4828     return QualType();
   4829   E1 = E1Result.getAs<Expr>();
   4830 
   4831   // Convert E2 to Composite2
   4832   ExprResult E2Result
   4833     = E2ToC2.Perform(*this, Entity2, Kind, E2);
   4834   if (E2Result.isInvalid())
   4835     return QualType();
   4836   E2 = E2Result.getAs<Expr>();
   4837 
   4838   return Composite2;
   4839 }
   4840 
   4841 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
   4842   if (!E)
   4843     return ExprError();
   4844 
   4845   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
   4846 
   4847   // If the result is a glvalue, we shouldn't bind it.
   4848   if (!E->isRValue())
   4849     return E;
   4850 
   4851   // In ARC, calls that return a retainable type can return retained,
   4852   // in which case we have to insert a consuming cast.
   4853   if (getLangOpts().ObjCAutoRefCount &&
   4854       E->getType()->isObjCRetainableType()) {
   4855 
   4856     bool ReturnsRetained;
   4857 
   4858     // For actual calls, we compute this by examining the type of the
   4859     // called value.
   4860     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
   4861       Expr *Callee = Call->getCallee()->IgnoreParens();
   4862       QualType T = Callee->getType();
   4863 
   4864       if (T == Context.BoundMemberTy) {
   4865         // Handle pointer-to-members.
   4866         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
   4867           T = BinOp->getRHS()->getType();
   4868         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
   4869           T = Mem->getMemberDecl()->getType();
   4870       }
   4871 
   4872       if (const PointerType *Ptr = T->getAs<PointerType>())
   4873         T = Ptr->getPointeeType();
   4874       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
   4875         T = Ptr->getPointeeType();
   4876       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
   4877         T = MemPtr->getPointeeType();
   4878 
   4879       const FunctionType *FTy = T->getAs<FunctionType>();
   4880       assert(FTy && "call to value not of function type?");
   4881       ReturnsRetained = FTy->getExtInfo().getProducesResult();
   4882 
   4883     // ActOnStmtExpr arranges things so that StmtExprs of retainable
   4884     // type always produce a +1 object.
   4885     } else if (isa<StmtExpr>(E)) {
   4886       ReturnsRetained = true;
   4887 
   4888     // We hit this case with the lambda conversion-to-block optimization;
   4889     // we don't want any extra casts here.
   4890     } else if (isa<CastExpr>(E) &&
   4891                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
   4892       return E;
   4893 
   4894     // For message sends and property references, we try to find an
   4895     // actual method.  FIXME: we should infer retention by selector in
   4896     // cases where we don't have an actual method.
   4897     } else {
   4898       ObjCMethodDecl *D = nullptr;
   4899       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
   4900         D = Send->getMethodDecl();
   4901       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
   4902         D = BoxedExpr->getBoxingMethod();
   4903       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
   4904         D = ArrayLit->getArrayWithObjectsMethod();
   4905       } else if (ObjCDictionaryLiteral *DictLit
   4906                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
   4907         D = DictLit->getDictWithObjectsMethod();
   4908       }
   4909 
   4910       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
   4911 
   4912       // Don't do reclaims on performSelector calls; despite their
   4913       // return type, the invoked method doesn't necessarily actually
   4914       // return an object.
   4915       if (!ReturnsRetained &&
   4916           D && D->getMethodFamily() == OMF_performSelector)
   4917         return E;
   4918     }
   4919 
   4920     // Don't reclaim an object of Class type.
   4921     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
   4922       return E;
   4923 
   4924     ExprNeedsCleanups = true;
   4925 
   4926     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
   4927                                    : CK_ARCReclaimReturnedObject);
   4928     return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
   4929                                     VK_RValue);
   4930   }
   4931 
   4932   if (!getLangOpts().CPlusPlus)
   4933     return E;
   4934 
   4935   // Search for the base element type (cf. ASTContext::getBaseElementType) with
   4936   // a fast path for the common case that the type is directly a RecordType.
   4937   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
   4938   const RecordType *RT = nullptr;
   4939   while (!RT) {
   4940     switch (T->getTypeClass()) {
   4941     case Type::Record:
   4942       RT = cast<RecordType>(T);
   4943       break;
   4944     case Type::ConstantArray:
   4945     case Type::IncompleteArray:
   4946     case Type::VariableArray:
   4947     case Type::DependentSizedArray:
   4948       T = cast<ArrayType>(T)->getElementType().getTypePtr();
   4949       break;
   4950     default:
   4951       return E;
   4952     }
   4953   }
   4954 
   4955   // That should be enough to guarantee that this type is complete, if we're
   4956   // not processing a decltype expression.
   4957   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   4958   if (RD->isInvalidDecl() || RD->isDependentContext())
   4959     return E;
   4960 
   4961   bool IsDecltype = ExprEvalContexts.back().IsDecltype;
   4962   CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
   4963 
   4964   if (Destructor) {
   4965     MarkFunctionReferenced(E->getExprLoc(), Destructor);
   4966     CheckDestructorAccess(E->getExprLoc(), Destructor,
   4967                           PDiag(diag::err_access_dtor_temp)
   4968                             << E->getType());
   4969     if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
   4970       return ExprError();
   4971 
   4972     // If destructor is trivial, we can avoid the extra copy.
   4973     if (Destructor->isTrivial())
   4974       return E;
   4975 
   4976     // We need a cleanup, but we don't need to remember the temporary.
