Home | History | Annotate | Download | only in re2
      1 // Copyright 2008 The RE2 Authors.  All Rights Reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // A DFA (deterministic finite automaton)-based regular expression search.
      6 //
      7 // The DFA search has two main parts: the construction of the automaton,
      8 // which is represented by a graph of State structures, and the execution
      9 // of the automaton over a given input string.
     10 //
     11 // The basic idea is that the State graph is constructed so that the
     12 // execution can simply start with a state s, and then for each byte c in
     13 // the input string, execute "s = s->next[c]", checking at each point whether
     14 // the current s represents a matching state.
     15 //
     16 // The simple explanation just given does convey the essence of this code,
     17 // but it omits the details of how the State graph gets constructed as well
     18 // as some performance-driven optimizations to the execution of the automaton.
     19 // All these details are explained in the comments for the code following
     20 // the definition of class DFA.
     21 //
     22 // See http://swtch.com/~rsc/regexp/ for a very bare-bones equivalent.
     23 
     24 #include "re2/prog.h"
     25 #include "re2/stringpiece.h"
     26 #include "util/atomicops.h"
     27 #include "util/flags.h"
     28 #include "util/sparse_set.h"
     29 
     30 #define NO_THREAD_SAFETY_ANALYSIS
     31 
     32 DEFINE_bool(re2_dfa_bail_when_slow, true,
     33             "Whether the RE2 DFA should bail out early "
     34             "if the NFA would be faster (for testing).");
     35 
     36 namespace re2 {
     37 
     38 #if !defined(__linux__)  /* only Linux seems to have memrchr */
     39 static void* memrchr(const void* s, int c, size_t n) {
     40   const unsigned char* p = (const unsigned char*)s;
     41   for (p += n; n > 0; n--)
     42     if (*--p == c)
     43       return (void*)p;
     44 
     45   return NULL;
     46 }
     47 #endif
     48 
     49 // Changing this to true compiles in prints that trace execution of the DFA.
     50 // Generates a lot of output -- only useful for debugging.
     51 static const bool DebugDFA = false;
     52 
     53 // A DFA implementation of a regular expression program.
     54 // Since this is entirely a forward declaration mandated by C++,
     55 // some of the comments here are better understood after reading
     56 // the comments in the sections that follow the DFA definition.
     57 class DFA {
     58  public:
     59   DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem);
     60   ~DFA();
     61   bool ok() const { return !init_failed_; }
     62   Prog::MatchKind kind() { return kind_; }
     63 
     64   // Searches for the regular expression in text, which is considered
     65   // as a subsection of context for the purposes of interpreting flags
     66   // like ^ and $ and \A and \z.
     67   // Returns whether a match was found.
     68   // If a match is found, sets *ep to the end point of the best match in text.
     69   // If "anchored", the match must begin at the start of text.
     70   // If "want_earliest_match", the match that ends first is used, not
     71   //   necessarily the best one.
     72   // If "run_forward" is true, the DFA runs from text.begin() to text.end().
     73   //   If it is false, the DFA runs from text.end() to text.begin(),
     74   //   returning the leftmost end of the match instead of the rightmost one.
     75   // If the DFA cannot complete the search (for example, if it is out of
     76   //   memory), it sets *failed and returns false.
     77   bool Search(const StringPiece& text, const StringPiece& context,
     78               bool anchored, bool want_earliest_match, bool run_forward,
     79               bool* failed, const char** ep, vector<int>* matches);
     80 
     81   // Builds out all states for the entire DFA.  FOR TESTING ONLY
     82   // Returns number of states.
     83   int BuildAllStates();
     84 
     85   // Computes min and max for matching strings.  Won't return strings
     86   // bigger than maxlen.
     87   bool PossibleMatchRange(string* min, string* max, int maxlen);
     88 
     89   // These data structures are logically private, but C++ makes it too
     90   // difficult to mark them as such.
     91   class Workq;
     92   class RWLocker;
     93   class StateSaver;
     94 
     95   // A single DFA state.  The DFA is represented as a graph of these
     96   // States, linked by the next_ pointers.  If in state s and reading
     97   // byte c, the next state should be s->next_[c].
     98   struct State {
     99     inline bool IsMatch() const { return flag_ & kFlagMatch; }
    100     void SaveMatch(vector<int>* v);
    101 
    102     int* inst_;         // Instruction pointers in the state.
    103     int ninst_;         // # of inst_ pointers.
    104     uint flag_;         // Empty string bitfield flags in effect on the way
    105                         // into this state, along with kFlagMatch if this
    106                         // is a matching state.
    107     State** next_;      // Outgoing arrows from State,
    108                         // one per input byte class
    109   };
    110 
    111   enum {
    112     kByteEndText = 256,         // imaginary byte at end of text
    113 
    114     kFlagEmptyMask = 0xFFF,     // State.flag_: bits holding kEmptyXXX flags
    115     kFlagMatch = 0x1000,        // State.flag_: this is a matching state
    116     kFlagLastWord = 0x2000,     // State.flag_: last byte was a word char
    117     kFlagNeedShift = 16,        // needed kEmpty bits are or'ed in shifted left
    118   };
    119 
    120 #ifndef STL_MSVC
    121   // STL function structures for use with unordered_set.
    122   struct StateEqual {
    123     bool operator()(const State* a, const State* b) const {
    124       if (a == b)
    125         return true;
    126       if (a == NULL || b == NULL)
    127         return false;
    128       if (a->ninst_ != b->ninst_)
    129         return false;
    130       if (a->flag_ != b->flag_)
    131         return false;
    132       for (int i = 0; i < a->ninst_; i++)
    133         if (a->inst_[i] != b->inst_[i])
    134           return false;
    135       return true;  // they're equal
    136     }
    137   };
    138 #endif  // STL_MSVC
    139   struct StateHash {
    140     size_t operator()(const State* a) const {
    141       if (a == NULL)
    142         return 0;
    143       const char* s = reinterpret_cast<const char*>(a->inst_);
    144       int len = a->ninst_ * sizeof a->inst_[0];
    145       if (sizeof(size_t) == sizeof(uint32))
    146         return Hash32StringWithSeed(s, len, a->flag_);
    147       else
    148         return Hash64StringWithSeed(s, len, a->flag_);
    149     }
    150 #ifdef STL_MSVC
    151     // Less than operator.
    152     bool operator()(const State* a, const State* b) const {
    153       if (a == b)
    154         return false;
    155       if (a == NULL || b == NULL)
    156         return a == NULL;
    157       if (a->ninst_ != b->ninst_)
    158         return a->ninst_ < b->ninst_;
    159       if (a->flag_ != b->flag_)
    160         return a->flag_ < b->flag_;
    161       for (int i = 0; i < a->ninst_; ++i)
    162         if (a->inst_[i] != b->inst_[i])
    163           return a->inst_[i] < b->inst_[i];
    164       return false;  // they're equal
    165     }
    166     // The two public members are required by msvc. 4 and 8 are default values.
    167     // Reference: http://msdn.microsoft.com/en-us/library/1s1byw77.aspx
    168     static const size_t bucket_size = 4;
    169     static const size_t min_buckets = 8;
    170 #endif  // STL_MSVC
    171   };
    172 
    173 #ifdef STL_MSVC
    174   typedef unordered_set<State*, StateHash> StateSet;
    175 #else  // !STL_MSVC
    176   typedef unordered_set<State*, StateHash, StateEqual> StateSet;
    177 #endif  // STL_MSVC
    178 
    179 
    180  private:
    181   // Special "firstbyte" values for a state.  (Values >= 0 denote actual bytes.)
    182   enum {
    183     kFbUnknown = -1,   // No analysis has been performed.
    184     kFbMany = -2,      // Many bytes will lead out of this state.
    185     kFbNone = -3,      // No bytes lead out of this state.
    186   };
    187 
    188   enum {
    189     // Indices into start_ for unanchored searches.
    190     // Add kStartAnchored for anchored searches.
    191     kStartBeginText = 0,          // text at beginning of context
    192     kStartBeginLine = 2,          // text at beginning of line
    193     kStartAfterWordChar = 4,      // text follows a word character
    194     kStartAfterNonWordChar = 6,   // text follows non-word character
    195     kMaxStart = 8,
    196 
    197     kStartAnchored = 1,
    198   };
    199 
    200   // Resets the DFA State cache, flushing all saved State* information.
    201   // Releases and reacquires cache_mutex_ via cache_lock, so any
    202   // State* existing before the call are not valid after the call.
    203   // Use a StateSaver to preserve important states across the call.
    204   // cache_mutex_.r <= L < mutex_
    205   // After: cache_mutex_.w <= L < mutex_
    206   void ResetCache(RWLocker* cache_lock);
    207 
    208   // Looks up and returns the State corresponding to a Workq.
    209   // L >= mutex_
    210   State* WorkqToCachedState(Workq* q, uint flag);
    211 
    212   // Looks up and returns a State matching the inst, ninst, and flag.
    213   // L >= mutex_
    214   State* CachedState(int* inst, int ninst, uint flag);
    215 
    216   // Clear the cache entirely.
    217   // Must hold cache_mutex_.w or be in destructor.
    218   void ClearCache();
    219 
    220   // Converts a State into a Workq: the opposite of WorkqToCachedState.
    221   // L >= mutex_
    222   static void StateToWorkq(State* s, Workq* q);
    223 
    224   // Runs a State on a given byte, returning the next state.
    225   State* RunStateOnByteUnlocked(State*, int);  // cache_mutex_.r <= L < mutex_
    226   State* RunStateOnByte(State*, int);          // L >= mutex_
    227 
    228   // Runs a Workq on a given byte followed by a set of empty-string flags,
    229   // producing a new Workq in nq.  If a match instruction is encountered,
    230   // sets *ismatch to true.
    231   // L >= mutex_
    232   void RunWorkqOnByte(Workq* q, Workq* nq,
    233                              int c, uint flag, bool* ismatch,
    234                              Prog::MatchKind kind,
    235                              int new_byte_loop);
    236 
    237   // Runs a Workq on a set of empty-string flags, producing a new Workq in nq.
    238   // L >= mutex_
    239   void RunWorkqOnEmptyString(Workq* q, Workq* nq, uint flag);
    240 
    241   // Adds the instruction id to the Workq, following empty arrows
    242   // according to flag.
    243   // L >= mutex_
    244   void AddToQueue(Workq* q, int id, uint flag);
    245 
    246   // For debugging, returns a text representation of State.
    247   static string DumpState(State* state);
    248 
    249   // For debugging, returns a text representation of a Workq.
    250   static string DumpWorkq(Workq* q);
    251 
    252   // Search parameters
    253   struct SearchParams {
    254     SearchParams(const StringPiece& text, const StringPiece& context,
    255                  RWLocker* cache_lock)
    256       : text(text), context(context),
    257         anchored(false),
    258         want_earliest_match(false),
    259         run_forward(false),
    260         start(NULL),
    261         firstbyte(kFbUnknown),
    262         cache_lock(cache_lock),
    263         failed(false),
    264         ep(NULL),
    265         matches(NULL) { }
    266 
    267     StringPiece text;
    268     StringPiece context;
    269     bool anchored;
    270     bool want_earliest_match;
    271     bool run_forward;
    272     State* start;
    273     int firstbyte;
    274     RWLocker *cache_lock;
    275     bool failed;     // "out" parameter: whether search gave up
    276     const char* ep;  // "out" parameter: end pointer for match
    277     vector<int>* matches;
    278 
    279    private:
    280     DISALLOW_EVIL_CONSTRUCTORS(SearchParams);
    281   };
    282 
    283   // Before each search, the parameters to Search are analyzed by
    284   // AnalyzeSearch to determine the state in which to start and the
    285   // "firstbyte" for that state, if any.
    286   struct StartInfo {
    287     StartInfo() : start(NULL), firstbyte(kFbUnknown) { }
    288     State* start;
    289     volatile int firstbyte;
    290   };
    291 
    292   // Fills in params->start and params->firstbyte using
    293   // the other search parameters.  Returns true on success,
    294   // false on failure.
    295   // cache_mutex_.r <= L < mutex_
    296   bool AnalyzeSearch(SearchParams* params);
    297   bool AnalyzeSearchHelper(SearchParams* params, StartInfo* info, uint flags);
    298 
    299   // The generic search loop, inlined to create specialized versions.
    300   // cache_mutex_.r <= L < mutex_
    301   // Might unlock and relock cache_mutex_ via params->cache_lock.
    302   inline bool InlinedSearchLoop(SearchParams* params,
    303                                 bool have_firstbyte,
    304                                 bool want_earliest_match,
    305                                 bool run_forward);
    306 
    307   // The specialized versions of InlinedSearchLoop.  The three letters
    308   // at the ends of the name denote the true/false values used as the
    309   // last three parameters of InlinedSearchLoop.
    310   // cache_mutex_.r <= L < mutex_
    311   // Might unlock and relock cache_mutex_ via params->cache_lock.
    312   bool SearchFFF(SearchParams* params);
    313   bool SearchFFT(SearchParams* params);
    314   bool SearchFTF(SearchParams* params);
    315   bool SearchFTT(SearchParams* params);
    316   bool SearchTFF(SearchParams* params);
    317   bool SearchTFT(SearchParams* params);
    318   bool SearchTTF(SearchParams* params);
    319   bool SearchTTT(SearchParams* params);
    320 
    321   // The main search loop: calls an appropriate specialized version of
    322   // InlinedSearchLoop.
    323   // cache_mutex_.r <= L < mutex_
    324   // Might unlock and relock cache_mutex_ via params->cache_lock.