   4977     ExprNeedsCleanups = true;
   4978   }
   4979 
   4980   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
   4981   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
   4982 
   4983   if (IsDecltype)
   4984     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
   4985 
   4986   return Bind;
   4987 }
   4988 
   4989 ExprResult
   4990 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
   4991   if (SubExpr.isInvalid())
   4992     return ExprError();
   4993 
   4994   return MaybeCreateExprWithCleanups(SubExpr.get());
   4995 }
   4996 
   4997 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
   4998   assert(SubExpr && "subexpression can't be null!");
   4999 
   5000   CleanupVarDeclMarking();
   5001 
   5002   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
   5003   assert(ExprCleanupObjects.size() >= FirstCleanup);
   5004   assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
   5005   if (!ExprNeedsCleanups)
   5006     return SubExpr;
   5007 
   5008   ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
   5009     = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
   5010                          ExprCleanupObjects.size() - FirstCleanup);
   5011 
   5012   Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
   5013   DiscardCleanupsInEvaluationContext();
   5014 
   5015   return E;
   5016 }
   5017 
   5018 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
   5019   assert(SubStmt && "sub-statement can't be null!");
   5020 
   5021   CleanupVarDeclMarking();
   5022 
   5023   if (!ExprNeedsCleanups)
   5024     return SubStmt;
   5025 
   5026   // FIXME: In order to attach the temporaries, wrap the statement into
   5027   // a StmtExpr; currently this is only used for asm statements.
   5028   // This is hacky, either create a new CXXStmtWithTemporaries statement or
   5029   // a new AsmStmtWithTemporaries.
   5030   CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
   5031                                                       SourceLocation(),
   5032                                                       SourceLocation());
   5033   Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
   5034                                    SourceLocation());
   5035   return MaybeCreateExprWithCleanups(E);
   5036 }
   5037 
   5038 /// Process the expression contained within a decltype. For such expressions,
   5039 /// certain semantic checks on temporaries are delayed until this point, and
   5040 /// are omitted for the 'topmost' call in the decltype expression. If the
   5041 /// topmost call bound a temporary, strip that temporary off the expression.
   5042 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
   5043   assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
   5044 
   5045   // C++11 [expr.call]p11:
   5046   //   If a function call is a prvalue of object type,
   5047   // -- if the function call is either
   5048   //   -- the operand of a decltype-specifier, or
   5049   //   -- the right operand of a comma operator that is the operand of a
   5050   //      decltype-specifier,
   5051   //   a temporary object is not introduced for the prvalue.
   5052 
   5053   // Recursively rebuild ParenExprs and comma expressions to strip out the
   5054   // outermost CXXBindTemporaryExpr, if any.
   5055   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
   5056     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
   5057     if (SubExpr.isInvalid())
   5058       return ExprError();
   5059     if (SubExpr.get() == PE->getSubExpr())
   5060       return E;
   5061     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
   5062   }
   5063   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   5064     if (BO->getOpcode() == BO_Comma) {
   5065       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
   5066       if (RHS.isInvalid())
   5067         return ExprError();
   5068       if (RHS.get() == BO->getRHS())
   5069         return E;
   5070       return new (Context) BinaryOperator(
   5071           BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(),
   5072           BO->getObjectKind(), BO->getOperatorLoc(), BO->isFPContractable());
   5073     }
   5074   }
   5075 
   5076   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
   5077   CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
   5078                               : nullptr;
   5079   if (TopCall)
   5080     E = TopCall;
   5081   else
   5082     TopBind = nullptr;
   5083 
   5084   // Disable the special decltype handling now.
   5085   ExprEvalContexts.back().IsDecltype = false;
   5086 
   5087   // In MS mode, don't perform any extra checking of call return types within a
   5088   // decltype expression.
   5089   if (getLangOpts().MSVCCompat)
   5090     return E;
   5091 
   5092   // Perform the semantic checks we delayed until this point.
   5093   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
   5094        I != N; ++I) {
   5095     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
   5096     if (Call == TopCall)
   5097       continue;
   5098 
   5099     if (CheckCallReturnType(Call->getCallReturnType(),
   5100                             Call->getLocStart(),
   5101                             Call, Call->getDirectCallee()))
   5102       return ExprError();
   5103   }
   5104 
   5105   // Now all relevant types are complete, check the destructors are accessible
   5106   // and non-deleted, and annotate them on the temporaries.
   5107   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
   5108        I != N; ++I) {
   5109     CXXBindTemporaryExpr *Bind =
   5110       ExprEvalContexts.back().DelayedDecltypeBinds[I];
   5111     if (Bind == TopBind)
   5112       continue;
   5113 
   5114     CXXTemporary *Temp = Bind->getTemporary();
   5115 
   5116     CXXRecordDecl *RD =
   5117       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
   5118     CXXDestructorDecl *Destructor = LookupDestructor(RD);
   5119     Temp->setDestructor(Destructor);
   5120 
   5121     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
   5122     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
   5123                           PDiag(diag::err_access_dtor_temp)
   5124                             << Bind->getType());
   5125     if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
   5126       return ExprError();
   5127 
   5128     // We need a cleanup, but we don't need to remember the temporary.
   5129     ExprNeedsCleanups = true;
   5130   }
   5131 
   5132   // Possibly strip off the top CXXBindTemporaryExpr.
   5133   return E;
   5134 }
   5135 
   5136 /// Note a set of 'operator->' functions that were used for a member access.
   5137 static void noteOperatorArrows(Sema &S,
   5138                                ArrayRef<FunctionDecl *> OperatorArrows) {
   5139   unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
   5140   // FIXME: Make this configurable?
   5141   unsigned Limit = 9;
   5142   if (OperatorArrows.size() > Limit) {
   5143     // Produce Limit-1 normal notes and one 'skipping' note.
   5144     SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
   5145     SkipCount = OperatorArrows.size() - (Limit - 1);
   5146   }
   5147 
   5148   for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
   5149     if (I == SkipStart) {
   5150       S.Diag(OperatorArrows[I]->getLocation(),
   5151              diag::note_operator_arrows_suppressed)
   5152           << SkipCount;
   5153       I += SkipCount;
   5154     } else {
   5155       S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
   5156           << OperatorArrows[I]->getCallResultType();
   5157       ++I;
   5158     }
   5159   }
   5160 }
   5161 
   5162 ExprResult
   5163 Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
   5164                                    tok::TokenKind OpKind, ParsedType &ObjectType,
   5165                                    bool &MayBePseudoDestructor) {
   5166   // Since this might be a postfix expression, get rid of ParenListExprs.