    325   bool FastSearchLoop(SearchParams* params);
    326 
    327   // For debugging, a slow search loop that calls InlinedSearchLoop
    328   // directly -- because the booleans passed are not constants, the
    329   // loop is not specialized like the SearchFFF etc. versions, so it
    330   // runs much more slowly.  Useful only for debugging.
    331   // cache_mutex_.r <= L < mutex_
    332   // Might unlock and relock cache_mutex_ via params->cache_lock.
    333   bool SlowSearchLoop(SearchParams* params);
    334 
    335   // Looks up bytes in bytemap_ but handles case c == kByteEndText too.
    336   int ByteMap(int c) {
    337     if (c == kByteEndText)
    338       return prog_->bytemap_range();
    339     return prog_->bytemap()[c];
    340   }
    341 
    342   // Constant after initialization.
    343   Prog* prog_;              // The regular expression program to run.
    344   Prog::MatchKind kind_;    // The kind of DFA.
    345   int start_unanchored_;  // start of unanchored program
    346   bool init_failed_;        // initialization failed (out of memory)
    347 
    348   Mutex mutex_;  // mutex_ >= cache_mutex_.r
    349 
    350   // Scratch areas, protected by mutex_.
    351   Workq* q0_;             // Two pre-allocated work queues.
    352   Workq* q1_;
    353   int* astack_;         // Pre-allocated stack for AddToQueue
    354   int nastack_;
    355 
    356   // State* cache.  Many threads use and add to the cache simultaneously,
    357   // holding cache_mutex_ for reading and mutex_ (above) when adding.
    358   // If the cache fills and needs to be discarded, the discarding is done
    359   // while holding cache_mutex_ for writing, to avoid interrupting other
    360   // readers.  Any State* pointers are only valid while cache_mutex_
    361   // is held.
    362   Mutex cache_mutex_;
    363   int64 mem_budget_;       // Total memory budget for all States.
    364   int64 state_budget_;     // Amount of memory remaining for new States.
    365   StateSet state_cache_;   // All States computed so far.
    366   StartInfo start_[kMaxStart];
    367   bool cache_warned_;      // have printed to LOG(INFO) about the cache
    368 };
    369 
    370 // Shorthand for casting to uint8*.
    371 static inline const uint8* BytePtr(const void* v) {
    372   return reinterpret_cast<const uint8*>(v);
    373 }
    374 
    375 // Work queues
    376 
    377 // Marks separate thread groups of different priority
    378 // in the work queue when in leftmost-longest matching mode.
    379 #define Mark (-1)
    380 
    381 // Internally, the DFA uses a sparse array of
    382 // program instruction pointers as a work queue.
    383 // In leftmost longest mode, marks separate sections
    384 // of workq that started executing at different
    385 // locations in the string (earlier locations first).
    386 class DFA::Workq : public SparseSet {
    387  public:
    388   // Constructor: n is number of normal slots, maxmark number of mark slots.
    389   Workq(int n, int maxmark) :
    390     SparseSet(n+maxmark),
    391     n_(n),
    392     maxmark_(maxmark),
    393     nextmark_(n),
    394     last_was_mark_(true) {
    395   }
    396 
    397   bool is_mark(int i) { return i >= n_; }
    398 
    399   int maxmark() { return maxmark_; }
    400 
    401   void clear() {
    402     SparseSet::clear();
    403     nextmark_ = n_;
    404   }
    405 
    406   void mark() {
    407     if (last_was_mark_)
    408       return;
    409     last_was_mark_ = false;
    410     SparseSet::insert_new(nextmark_++);
    411   }
    412 
    413   int size() {
    414     return n_ + maxmark_;
    415   }
    416 
    417   void insert(int id) {
    418     if (contains(id))
    419       return;
    420     insert_new(id);
    421   }
    422 
    423   void insert_new(int id) {
    424     last_was_mark_ = false;
    425     SparseSet::insert_new(id);
    426   }
    427 
    428  private:
    429   int n_;                // size excluding marks
    430   int maxmark_;          // maximum number of marks
    431   int nextmark_;         // id of next mark
    432   bool last_was_mark_;   // last inserted was mark
    433   DISALLOW_EVIL_CONSTRUCTORS(Workq);
    434 };
    435 
    436 DFA::DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem)
    437   : prog_(prog),
    438     kind_(kind),
    439     init_failed_(false),
    440     q0_(NULL),
    441     q1_(NULL),
    442     astack_(NULL),
    443     mem_budget_(max_mem),
    444     cache_warned_(false) {
    445   if (DebugDFA)
    446     fprintf(stderr, "\nkind %d\n%s\n", (int)kind_, prog_->DumpUnanchored().c_str());
    447   int nmark = 0;
    448   start_unanchored_ = 0;
    449   if (kind_ == Prog::kLongestMatch) {
    450     nmark = prog->size();
    451     start_unanchored_ = prog->start_unanchored();
    452   }
    453   nastack_ = 2 * prog->size() + nmark;
    454 
    455   // Account for space needed for DFA, q0, q1, astack.
    456   mem_budget_ -= sizeof(DFA);
    457   mem_budget_ -= (prog_->size() + nmark) *
    458                  (sizeof(int)+sizeof(int)) * 2;  // q0, q1
    459   mem_budget_ -= nastack_ * sizeof(int);  // astack
    460   if (mem_budget_ < 0) {
    461     LOG(INFO) << StringPrintf("DFA out of memory: prog size %lld mem %lld",
    462                               prog_->size(), max_mem);
    463     init_failed_ = true;
    464     return;
    465   }
    466 
    467   state_budget_ = mem_budget_;
    468 
    469   // Make sure there is a reasonable amount of working room left.
    470   // At minimum, the search requires room for two states in order
    471   // to limp along, restarting frequently.  We'll get better performance
    472   // if there is room for a larger number of states, say 20.
    473   int64 one_state = sizeof(State) + (prog_->size()+nmark)*sizeof(int) +
    474                     (prog_->bytemap_range()+1)*sizeof(State*);
    475   if (state_budget_ < 20*one_state) {
    476     LOG(INFO) << StringPrintf("DFA out of memory: prog size %lld mem %lld",
    477                               prog_->size(), max_mem);
    478     init_failed_ = true;
    479     return;
    480   }
    481 
    482   q0_ = new Workq(prog->size(), nmark);
    483   q1_ = new Workq(prog->size(), nmark);
    484   astack_ = new int[nastack_];
    485 }
    486 
    487 DFA::~DFA() {
    488   delete q0_;
    489   delete q1_;
    490   delete[] astack_;
    491   ClearCache();
    492 }
    493 
    494 // In the DFA state graph, s->next[c] == NULL means that the
    495 // state has not yet been computed and needs to be.  We need
    496 // a different special value to signal that s->next[c] is a
    497 // state that can never lead to a match (and thus the search
    498 // can be called off).  Hence DeadState.