   5167   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
   5168   if (Result.isInvalid()) return ExprError();
   5169   Base = Result.get();
   5170 
   5171   Result = CheckPlaceholderExpr(Base);
   5172   if (Result.isInvalid()) return ExprError();
   5173   Base = Result.get();
   5174 
   5175   QualType BaseType = Base->getType();
   5176   MayBePseudoDestructor = false;
   5177   if (BaseType->isDependentType()) {
   5178     // If we have a pointer to a dependent type and are using the -> operator,
   5179     // the object type is the type that the pointer points to. We might still
   5180     // have enough information about that type to do something useful.
   5181     if (OpKind == tok::arrow)
   5182       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
   5183         BaseType = Ptr->getPointeeType();
   5184 
   5185     ObjectType = ParsedType::make(BaseType);
   5186     MayBePseudoDestructor = true;
   5187     return Base;
   5188   }
   5189 
   5190   // C++ [over.match.oper]p8:
   5191   //   [...] When operator->returns, the operator-> is applied  to the value
   5192   //   returned, with the original second operand.
   5193   if (OpKind == tok::arrow) {
   5194     QualType StartingType = BaseType;
   5195     bool NoArrowOperatorFound = false;
   5196     bool FirstIteration = true;
   5197     FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
   5198     // The set of types we've considered so far.
   5199     llvm::SmallPtrSet<CanQualType,8> CTypes;
   5200     SmallVector<FunctionDecl*, 8> OperatorArrows;
   5201     CTypes.insert(Context.getCanonicalType(BaseType));
   5202 
   5203     while (BaseType->isRecordType()) {
   5204       if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
   5205         Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
   5206           << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
   5207         noteOperatorArrows(*this, OperatorArrows);
   5208         Diag(OpLoc, diag::note_operator_arrow_depth)
   5209           << getLangOpts().ArrowDepth;
   5210         return ExprError();
   5211       }
   5212 
   5213       Result = BuildOverloadedArrowExpr(
   5214           S, Base, OpLoc,
   5215           // When in a template specialization and on the first loop iteration,
   5216           // potentially give the default diagnostic (with the fixit in a
   5217           // separate note) instead of having the error reported back to here
   5218           // and giving a diagnostic with a fixit attached to the error itself.
   5219           (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
   5220               ? nullptr
   5221               : &NoArrowOperatorFound);
   5222       if (Result.isInvalid()) {
   5223         if (NoArrowOperatorFound) {
   5224           if (FirstIteration) {
   5225             Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
   5226               << BaseType << 1 << Base->getSourceRange()
   5227               << FixItHint::CreateReplacement(OpLoc, ".");
   5228             OpKind = tok::period;
   5229             break;
   5230           }
   5231           Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
   5232             << BaseType << Base->getSourceRange();
   5233           CallExpr *CE = dyn_cast<CallExpr>(Base);
   5234           if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
   5235             Diag(CD->getLocStart(),
   5236                  diag::note_member_reference_arrow_from_operator_arrow);
   5237           }
   5238         }
   5239         return ExprError();
   5240       }
   5241       Base = Result.get();
   5242       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
   5243         OperatorArrows.push_back(OpCall->getDirectCallee());
   5244       BaseType = Base->getType();
   5245       CanQualType CBaseType = Context.getCanonicalType(BaseType);
   5246       if (!CTypes.insert(CBaseType)) {
   5247         Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
   5248         noteOperatorArrows(*this, OperatorArrows);
   5249         return ExprError();
   5250       }
   5251       FirstIteration = false;
   5252     }
   5253 
   5254     if (OpKind == tok::arrow &&
   5255         (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
   5256       BaseType = BaseType->getPointeeType();
   5257   }
   5258 
   5259   // Objective-C properties allow "." access on Objective-C pointer types,
   5260   // so adjust the base type to the object type itself.
   5261   if (BaseType->isObjCObjectPointerType())
   5262     BaseType = BaseType->getPointeeType();
   5263 
   5264   // C++ [basic.lookup.classref]p2:
   5265   //   [...] If the type of the object expression is of pointer to scalar
   5266   //   type, the unqualified-id is looked up in the context of the complete
   5267   //   postfix-expression.
   5268   //
   5269   // This also indicates that we could be parsing a pseudo-destructor-name.
   5270   // Note that Objective-C class and object types can be pseudo-destructor
   5271   // expressions or normal member (ivar or property) access expressions.
   5272   if (BaseType->isObjCObjectOrInterfaceType()) {
   5273     MayBePseudoDestructor = true;
   5274   } else if (!BaseType->isRecordType()) {
   5275     ObjectType = ParsedType();
   5276     MayBePseudoDestructor = true;
   5277     return Base;
   5278   }
   5279 
   5280   // The object type must be complete (or dependent), or
   5281   // C++11 [expr.prim.general]p3:
   5282   //   Unlike the object expression in other contexts, *this is not required to
   5283   //   be of complete type for purposes of class member access (5.2.5) outside
   5284   //   the member function body.
   5285   if (!BaseType->isDependentType() &&
   5286       !isThisOutsideMemberFunctionBody(BaseType) &&
   5287       RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
   5288     return ExprError();
   5289 
   5290   // C++ [basic.lookup.classref]p2:
   5291   //   If the id-expression in a class member access (5.2.5) is an
   5292   //   unqualified-id, and the type of the object expression is of a class
   5293   //   type C (or of pointer to a class type C), the unqualified-id is looked
   5294   //   up in the scope of class C. [...]
   5295   ObjectType = ParsedType::make(BaseType);
   5296   return Base;
   5297 }
   5298 
   5299 ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
   5300                                                    Expr *MemExpr) {
   5301   SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
   5302   Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
   5303     << isa<CXXPseudoDestructorExpr>(MemExpr)
   5304     << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
   5305 
   5306   return ActOnCallExpr(/*Scope*/ nullptr,
   5307                        MemExpr,
   5308                        /*LPLoc*/ ExpectedLParenLoc,
   5309                        None,
   5310                        /*RPLoc*/ ExpectedLParenLoc);
   5311 }
   5312 
   5313 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
   5314                    tok::TokenKind& OpKind, SourceLocation OpLoc) {
   5315   if (Base->hasPlaceholderType()) {
   5316     ExprResult result = S.CheckPlaceholderExpr(Base);
   5317     if (result.isInvalid()) return true;
   5318     Base = result.get();
   5319   }
   5320   ObjectType = Base->getType();
   5321 
   5322   // C++ [expr.pseudo]p2:
   5323   //   The left-hand side of the dot operator shall be of scalar type. The
   5324   //   left-hand side of the arrow operator shall be of pointer to scalar type.