    499 #define DeadState reinterpret_cast<State*>(1)
    500 
    501 // Signals that the rest of the string matches no matter what it is.
    502 #define FullMatchState reinterpret_cast<State*>(2)
    503 
    504 #define SpecialStateMax FullMatchState
    505 
    506 // Debugging printouts
    507 
    508 // For debugging, returns a string representation of the work queue.
    509 string DFA::DumpWorkq(Workq* q) {
    510   string s;
    511   const char* sep = "";
    512   for (DFA::Workq::iterator it = q->begin(); it != q->end(); ++it) {
    513     if (q->is_mark(*it)) {
    514       StringAppendF(&s, "|");
    515       sep = "";
    516     } else {
    517       StringAppendF(&s, "%s%d", sep, *it);
    518       sep = ",";
    519     }
    520   }
    521   return s;
    522 }
    523 
    524 // For debugging, returns a string representation of the state.
    525 string DFA::DumpState(State* state) {
    526   if (state == NULL)
    527     return "_";
    528   if (state == DeadState)
    529     return "X";
    530   if (state == FullMatchState)
    531     return "*";
    532   string s;
    533   const char* sep = "";
    534   StringAppendF(&s, "(%p)", state);
    535   for (int i = 0; i < state->ninst_; i++) {
    536     if (state->inst_[i] == Mark) {
    537       StringAppendF(&s, "|");
    538       sep = "";
    539     } else {
    540       StringAppendF(&s, "%s%d", sep, state->inst_[i]);
    541       sep = ",";
    542     }
    543   }
    544   StringAppendF(&s, " flag=%#x", state->flag_);
    545   return s;
    546 }
    547 
    548 //////////////////////////////////////////////////////////////////////
    549 //
    550 // DFA state graph construction.
    551 //
    552 // The DFA state graph is a heavily-linked collection of State* structures.
    553 // The state_cache_ is a set of all the State structures ever allocated,
    554 // so that if the same state is reached by two different paths,
    555 // the same State structure can be used.  This reduces allocation
    556 // requirements and also avoids duplication of effort across the two
    557 // identical states.
    558 //
    559 // A State is defined by an ordered list of instruction ids and a flag word.
    560 //
    561 // The choice of an ordered list of instructions differs from a typical
    562 // textbook DFA implementation, which would use an unordered set.
    563 // Textbook descriptions, however, only care about whether
    564 // the DFA matches, not where it matches in the text.  To decide where the
    565 // DFA matches, we need to mimic the behavior of the dominant backtracking
    566 // implementations like PCRE, which try one possible regular expression
    567 // execution, then another, then another, stopping when one of them succeeds.
    568 // The DFA execution tries these many executions in parallel, representing
    569 // each by an instruction id.  These pointers are ordered in the State.inst_
    570 // list in the same order that the executions would happen in a backtracking
    571 // search: if a match is found during execution of inst_[2], inst_[i] for i>=3
    572 // can be discarded.
    573 //
    574 // Textbooks also typically do not consider context-aware empty string operators
    575 // like ^ or $.  These are handled by the flag word, which specifies the set
    576 // of empty-string operators that should be matched when executing at the
    577 // current text position.  These flag bits are defined in prog.h.
    578 // The flag word also contains two DFA-specific bits: kFlagMatch if the state
    579 // is a matching state (one that reached a kInstMatch in the program)
    580 // and kFlagLastWord if the last processed byte was a word character, for the
    581 // implementation of \B and \b.
    582 //
    583 // The flag word also contains, shifted up 16 bits, the bits looked for by
    584 // any kInstEmptyWidth instructions in the state.  These provide a useful
    585 // summary indicating when new flags might be useful.
    586 //
    587 // The permanent representation of a State's instruction ids is just an array,
    588 // but while a state is being analyzed, these instruction ids are represented
    589 // as a Workq, which is an array that allows iteration in insertion order.
    590 
    591 // NOTE(rsc): The choice of State construction determines whether the DFA
    592 // mimics backtracking implementations (so-called leftmost first matching) or
    593 // traditional DFA implementations (so-called leftmost longest matching as
    594 // prescribed by POSIX).  This implementation chooses to mimic the
    595 // backtracking implementations, because we want to replace PCRE.  To get
    596 // POSIX behavior, the states would need to be considered not as a simple
    597 // ordered list of instruction ids, but as a list of unordered sets of instruction
    598 // ids.  A match by a state in one set would inhibit the running of sets
    599 // farther down the list but not other instruction ids in the same set.  Each
    600 // set would correspond to matches beginning at a given point in the string.
    601 // This is implemented by separating different sets with Mark pointers.
    602 
    603 // Looks in the State cache for a State matching q, flag.
    604 // If one is found, returns it.  If one is not found, allocates one,
    605 // inserts it in the cache, and returns it.
    606 DFA::State* DFA::WorkqToCachedState(Workq* q, uint flag) {
    607   if (DEBUG_MODE)
    608     mutex_.AssertHeld();
    609 
    610   // Construct array of instruction ids for the new state.
    611   // Only ByteRange, EmptyWidth, and Match instructions are useful to keep:
    612   // those are the only operators with any effect in
    613   // RunWorkqOnEmptyString or RunWorkqOnByte.
    614   int* inst = new int[q->size()];
    615   int n = 0;
    616   uint needflags = 0;     // flags needed by kInstEmptyWidth instructions
    617   bool sawmatch = false;  // whether queue contains guaranteed kInstMatch
    618   bool sawmark = false;  // whether queue contains a Mark
    619   if (DebugDFA)
    620     fprintf(stderr, "WorkqToCachedState %s [%#x]", DumpWorkq(q).c_str(), flag);
    621   for (Workq::iterator it = q->begin(); it != q->end(); ++it) {
    622     int id = *it;
    623     if (sawmatch && (kind_ == Prog::kFirstMatch || q->is_mark(id)))
    624       break;
    625     if (q->is_mark(id)) {
    626       if (n > 0 && inst[n-1] != Mark) {
    627         sawmark = true;
    628         inst[n++] = Mark;
    629       }
    630       continue;
    631     }
    632     Prog::Inst* ip = prog_->inst(id);
    633     switch (ip->opcode()) {
    634       case kInstAltMatch:
    635         // This state will continue to a match no matter what
    636         // the rest of the input is.  If it is the highest priority match
    637         // being considered, return the special FullMatchState
    638         // to indicate that it's all matches from here out.
    639         if (kind_ != Prog::kManyMatch &&
    640             (kind_ != Prog::kFirstMatch ||
    641              (it == q->begin() && ip->greedy(prog_))) &&
    642             (kind_ != Prog::kLongestMatch || !sawmark) &&
    643             (flag & kFlagMatch)) {
    644           delete[] inst;
    645           if (DebugDFA)
    646             fprintf(stderr, " -> FullMatchState\n");
    647           return FullMatchState;
    648         }
    649         // Fall through.
    650       case kInstByteRange:    // These are useful.