   5325   //   This scalar type is the object type.
   5326   // Note that this is rather different from the normal handling for the
   5327   // arrow operator.
   5328   if (OpKind == tok::arrow) {
   5329     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
   5330       ObjectType = Ptr->getPointeeType();
   5331     } else if (!Base->isTypeDependent()) {
   5332       // The user wrote "p->" when she probably meant "p."; fix it.
   5333       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
   5334         << ObjectType << true
   5335         << FixItHint::CreateReplacement(OpLoc, ".");
   5336       if (S.isSFINAEContext())
   5337         return true;
   5338 
   5339       OpKind = tok::period;
   5340     }
   5341   }
   5342 
   5343   return false;
   5344 }
   5345 
   5346 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
   5347                                            SourceLocation OpLoc,
   5348                                            tok::TokenKind OpKind,
   5349                                            const CXXScopeSpec &SS,
   5350                                            TypeSourceInfo *ScopeTypeInfo,
   5351                                            SourceLocation CCLoc,
   5352                                            SourceLocation TildeLoc,
   5353                                          PseudoDestructorTypeStorage Destructed,
   5354                                            bool HasTrailingLParen) {
   5355   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
   5356 
   5357   QualType ObjectType;
   5358   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
   5359     return ExprError();
   5360 
   5361   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
   5362       !ObjectType->isVectorType()) {
   5363     if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
   5364       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
   5365     else {
   5366       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
   5367         << ObjectType << Base->getSourceRange();
   5368       return ExprError();
   5369     }
   5370   }
   5371 
   5372   // C++ [expr.pseudo]p2:
   5373   //   [...] The cv-unqualified versions of the object type and of the type
   5374   //   designated by the pseudo-destructor-name shall be the same type.
   5375   if (DestructedTypeInfo) {
   5376     QualType DestructedType = DestructedTypeInfo->getType();
   5377     SourceLocation DestructedTypeStart
   5378       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
   5379     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
   5380       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
   5381         Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
   5382           << ObjectType << DestructedType << Base->getSourceRange()
   5383           << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
   5384 
   5385         // Recover by setting the destructed type to the object type.
   5386         DestructedType = ObjectType;
   5387         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
   5388                                                            DestructedTypeStart);
   5389         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   5390       } else if (DestructedType.getObjCLifetime() !=
   5391                                                 ObjectType.getObjCLifetime()) {
   5392 
   5393         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
   5394           // Okay: just pretend that the user provided the correctly-qualified
   5395           // type.
   5396         } else {
   5397           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
   5398             << ObjectType << DestructedType << Base->getSourceRange()
   5399             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
   5400         }
   5401 
   5402         // Recover by setting the destructed type to the object type.
   5403         DestructedType = ObjectType;
   5404         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
   5405                                                            DestructedTypeStart);
   5406         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   5407       }
   5408     }
   5409   }
   5410 
   5411   // C++ [expr.pseudo]p2:
   5412   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
   5413   //   form
   5414   //
   5415   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
   5416   //
   5417   //   shall designate the same scalar type.
   5418   if (ScopeTypeInfo) {
   5419     QualType ScopeType = ScopeTypeInfo->getType();
   5420     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
   5421         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
   5422 
   5423       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
   5424            diag::err_pseudo_dtor_type_mismatch)
   5425         << ObjectType << ScopeType << Base->getSourceRange()
   5426         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
   5427 
   5428       ScopeType = QualType();
   5429       ScopeTypeInfo = nullptr;
   5430     }
   5431   }
   5432 
   5433   Expr *Result
   5434     = new (Context) CXXPseudoDestructorExpr(Context, Base,
   5435                                             OpKind == tok::arrow, OpLoc,
   5436                                             SS.getWithLocInContext(Context),
   5437                                             ScopeTypeInfo,
   5438                                             CCLoc,
   5439                                             TildeLoc,
   5440                                             Destructed);
   5441 
   5442   if (HasTrailingLParen)
   5443     return Result;
   5444 
   5445   return DiagnoseDtorReference(Destructed.getLocation(), Result);
   5446 }
   5447 
   5448 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
   5449                                            SourceLocation OpLoc,
   5450                                            tok::TokenKind OpKind,
   5451                                            CXXScopeSpec &SS,
   5452                                            UnqualifiedId &FirstTypeName,
   5453                                            SourceLocation CCLoc,
   5454                                            SourceLocation TildeLoc,
   5455                                            UnqualifiedId &SecondTypeName,
   5456                                            bool HasTrailingLParen) {
   5457   assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   5458           FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
   5459          "Invalid first type name in pseudo-destructor");
   5460   assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   5461           SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
   5462          "Invalid second type name in pseudo-destructor");
   5463 
   5464   QualType ObjectType;
   5465   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
   5466     return ExprError();
   5467 
   5468   // Compute the object type that we should use for name lookup purposes. Only
   5469   // record types and dependent types matter.
   5470   ParsedType ObjectTypePtrForLookup;
   5471   if (!SS.isSet()) {
   5472     if (ObjectType->isRecordType())
   5473       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
   5474     else if (ObjectType->isDependentType())
   5475       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
   5476   }
   5477 
   5478   // Convert the name of the type being destructed (following the ~) into a
   5479   // type (with source-location information).
   5480   QualType DestructedType;
   5481   TypeSourceInfo *DestructedTypeInfo = nullptr;
   5482   PseudoDestructorTypeStorage Destructed;
   5483   if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
   5484     ParsedType T = getTypeName(*SecondTypeName.Identifier,
   5485                                SecondTypeName.StartLocation,
   5486                                S, &SS, true, false, ObjectTypePtrForLookup);
   5487     if (!T &&
   5488         ((SS.isSet() && !computeDeclContext(SS, false)) ||
   5489          (!SS.isSet() && ObjectType->isDependentType()))) {
   5490       // The name of the type being destroyed is a dependent name, and we
   5491       // couldn't find anything useful in scope. Just store the identifier and
   5492       // it's location, and we'll perform (qualified) name lookup again at
   5493       // template instantiation time.
   5494       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
   5495                                                SecondTypeName.StartLocation);
   5496     } else if (!T) {
   5497       Diag(SecondTypeName.StartLocation,
   5498            diag::err_pseudo_dtor_destructor_non_type)
   5499         << SecondTypeName.Identifier << ObjectType;
   5500       if (isSFINAEContext())
   5501         return ExprError();
   5502 
   5503       // Recover by assuming we had the right type all along.
   5504       DestructedType = ObjectType;
   5505     } else
   5506       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
   5507   } else {
   5508     // Resolve the template-id to a type.
   5509     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
   5510     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
   5511                                        TemplateId->NumArgs);
   5512     TypeResult T = ActOnTemplateIdType(TemplateId->SS,
   5513                                        TemplateId->TemplateKWLoc,
   5514                                        TemplateId->Template,
   5515                                        TemplateId->TemplateNameLoc,
   5516                                        TemplateId->LAngleLoc,
   5517                                        TemplateArgsPtr,
   5518                                        TemplateId->RAngleLoc);
   5519     if (T.isInvalid() || !T.get()) {
   5520       // Recover by assuming we had the right type all along.
   5521       DestructedType = ObjectType;
   5522     } else
   5523       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
   5524   }
   5525 
   5526   // If we've performed some kind of recovery, (re-)build the type source
   5527   // information.
   5528   if (!DestructedType.isNull()) {
   5529     if (!DestructedTypeInfo)
   5530       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
   5531                                                   SecondTypeName.StartLocation);
   5532     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   5533   }
   5534 
   5535   // Convert the name of the scope type (the type prior to '::') into a type.
   5536   TypeSourceInfo *ScopeTypeInfo = nullptr;
   5537   QualType ScopeType;
   5538   if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   5539       FirstTypeName.Identifier) {
   5540     if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
   5541       ParsedType T = getTypeName(*FirstTypeName.Identifier,
   5542                                  FirstTypeName.StartLocation,
   5543                                  S, &SS, true, false, ObjectTypePtrForLookup);
   5544       if (!T) {
   5545         Diag(FirstTypeName.StartLocation,
   5546              diag::err_pseudo_dtor_destructor_non_type)
   5547           << FirstTypeName.Identifier << ObjectType;
   5548 
   5549         if (isSFINAEContext())
   5550           return ExprError();
   5551 
   5552         // Just drop this type. It's unnecessary anyway.
   5553         ScopeType = QualType();
   5554       } else
   5555         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
   5556     } else {
   5557       // Resolve the template-id to a type.
   5558       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
   5559       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
   5560                                          TemplateId->NumArgs);
   5561       TypeResult T = ActOnTemplateIdType(TemplateId->SS,
   5562                                          TemplateId->TemplateKWLoc,
   5563                                          TemplateId->Template,
   5564                                          TemplateId->TemplateNameLoc,
   5565                                          TemplateId->LAngleLoc,
   5566                                          TemplateArgsPtr,
   5567                                          TemplateId->RAngleLoc);
   5568       if (T.isInvalid() || !T.get()) {
   5569         // Recover by dropping this type.
   5570         ScopeType = QualType();
   5571       } else
   5572         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
   5573     }
   5574   }
   5575 
   5576   if (!ScopeType.isNull() && !ScopeTypeInfo)
   5577     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
   5578                                                   FirstTypeName.StartLocation);
   5579 
   5580 
   5581   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
   5582                                    ScopeTypeInfo, CCLoc, TildeLoc,
   5583                                    Destructed, HasTrailingLParen);
   5584 }
   5585 
   5586 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
   5587                                            SourceLocation OpLoc,
   5588                                            tok::TokenKind OpKind,
   5589                                            SourceLocation TildeLoc,
   5590                                            const DeclSpec& DS,
   5591                                            bool HasTrailingLParen) {
   5592   QualType ObjectType;
   5593   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
   5594     return ExprError();
   5595 
   5596   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
   5597 
   5598   TypeLocBuilder TLB;
   5599   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
   5600   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
   5601   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
   5602   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
   5603 
   5604   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
   5605                                    nullptr, SourceLocation(), TildeLoc,
   5606                                    Destructed, HasTrailingLParen);
   5607 }
   5608 
   5609 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
   5610                                         CXXConversionDecl *Method,
   5611                                         bool HadMultipleCandidates) {
   5612   if (Method->getParent()->isLambda() &&
   5613       Method->getConversionType()->isBlockPointerType()) {
   5614     // This is a lambda coversion to block pointer; check if the argument
   5615     // is a LambdaExpr.
   5616     Expr *SubE = E;
   5617     CastExpr *CE = dyn_cast<CastExpr>(SubE);
   5618     if (CE && CE->getCastKind() == CK_NoOp)
   5619       SubE = CE->getSubExpr();
   5620     SubE = SubE->IgnoreParens();
   5621     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
   5622       SubE = BE->getSubExpr();
   5623     if (isa<LambdaExpr>(SubE)) {
   5624       // For the conversion to block pointer on a lambda expression, we
   5625       // construct a special BlockLiteral instead; this doesn't really make
   5626       // a difference in ARC, but outside of ARC the resulting block literal
   5627       // follows the normal lifetime rules for block literals instead of being
   5628       // autoreleased.