    651       case kInstEmptyWidth:
    652       case kInstMatch:
    653       case kInstAlt:          // Not useful, but necessary [*]
    654         inst[n++] = *it;
    655         if (ip->opcode() == kInstEmptyWidth)
    656           needflags |= ip->empty();
    657         if (ip->opcode() == kInstMatch && !prog_->anchor_end())
    658           sawmatch = true;
    659         break;
    660 
    661       default:                // The rest are not.
    662         break;
    663     }
    664 
    665     // [*] kInstAlt would seem useless to record in a state, since
    666     // we've already followed both its arrows and saved all the
    667     // interesting states we can reach from there.  The problem
    668     // is that one of the empty-width instructions might lead
    669     // back to the same kInstAlt (if an empty-width operator is starred),
    670     // producing a different evaluation order depending on whether
    671     // we keep the kInstAlt to begin with.  Sigh.
    672     // A specific case that this affects is /(^|a)+/ matching "a".
    673     // If we don't save the kInstAlt, we will match the whole "a" (0,1)
    674     // but in fact the correct leftmost-first match is the leading "" (0,0).
    675   }
    676   DCHECK_LE(n, q->size());
    677   if (n > 0 && inst[n-1] == Mark)
    678     n--;
    679 
    680   // If there are no empty-width instructions waiting to execute,
    681   // then the extra flag bits will not be used, so there is no
    682   // point in saving them.  (Discarding them reduces the number
    683   // of distinct states.)
    684   if (needflags == 0)
    685     flag &= kFlagMatch;
    686 
    687   // NOTE(rsc): The code above cannot do flag &= needflags,
    688   // because if the right flags were present to pass the current
    689   // kInstEmptyWidth instructions, new kInstEmptyWidth instructions
    690   // might be reached that in turn need different flags.
    691   // The only sure thing is that if there are no kInstEmptyWidth
    692   // instructions at all, no flags will be needed.
    693   // We could do the extra work to figure out the full set of
    694   // possibly needed flags by exploring past the kInstEmptyWidth
    695   // instructions, but the check above -- are any flags needed
    696   // at all? -- handles the most common case.  More fine-grained
    697   // analysis can only be justified by measurements showing that
    698   // too many redundant states are being allocated.
    699 
    700   // If there are no Insts in the list, it's a dead state,
    701   // which is useful to signal with a special pointer so that
    702   // the execution loop can stop early.  This is only okay
    703   // if the state is *not* a matching state.
    704   if (n == 0 && flag == 0) {
    705     delete[] inst;
    706     if (DebugDFA)
    707       fprintf(stderr, " -> DeadState\n");
    708     return DeadState;
    709   }
    710 
    711   // If we're in longest match mode, the state is a sequence of
    712   // unordered state sets separated by Marks.  Sort each set
    713   // to canonicalize, to reduce the number of distinct sets stored.
    714   if (kind_ == Prog::kLongestMatch) {
    715     int* ip = inst;
    716     int* ep = ip + n;
    717     while (ip < ep) {
    718       int* markp = ip;
    719       while (markp < ep && *markp != Mark)
    720         markp++;
    721       sort(ip, markp);
    722       if (markp < ep)
    723         markp++;
    724       ip = markp;
    725     }
    726   }
    727 
    728   // Save the needed empty-width flags in the top bits for use later.
    729   flag |= needflags << kFlagNeedShift;
    730 
    731   State* state = CachedState(inst, n, flag);
    732   delete[] inst;
    733   return state;
    734 }
    735 
    736 // Looks in the State cache for a State matching inst, ninst, flag.
    737 // If one is found, returns it.  If one is not found, allocates one,
    738 // inserts it in the cache, and returns it.
    739 DFA::State* DFA::CachedState(int* inst, int ninst, uint flag) {
    740   if (DEBUG_MODE)
    741     mutex_.AssertHeld();
    742 
    743   // Look in the cache for a pre-existing state.
    744   State state = { inst, ninst, flag, NULL };
    745   StateSet::iterator it = state_cache_.find(&state);
    746   if (it != state_cache_.end()) {
    747     if (DebugDFA)
    748       fprintf(stderr, " -cached-> %s\n", DumpState(*it).c_str());
    749     return *it;
    750   }
    751 
    752   // Must have enough memory for new state.
    753   // In addition to what we're going to allocate,
    754   // the state cache hash table seems to incur about 32 bytes per
    755   // State*, empirically.
    756   const int kStateCacheOverhead = 32;
    757   int nnext = prog_->bytemap_range() + 1;  // + 1 for kByteEndText slot
    758   int mem = sizeof(State) + nnext*sizeof(State*) + ninst*sizeof(int);
    759   if (mem_budget_ < mem + kStateCacheOverhead) {
    760     mem_budget_ = -1;
    761     return NULL;
    762   }
    763   mem_budget_ -= mem + kStateCacheOverhead;
    764 
    765   // Allocate new state, along with room for next and inst.
    766   char* space = new char[mem];
    767   State* s = reinterpret_cast<State*>(space);
    768   s->next_ = reinterpret_cast<State**>(s + 1);
    769   s->inst_ = reinterpret_cast<int*>(s->next_ + nnext);
    770   memset(s->next_, 0, nnext*sizeof s->next_[0]);
    771   memmove(s->inst_, inst, ninst*sizeof s->inst_[0]);
    772   s->ninst_ = ninst;
    773   s->flag_ = flag;
    774   if (DebugDFA)
    775     fprintf(stderr, " -> %s\n", DumpState(s).c_str());
    776 
    777   // Put state in cache and return it.
    778   state_cache_.insert(s);
    779   return s;
    780 }
    781 
    782 // Clear the cache.  Must hold cache_mutex_.w or be in destructor.
    783 void DFA::ClearCache() {
    784   // In case state_cache_ doesn't support deleting entries
    785   // during iteration, copy into a vector and then delete.
    786   vector<State*> v;
    787   v.reserve(state_cache_.size());
    788   for (StateSet::iterator it = state_cache_.begin();
    789        it != state_cache_.end(); ++it)
    790     v.push_back(*it);
    791   state_cache_.clear();
    792   for (int i = 0; i < v.size(); i++)
    793     delete[] reinterpret_cast<const char*>(v[i]);
    794 }
    795 
    796 // Copies insts in state s to the work queue q.
    797 void DFA::StateToWorkq(State* s, Workq* q) {
    798   q->clear();
    799   for (int i = 0; i < s->ninst_; i++) {
    800     if (s->inst_[i] == Mark)
    801       q->mark();
    802     else
    803       q->insert_new(s->inst_[i]);
    804   }
    805 }
    806 
    807 // Adds ip to the work queue, following empty arrows according to flag
    808 // and expanding kInstAlt instructions (two-target gotos).
    809 void DFA::AddToQueue(Workq* q, int id, uint flag) {
    810 
    811   // Use astack_ to hold our stack of states yet to process.