   5629       DiagnosticErrorTrap Trap(Diags);
   5630       ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
   5631                                                      E->getExprLoc(),
   5632                                                      Method, E);
   5633       if (Exp.isInvalid())
   5634         Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
   5635       return Exp;
   5636     }
   5637   }
   5638 
   5639   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
   5640                                           FoundDecl, Method);
   5641   if (Exp.isInvalid())
   5642     return true;
   5643 
   5644   MemberExpr *ME =
   5645       new (Context) MemberExpr(Exp.get(), /*IsArrow=*/false, Method,
   5646                                SourceLocation(), Context.BoundMemberTy,
   5647                                VK_RValue, OK_Ordinary);
   5648   if (HadMultipleCandidates)
   5649     ME->setHadMultipleCandidates(true);
   5650   MarkMemberReferenced(ME);
   5651 
   5652   QualType ResultType = Method->getReturnType();
   5653   ExprValueKind VK = Expr::getValueKindForType(ResultType);
   5654   ResultType = ResultType.getNonLValueExprType(Context);
   5655 
   5656   CXXMemberCallExpr *CE =
   5657     new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK,
   5658                                     Exp.get()->getLocEnd());
   5659   return CE;
   5660 }
   5661 
   5662 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
   5663                                       SourceLocation RParen) {
   5664   CanThrowResult CanThrow = canThrow(Operand);
   5665   return new (Context)
   5666       CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
   5667 }
   5668 
   5669 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
   5670                                    Expr *Operand, SourceLocation RParen) {
   5671   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
   5672 }
   5673 
   5674 static bool IsSpecialDiscardedValue(Expr *E) {
   5675   // In C++11, discarded-value expressions of a certain form are special,
   5676   // according to [expr]p10:
   5677   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
   5678   //   expression is an lvalue of volatile-qualified type and it has
   5679   //   one of the following forms:
   5680   E = E->IgnoreParens();
   5681 
   5682   //   - id-expression (5.1.1),
   5683   if (isa<DeclRefExpr>(E))
   5684     return true;
   5685 
   5686   //   - subscripting (5.2.1),
   5687   if (isa<ArraySubscriptExpr>(E))
   5688     return true;
   5689 
   5690   //   - class member access (5.2.5),
   5691   if (isa<MemberExpr>(E))
   5692     return true;
   5693 
   5694   //   - indirection (5.3.1),
   5695   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
   5696     if (UO->getOpcode() == UO_Deref)
   5697       return true;
   5698 
   5699   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   5700     //   - pointer-to-member operation (5.5),
   5701     if (BO->isPtrMemOp())
   5702       return true;
   5703 
   5704     //   - comma expression (5.18) where the right operand is one of the above.
   5705     if (BO->getOpcode() == BO_Comma)
   5706       return IsSpecialDiscardedValue(BO->getRHS());
   5707   }
   5708 
   5709   //   - conditional expression (5.16) where both the second and the third
   5710   //     operands are one of the above, or
   5711   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
   5712     return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
   5713            IsSpecialDiscardedValue(CO->getFalseExpr());
   5714   // The related edge case of "*x ?: *x".
   5715   if (BinaryConditionalOperator *BCO =
   5716           dyn_cast<BinaryConditionalOperator>(E)) {
   5717     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
   5718       return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
   5719              IsSpecialDiscardedValue(BCO->getFalseExpr());
   5720   }
   5721 
   5722   // Objective-C++ extensions to the rule.
   5723   if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
   5724     return true;
   5725 
   5726   return false;
   5727 }
   5728 
   5729 /// Perform the conversions required for an expression used in a
   5730 /// context that ignores the result.
   5731 ExprResult Sema::IgnoredValueConversions(Expr *E) {
   5732   if (E->hasPlaceholderType()) {
   5733     ExprResult result = CheckPlaceholderExpr(E);
   5734     if (result.isInvalid()) return E;
   5735     E = result.get();
   5736   }
   5737 
   5738   // C99 6.3.2.1:
   5739   //   [Except in specific positions,] an lvalue that does not have
   5740   //   array type is converted to the value stored in the
   5741   //   designated object (and is no longer an lvalue).
   5742   if (E->isRValue()) {
   5743     // In C, function designators (i.e. expressions of function type)
   5744     // are r-values, but we still want to do function-to-pointer decay
   5745     // on them.  This is both technically correct and convenient for
   5746     // some clients.
   5747     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
   5748       return DefaultFunctionArrayConversion(E);
   5749 
   5750     return E;
   5751   }
   5752 
   5753   if (getLangOpts().CPlusPlus)  {
   5754     // The C++11 standard defines the notion of a discarded-value expression;
   5755     // normally, we don't need to do anything to handle it, but if it is a
   5756     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
   5757     // conversion.
   5758     if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
   5759         E->getType().isVolatileQualified() &&
   5760         IsSpecialDiscardedValue(E)) {
   5761       ExprResult Res = DefaultLvalueConversion(E);
   5762       if (Res.isInvalid())
   5763         return E;
   5764       E = Res.get();
   5765     }
   5766     return E;
   5767   }
   5768 
   5769   // GCC seems to also exclude expressions of incomplete enum type.
   5770   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
   5771     if (!T->getDecl()->isComplete()) {
   5772       // FIXME: stupid workaround for a codegen bug!
   5773       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
   5774       return E;
   5775     }
   5776   }
   5777 
   5778   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
   5779   if (Res.isInvalid())
   5780     return E;
   5781   E = Res.get();
   5782 
   5783   if (!E->getType()->isVoidType())
   5784     RequireCompleteType(E->getExprLoc(), E->getType(),
   5785                         diag::err_incomplete_type);
   5786   return E;
   5787 }
   5788 
   5789 // If we can unambiguously determine whether Var can never be used
   5790 // in a constant expression, return true.
   5791 //  - if the variable and its initializer are non-dependent, then
   5792 //    we can unambiguously check if the variable is a constant expression.
   5793 //  - if the initializer is not value dependent - we can determine whether
   5794 //    it can be used to initialize a constant expression.  If Init can not
   5795 //    be used to initialize a constant expression we conclude that Var can
   5796 //    never be a constant expression.
   5797 //  - FXIME: if the initializer is dependent, we can still do some analysis and
   5798 //    identify certain cases unambiguously as non-const by using a Visitor:
   5799 //      - such as those that involve odr-use of a ParmVarDecl, involve a new
   5800 //        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
   5801 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
   5802     ASTContext &Context) {
   5803   if (isa<ParmVarDecl>(Var)) return true;
   5804   const VarDecl *DefVD = nullptr;
   5805 
   5806   // If there is no initializer - this can not be a constant expression.