    812   // It is sized to have room for nastack_ == 2*prog->size() + nmark
    813   // instructions, which is enough: each instruction can be
    814   // processed by the switch below only once, and the processing
    815   // pushes at most two instructions plus maybe a mark.
    816   // (If we're using marks, nmark == prog->size(); otherwise nmark == 0.)
    817   int* stk = astack_;
    818   int nstk = 0;
    819 
    820   stk[nstk++] = id;
    821   while (nstk > 0) {
    822     DCHECK_LE(nstk, nastack_);
    823     id = stk[--nstk];
    824 
    825     if (id == Mark) {
    826       q->mark();
    827       continue;
    828     }
    829 
    830     if (id == 0)
    831       continue;
    832 
    833     // If ip is already on the queue, nothing to do.
    834     // Otherwise add it.  We don't actually keep all the ones
    835     // that get added -- for example, kInstAlt is ignored
    836     // when on a work queue -- but adding all ip's here
    837     // increases the likelihood of q->contains(id),
    838     // reducing the amount of duplicated work.
    839     if (q->contains(id))
    840       continue;
    841     q->insert_new(id);
    842 
    843     // Process instruction.
    844     Prog::Inst* ip = prog_->inst(id);
    845     switch (ip->opcode()) {
    846       case kInstFail:       // can't happen: discarded above
    847         break;
    848 
    849       case kInstByteRange:  // just save these on the queue
    850       case kInstMatch:
    851         break;
    852 
    853       case kInstCapture:    // DFA treats captures as no-ops.
    854       case kInstNop:
    855         stk[nstk++] = ip->out();
    856         break;
    857 
    858       case kInstAlt:        // two choices: expand both, in order
    859       case kInstAltMatch:
    860         // Want to visit out then out1, so push on stack in reverse order.
    861         // This instruction is the [00-FF]* loop at the beginning of
    862         // a leftmost-longest unanchored search, separate out from out1
    863         // with a Mark, so that out1's threads (which will start farther
    864         // to the right in the string being searched) are lower priority
    865         // than the current ones.
    866         stk[nstk++] = ip->out1();
    867         if (q->maxmark() > 0 &&
    868             id == prog_->start_unanchored() && id != prog_->start())
    869           stk[nstk++] = Mark;
    870         stk[nstk++] = ip->out();
    871         break;
    872 
    873       case kInstEmptyWidth:
    874         if ((ip->empty() & flag) == ip->empty())
    875           stk[nstk++] = ip->out();
    876         break;
    877     }
    878   }
    879 }
    880 
    881 // Running of work queues.  In the work queue, order matters:
    882 // the queue is sorted in priority order.  If instruction i comes before j,
    883 // then the instructions that i produces during the run must come before
    884 // the ones that j produces.  In order to keep this invariant, all the
    885 // work queue runners have to take an old queue to process and then
    886 // also a new queue to fill in.  It's not acceptable to add to the end of
    887 // an existing queue, because new instructions will not end up in the
    888 // correct position.
    889 
    890 // Runs the work queue, processing the empty strings indicated by flag.
    891 // For example, flag == kEmptyBeginLine|kEmptyEndLine means to match
    892 // both ^ and $.  It is important that callers pass all flags at once:
    893 // processing both ^ and $ is not the same as first processing only ^
    894 // and then processing only $.  Doing the two-step sequence won't match
    895 // ^$^$^$ but processing ^ and $ simultaneously will (and is the behavior
    896 // exhibited by existing implementations).
    897 void DFA::RunWorkqOnEmptyString(Workq* oldq, Workq* newq, uint flag) {
    898   newq->clear();
    899   for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
    900     if (oldq->is_mark(*i))
    901       AddToQueue(newq, Mark, flag);
    902     else
    903       AddToQueue(newq, *i, flag);
    904   }
    905 }
    906 
    907 // Runs the work queue, processing the single byte c followed by any empty
    908 // strings indicated by flag.  For example, c == 'a' and flag == kEmptyEndLine,
    909 // means to match c$.  Sets the bool *ismatch to true if the end of the
    910 // regular expression program has been reached (the regexp has matched).
    911 void DFA::RunWorkqOnByte(Workq* oldq, Workq* newq,
    912                          int c, uint flag, bool* ismatch,
    913                          Prog::MatchKind kind,
    914                          int new_byte_loop) {
    915   if (DEBUG_MODE)
    916     mutex_.AssertHeld();
    917 
    918   newq->clear();
    919   for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
    920     if (oldq->is_mark(*i)) {
    921       if (*ismatch)
    922         return;
    923       newq->mark();
    924       continue;
    925     }
    926     int id = *i;
    927     Prog::Inst* ip = prog_->inst(id);
    928     switch (ip->opcode()) {
    929       case kInstFail:        // never succeeds
    930       case kInstCapture:     // already followed
    931       case kInstNop:         // already followed
    932       case kInstAlt:         // already followed
    933       case kInstAltMatch:    // already followed
    934       case kInstEmptyWidth:  // already followed
    935         break;
    936 
    937       case kInstByteRange:   // can follow if c is in range
    938         if (ip->Matches(c))
    939           AddToQueue(newq, ip->out(), flag);
    940         break;
    941 
    942       case kInstMatch:
    943         if (prog_->anchor_end() && c != kByteEndText)
    944           break;
    945         *ismatch = true;
    946         if (kind == Prog::kFirstMatch) {
    947           // Can stop processing work queue since we found a match.
    948           return;
    949         }
    950         break;
    951     }
    952   }
    953 
    954   if (DebugDFA)
    955     fprintf(stderr, "%s on %d[%#x] -> %s [%d]\n", DumpWorkq(oldq).c_str(),
    956             c, flag, DumpWorkq(newq).c_str(), *ismatch);
    957 }
    958 
    959 // Processes input byte c in state, returning new state.
    960 // Caller does not hold mutex.
    961 DFA::State* DFA::RunStateOnByteUnlocked(State* state, int c) {
    962   // Keep only one RunStateOnByte going
    963   // even if the DFA is being run by multiple threads.
    964   MutexLock l(&mutex_);
    965   return RunStateOnByte(state, c);
    966 }
    967 
    968 // Processes input byte c in state, returning new state.
    969 DFA::State* DFA::RunStateOnByte(State* state, int c) {
    970   if (DEBUG_MODE)
    971     mutex_.AssertHeld();
    972   if (state <= SpecialStateMax) {
    973     if (state == FullMatchState) {
    974       // It is convenient for routines like PossibleMatchRange
    975       // if we implement RunStateOnByte for FullMatchState:
    976       // once you get into this state you never get out,
    977       // so it's pretty easy.
    978       return FullMatchState;
    979     }
    980     if (state == DeadState) {
    981       LOG(DFATAL) << "DeadState in RunStateOnByte";
    982       return NULL;
    983     }
    984     if (state == NULL) {
    985       LOG(DFATAL) << "NULL state in RunStateOnByte";
    986       return NULL;
    987     }
    988     LOG(DFATAL) << "Unexpected special state in RunStateOnByte";
    989     return NULL;
    990   }
    991 
    992   // If someone else already computed this, return it.
    993   MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering
    994   State* ns = state->next_[ByteMap(c)];
    995   ANNOTATE_HAPPENS_AFTER(ns);
    996   if (ns != NULL)
    997     return ns;
    998 
    999   // Convert state into Workq.
   1000   StateToWorkq(state, q0_);
   1001 
   1002   // Flags marking the kinds of empty-width things (^ $ etc)
   1003   // around this byte.  Before the byte we have the flags recorded
   1004   // in the State structure itself.  After the byte we have
   1005   // nothing yet (but that will change: read on).
   1006   uint needflag = state->flag_ >> kFlagNeedShift;
   1007   uint beforeflag = state->flag_ & kFlagEmptyMask;
   1008   uint oldbeforeflag = beforeflag;
   1009   uint afterflag = 0;
   1010 
   1011   if (c == '\n') {
   1012     // Insert implicit $ and ^ around \n
   1013     beforeflag |= kEmptyEndLine;
   1014     afterflag |= kEmptyBeginLine;
   1015   }
   1016 
   1017   if (c == kByteEndText) {
   1018     // Insert implicit $ and \z before the fake "end text" byte.
   1019     beforeflag |= kEmptyEndLine | kEmptyEndText;
   1020   }
   1021 
   1022   // The state flag kFlagLastWord says whether the last
   1023   // byte processed was a word character.  Use that info to
   1024   // insert empty-width (non-)word boundaries.
   1025   bool islastword = state->flag_ & kFlagLastWord;
   1026   bool isword = (c != kByteEndText && Prog::IsWordChar(c));
   1027   if (isword == islastword)
   1028     beforeflag |= kEmptyNonWordBoundary;
   1029   else
   1030     beforeflag |= kEmptyWordBoundary;
   1031 
   1032   // Okay, finally ready to run.
   1033   // Only useful to rerun on empty string if there are new, useful flags.
   1034   if (beforeflag & ~oldbeforeflag & needflag) {
   1035     RunWorkqOnEmptyString(q0_, q1_, beforeflag);
   1036     swap(q0_, q1_);
   1037   }
   1038   bool ismatch = false;
   1039   RunWorkqOnByte(q0_, q1_, c, afterflag, &ismatch, kind_, start_unanchored_);
   1040 
   1041   // Most of the time, we build the state from the output of
   1042   // RunWorkqOnByte, so swap q0_ and q1_ here.  However, so that
   1043   // RE2::Set can tell exactly which match instructions
   1044   // contributed to the match, don't swap if c is kByteEndText.
   1045   // The resulting state wouldn't be correct for further processing
   1046   // of the string, but we're at the end of the text so that's okay.
   1047   // Leaving q0_ alone preseves the match instructions that led to
   1048   // the current setting of ismatch.
   1049   if (c != kByteEndText || kind_ != Prog::kManyMatch)
   1050     swap(q0_, q1_);
   1051 
   1052   // Save afterflag along with ismatch and isword in new state.
   1053   uint flag = afterflag;
   1054   if (ismatch)
   1055     flag |= kFlagMatch;
   1056   if (isword)
   1057     flag |= kFlagLastWord;
   1058 
   1059   ns = WorkqToCachedState(q0_, flag);
   1060 
   1061   // Write barrier before updating state->next_ so that the
   1062   // main search loop can proceed without any locking, for speed.
   1063   // (Otherwise it would need one mutex operation per input byte.)
   1064   // The annotations below tell race detectors that:
   1065   //   a) the access to next_ should be ignored,
   1066   //   b) 'ns' is properly published.
   1067   WriteMemoryBarrier();  // Flush ns before linking to it.
   1068 
   1069   ANNOTATE_IGNORE_WRITES_BEGIN();
   1070   ANNOTATE_HAPPENS_BEFORE(ns);
   1071   state->next_[ByteMap(c)] = ns;
   1072   ANNOTATE_IGNORE_WRITES_END();
   1073   return ns;
   1074 }
   1075 
   1076 
   1077 //////////////////////////////////////////////////////////////////////
   1078 // DFA cache reset.
   1079 
   1080 // Reader-writer lock helper.
   1081 //
   1082 // The DFA uses a reader-writer mutex to protect the state graph itself.
   1083 // Traversing the state graph requires holding the mutex for reading,
   1084 // and discarding the state graph and starting over requires holding the
   1085 // lock for writing.  If a search needs to expand the graph but is out
   1086 // of memory, it will need to drop its read lock and then acquire the
   1087 // write lock.  Since it cannot then atomically downgrade from write lock
   1088 // to read lock, it runs the rest of the search holding the write lock.
   1089 // (This probably helps avoid repeated contention, but really the decision
   1090 // is forced by the Mutex interface.)  It's a bit complicated to keep
   1091 // track of whether the lock is held for reading or writing and thread
   1092 // that through the search, so instead we encapsulate it in the RWLocker
   1093 // and pass that around.
   1094 
   1095 class DFA::RWLocker {
   1096  public:
   1097   explicit RWLocker(Mutex* mu);
   1098   ~RWLocker();
   1099 
   1100   // If the lock is only held for reading right now,
   1101   // drop the read lock and re-acquire for writing.
   1102   // Subsequent calls to LockForWriting are no-ops.
   1103   // Notice that the lock is *released* temporarily.
   1104   void LockForWriting();
   1105 
   1106   // Returns whether the lock is already held for writing.
   1107   bool IsLockedForWriting() {
   1108     return writing_;
   1109   }
   1110 
   1111  private:
   1112   Mutex* mu_;
   1113   bool writing_;
   1114 
   1115   DISALLOW_EVIL_CONSTRUCTORS(RWLocker);
   1116 };
   1117 
   1118 DFA::RWLocker::RWLocker(Mutex* mu)
   1119   : mu_(mu), writing_(false) {
   1120 
   1121   mu_->ReaderLock();
   1122 }
   1123 
   1124 // This function is marked as NO_THREAD_SAFETY_ANALYSIS because the annotations
   1125 // does not support lock upgrade.
   1126 void DFA::RWLocker::LockForWriting() NO_THREAD_SAFETY_ANALYSIS {
   1127   if (!writing_) {
   1128     mu_->ReaderUnlock();
   1129     mu_->Lock();
   1130     writing_ = true;
   1131   }
   1132 }
   1133 
   1134 DFA::RWLocker::~RWLocker() {
   1135   if (writing_)
   1136     mu_->WriterUnlock();
   1137   else
   1138     mu_->ReaderUnlock();
   1139 }
   1140 
   1141 
   1142 // When the DFA's State cache fills, we discard all the states in the
   1143 // cache and start over.  Many threads can be using and adding to the
   1144 // cache at the same time, so we synchronize using the cache_mutex_
   1145 // to keep from stepping on other threads.  Specifically, all the
   1146 // threads using the current cache hold cache_mutex_ for reading.