   5807   if (!Var->getAnyInitializer(DefVD)) return true;
   5808   assert(DefVD);
   5809   if (DefVD->isWeak()) return false;
   5810   EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
   5811 
   5812   Expr *Init = cast<Expr>(Eval->Value);
   5813 
   5814   if (Var->getType()->isDependentType() || Init->isValueDependent()) {
   5815     // FIXME: Teach the constant evaluator to deal with the non-dependent parts
   5816     // of value-dependent expressions, and use it here to determine whether the
   5817     // initializer is a potential constant expression.
   5818     return false;
   5819   }
   5820 
   5821   return !IsVariableAConstantExpression(Var, Context);
   5822 }
   5823 
   5824 /// \brief Check if the current lambda has any potential captures
   5825 /// that must be captured by any of its enclosing lambdas that are ready to
   5826 /// capture. If there is a lambda that can capture a nested
   5827 /// potential-capture, go ahead and do so.  Also, check to see if any
   5828 /// variables are uncaptureable or do not involve an odr-use so do not
   5829 /// need to be captured.
   5830 
   5831 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
   5832     Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
   5833 
   5834   assert(!S.isUnevaluatedContext());
   5835   assert(S.CurContext->isDependentContext());
   5836   assert(CurrentLSI->CallOperator == S.CurContext &&
   5837       "The current call operator must be synchronized with Sema's CurContext");
   5838 
   5839   const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
   5840 
   5841   ArrayRef<const FunctionScopeInfo *> FunctionScopesArrayRef(
   5842       S.FunctionScopes.data(), S.FunctionScopes.size());
   5843 
   5844   // All the potentially captureable variables in the current nested
   5845   // lambda (within a generic outer lambda), must be captured by an
   5846   // outer lambda that is enclosed within a non-dependent context.
   5847   const unsigned NumPotentialCaptures =
   5848       CurrentLSI->getNumPotentialVariableCaptures();
   5849   for (unsigned I = 0; I != NumPotentialCaptures; ++I) {
   5850     Expr *VarExpr = nullptr;
   5851     VarDecl *Var = nullptr;
   5852     CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr);
   5853     // If the variable is clearly identified as non-odr-used and the full
   5854     // expression is not instantiation dependent, only then do we not
   5855     // need to check enclosing lambda's for speculative captures.
   5856     // For e.g.:
   5857     // Even though 'x' is not odr-used, it should be captured.
   5858     // int test() {
   5859     //   const int x = 10;
   5860     //   auto L = [=](auto a) {
   5861     //     (void) +x + a;
   5862     //   };
   5863     // }
   5864     if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
   5865         !IsFullExprInstantiationDependent)
   5866       continue;
   5867 
   5868     // If we have a capture-capable lambda for the variable, go ahead and
   5869     // capture the variable in that lambda (and all its enclosing lambdas).
   5870     if (const Optional<unsigned> Index =
   5871             getStackIndexOfNearestEnclosingCaptureCapableLambda(
   5872                 FunctionScopesArrayRef, Var, S)) {
   5873       const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
   5874       MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S,
   5875                          &FunctionScopeIndexOfCapturableLambda);
   5876     }
   5877     const bool IsVarNeverAConstantExpression =
   5878         VariableCanNeverBeAConstantExpression(Var, S.Context);
   5879     if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
   5880       // This full expression is not instantiation dependent or the variable
   5881       // can not be used in a constant expression - which means
   5882       // this variable must be odr-used here, so diagnose a
   5883       // capture violation early, if the variable is un-captureable.
   5884       // This is purely for diagnosing errors early.  Otherwise, this
   5885       // error would get diagnosed when the lambda becomes capture ready.
   5886       QualType CaptureType, DeclRefType;
   5887       SourceLocation ExprLoc = VarExpr->getExprLoc();
   5888       if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
   5889                           /*EllipsisLoc*/ SourceLocation(),
   5890                           /*BuildAndDiagnose*/false, CaptureType,
   5891                           DeclRefType, nullptr)) {
   5892         // We will never be able to capture this variable, and we need
   5893         // to be able to in any and all instantiations, so diagnose it.
   5894         S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
   5895                           /*EllipsisLoc*/ SourceLocation(),
   5896                           /*BuildAndDiagnose*/true, CaptureType,
   5897                           DeclRefType, nullptr);
   5898       }
   5899     }
   5900   }
   5901 
   5902   // Check if 'this' needs to be captured.
   5903   if (CurrentLSI->hasPotentialThisCapture()) {
   5904     // If we have a capture-capable lambda for 'this', go ahead and capture
   5905     // 'this' in that lambda (and all its enclosing lambdas).
   5906     if (const Optional<unsigned> Index =
   5907             getStackIndexOfNearestEnclosingCaptureCapableLambda(
   5908                 FunctionScopesArrayRef, /*0 is 'this'*/ nullptr, S)) {
   5909       const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
   5910       S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
   5911                             /*Explicit*/ false, /*BuildAndDiagnose*/ true,
   5912                             &FunctionScopeIndexOfCapturableLambda);
   5913     }
   5914   }
   5915 
   5916   // Reset all the potential captures at the end of each full-expression.
   5917   CurrentLSI->clearPotentialCaptures();
   5918 }
   5919 
   5920 
   5921 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
   5922                                      bool DiscardedValue,
   5923                                      bool IsConstexpr,
   5924                                      bool IsLambdaInitCaptureInitializer) {
   5925   ExprResult FullExpr = FE;
   5926 
   5927   if (!FullExpr.get())
   5928     return ExprError();
   5929 
   5930   // If we are an init-expression in a lambdas init-capture, we should not
   5931   // diagnose an unexpanded pack now (will be diagnosed once lambda-expr
   5932   // containing full-expression is done).
   5933   // template<class ... Ts> void test(Ts ... t) {
   5934   //   test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now.
   5935   //     return a;
   5936   //   }() ...);
   5937   // }
   5938   // FIXME: This is a hack. It would be better if we pushed the lambda scope
   5939   // when we parse the lambda introducer, and teach capturing (but not
   5940   // unexpanded pack detection) to walk over LambdaScopeInfos which don't have a
   5941   // corresponding class yet (that is, have LambdaScopeInfo either represent a
   5942   // lambda where we've entered the introducer but not the body, or represent a
   5943   // lambda where we've entered the body, depending on where the
   5944   // parser/instantiation has got to).
   5945   if (!IsLambdaInitCaptureInitializer &&
   5946       DiagnoseUnexpandedParameterPack(FullExpr.get()))
   5947     return ExprError();
   5948 
   5949   // Top-level expressions default to 'id' when we're in a debugger.
   5950   if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
   5951       FullExpr.get()->getType() == Context.UnknownAnyTy) {
   5952     FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
   5953     if (FullExpr.isInvalid())
   5954       return ExprError();
   5955   }
   5956 
   5957   if (DiscardedValue) {
   5958     FullExpr = CheckPlaceholderExpr(FullExpr.get());
   5959     if (FullExpr.isInvalid())
   5960       return ExprError();
   5961 
   5962     FullExpr = IgnoredValueConversions(FullExpr.get());
   5963     if (FullExpr.isInvalid())
   5964       return ExprError();
   5965   }
   5966 
   5967   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
   5968 
   5969   // At the end of this full expression (which could be a deeply nested
   5970   // lambda), if there is a potential capture within the nested lambda,
   5971   // have the outer capture-able lambda try and capture it.
   5972   // Consider the following code:
   5973   // void f(int, int);
   5974   // void f(const int&, double);
   5975   // void foo() {
   5976   //  const int x = 10, y = 20;
   5977   //  auto L = [=](auto a) {
   5978   //      auto M = [=](auto b) {
   5979   //         f(x, b); <-- requires x to be captured by L and M
   5980   //         f(y, a); <-- requires y to be captured by L, but not all Ms
   5981   //      };
   5982   //   };
   5983   // }
   5984 
   5985   // FIXME: Also consider what happens for something like this that involves
   5986   // the gnu-extension statement-expressions or even lambda-init-captures:
   5987   //   void f() {
   5988   //     const int n = 0;
   5989   //     auto L =  [&](auto a) {
   5990   //       +n + ({ 0; a; });
   5991   //     };
   5992   //   }
   5993   //
   5994   // Here, we see +n, and then the full-expression 0; ends, so we don't
   5995   // capture n (and instead remove it from our list of potential captures),
   5996   // and then the full-expression +n + ({ 0; }); ends, but it's too late
   5997   // for us to see that we need to capture n after all.
   5998 
   5999   LambdaScopeInfo *const CurrentLSI = getCurLambda();
   6000   // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
   6001   // even if CurContext is not a lambda call operator. Refer to that Bug Report
   6002   // for an example of the code that might cause this asynchrony.
   6003   // By ensuring we are in the context of a lambda's call operator
   6004   // we can fix the bug (we only need to check whether we need to capture
   6005   // if we are within a lambda's body); but per the comments in that
   6006   // PR, a proper fix would entail :
   6007   //   "Alternative suggestion:
   6008   //   - Add to Sema an integer holding the smallest (outermost) scope
   6009   //     index that we are *lexically* within, and save/restore/set to
   6010   //     FunctionScopes.size() in InstantiatingTemplate's
   6011   //     constructor/destructor.
   6012   //  - Teach the handful of places that iterate over FunctionScopes to
   6013   //    stop at the outermost enclosing lexical scope."
   6014   const bool IsInLambdaDeclContext = isLambdaCallOperator(CurContext);
   6015   if (IsInLambdaDeclContext && CurrentLSI &&
   6016       CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
   6017     CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
   6018                                                               *this);
   6019   return MaybeCreateExprWithCleanups(FullExpr);
   6020 }
   6021 
   6022 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
   6023   if (!FullStmt) return StmtError();
   6024 
   6025   return MaybeCreateStmtWithCleanups(FullStmt);
   6026 }
   6027 
   6028 Sema::IfExistsResult
   6029 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
   6030                                    CXXScopeSpec &SS,
   6031                                    const DeclarationNameInfo &TargetNameInfo) {
   6032   DeclarationName TargetName = TargetNameInfo.getName();
   6033   if (!TargetName)
   6034     return IER_DoesNotExist;
   6035 
   6036   // If the name itself is dependent, then the result is dependent.
   6037   if (TargetName.isDependentName())
   6038     return IER_Dependent;
   6039 
   6040   // Do the redeclaration lookup in the current scope.
   6041   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
   6042                  Sema::NotForRedeclaration);
   6043   LookupParsedName(R, S, &SS);
   6044   R.suppressDiagnostics();
   6045 
   6046   switch (R.getResultKind()) {
   6047   case LookupResult::Found:
   6048   case LookupResult::FoundOverloaded:
   6049   case LookupResult::FoundUnresolvedValue:
   6050   case LookupResult::Ambiguous:
   6051     return IER_Exists;
   6052 
   6053   case LookupResult::NotFound:
   6054     return IER_DoesNotExist;
   6055 
   6056   case LookupResult::NotFoundInCurrentInstantiation:
   6057     return IER_Dependent;
   6058   }
   6059 
   6060   llvm_unreachable("Invalid LookupResult Kind!");
   6061 }
   6062 
   6063 Sema::IfExistsResult
   6064 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
   6065                                    bool IsIfExists, CXXScopeSpec &SS,
   6066                                    UnqualifiedId &Name) {
   6067   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
   6068 
   6069   // Check for unexpanded parameter packs.
   6070   SmallVector<UnexpandedParameterPack, 4> Unexpanded;
   6071   collectUnexpandedParameterPacks(SS, Unexpanded);
   6072   collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
   6073   if (!Unexpanded.empty()) {
   6074     DiagnoseUnexpandedParameterPacks(KeywordLoc,
   6075                                      IsIfExists? UPPC_IfExists
   6076                                                : UPPC_IfNotExists,
   6077                                      Unexpanded);
   6078     return IER_Error;
   6079   }
   6080 
   6081   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
   6082 }
   6083