   1147 // When a thread decides to flush the cache, it drops cache_mutex_
   1148 // and then re-acquires it for writing.  That ensures there are no
   1149 // other threads accessing the cache anymore.  The rest of the search
   1150 // runs holding cache_mutex_ for writing, avoiding any contention
   1151 // with or cache pollution caused by other threads.
   1152 
   1153 void DFA::ResetCache(RWLocker* cache_lock) {
   1154   // Re-acquire the cache_mutex_ for writing (exclusive use).
   1155   bool was_writing = cache_lock->IsLockedForWriting();
   1156   cache_lock->LockForWriting();
   1157 
   1158   // If we already held cache_mutex_ for writing, it means
   1159   // this invocation of Search() has already reset the
   1160   // cache once already.  That's a pretty clear indication
   1161   // that the cache is too small.  Warn about that, once.
   1162   // TODO(rsc): Only warn if state_cache_.size() < some threshold.
   1163   if (was_writing && !cache_warned_) {
   1164     LOG(INFO) << "DFA memory cache could be too small: "
   1165               << "only room for " << state_cache_.size() << " states.";
   1166     cache_warned_ = true;
   1167   }
   1168 
   1169   // Clear the cache, reset the memory budget.
   1170   for (int i = 0; i < kMaxStart; i++) {
   1171     start_[i].start = NULL;
   1172     start_[i].firstbyte = kFbUnknown;
   1173   }
   1174   ClearCache();
   1175   mem_budget_ = state_budget_;
   1176 }
   1177 
   1178 // Typically, a couple States do need to be preserved across a cache
   1179 // reset, like the State at the current point in the search.
   1180 // The StateSaver class helps keep States across cache resets.
   1181 // It makes a copy of the state's guts outside the cache (before the reset)
   1182 // and then can be asked, after the reset, to recreate the State
   1183 // in the new cache.  For example, in a DFA method ("this" is a DFA):
   1184 //
   1185 //   StateSaver saver(this, s);
   1186 //   ResetCache(cache_lock);
   1187 //   s = saver.Restore();
   1188 //
   1189 // The saver should always have room in the cache to re-create the state,
   1190 // because resetting the cache locks out all other threads, and the cache
   1191 // is known to have room for at least a couple states (otherwise the DFA
   1192 // constructor fails).
   1193 
   1194 class DFA::StateSaver {
   1195  public:
   1196   explicit StateSaver(DFA* dfa, State* state);
   1197   ~StateSaver();
   1198 
   1199   // Recreates and returns a state equivalent to the
   1200   // original state passed to the constructor.
   1201   // Returns NULL if the cache has filled, but
   1202   // since the DFA guarantees to have room in the cache
   1203   // for a couple states, should never return NULL
   1204   // if used right after ResetCache.
   1205   State* Restore();
   1206 
   1207  private:
   1208   DFA* dfa_;         // the DFA to use
   1209   int* inst_;        // saved info from State
   1210   int ninst_;
   1211   uint flag_;
   1212   bool is_special_;  // whether original state was special
   1213   State* special_;   // if is_special_, the original state
   1214 
   1215   DISALLOW_EVIL_CONSTRUCTORS(StateSaver);
   1216 };
   1217 
   1218 DFA::StateSaver::StateSaver(DFA* dfa, State* state) {
   1219   dfa_ = dfa;
   1220   if (state <= SpecialStateMax) {
   1221     inst_ = NULL;
   1222     ninst_ = 0;
   1223     flag_ = 0;
   1224     is_special_ = true;
   1225     special_ = state;
   1226     return;
   1227   }
   1228   is_special_ = false;
   1229   special_ = NULL;
   1230   flag_ = state->flag_;
   1231   ninst_ = state->ninst_;
   1232   inst_ = new int[ninst_];
   1233   memmove(inst_, state->inst_, ninst_*sizeof inst_[0]);
   1234 }
   1235 
   1236 DFA::StateSaver::~StateSaver() {
   1237   if (!is_special_)
   1238     delete[] inst_;
   1239 }
   1240 
   1241 DFA::State* DFA::StateSaver::Restore() {
   1242   if (is_special_)
   1243     return special_;
   1244   MutexLock l(&dfa_->mutex_);
   1245   State* s = dfa_->CachedState(inst_, ninst_, flag_);
   1246   if (s == NULL)
   1247     LOG(DFATAL) << "StateSaver failed to restore state.";
   1248   return s;
   1249 }
   1250 
   1251 
   1252 //////////////////////////////////////////////////////////////////////
   1253 //
   1254 // DFA execution.
   1255 //
   1256 // The basic search loop is easy: start in a state s and then for each
   1257 // byte c in the input, s = s->next[c].
   1258 //
   1259 // This simple description omits a few efficiency-driven complications.
   1260 //
   1261 // First, the State graph is constructed incrementally: it is possible
   1262 // that s->next[c] is null, indicating that that state has not been
   1263 // fully explored.  In this case, RunStateOnByte must be invoked to
   1264 // determine the next state, which is cached in s->next[c] to save
   1265 // future effort.  An alternative reason for s->next[c] to be null is
   1266 // that the DFA has reached a so-called "dead state", in which any match
   1267 // is no longer possible.  In this case RunStateOnByte will return NULL
   1268 // and the processing of the string can stop early.
   1269 //
   1270 // Second, a 256-element pointer array for s->next_ makes each State
   1271 // quite large (2kB on 64-bit machines).  Instead, dfa->bytemap_[]
   1272 // maps from bytes to "byte classes" and then next_ only needs to have
   1273 // as many pointers as there are byte classes.  A byte class is simply a
   1274 // range of bytes that the regexp never distinguishes between.
   1275 // A regexp looking for a[abc] would have four byte ranges -- 0 to 'a'-1,
   1276 // 'a', 'b' to 'c', and 'c' to 0xFF.  The bytemap slows us a little bit
   1277 // but in exchange we typically cut the size of a State (and thus our
   1278 // memory footprint) by about 5-10x.  The comments still refer to
   1279 // s->next[c] for simplicity, but code should refer to s->next_[bytemap_[c]].
   1280 //
   1281 // Third, it is common for a DFA for an unanchored match to begin in a
   1282 // state in which only one particular byte value can take the DFA to a
   1283 // different state.  That is, s->next[c] != s for only one c.  In this
   1284 // situation, the DFA can do better than executing the simple loop.
   1285 // Instead, it can call memchr to search very quickly for the byte c.
   1286 // Whether the start state has this property is determined during a
   1287 // pre-compilation pass, and if so, the byte b is passed to the search
   1288 // loop as the "firstbyte" argument, along with a boolean "have_firstbyte".
   1289 //
   1290 // Fourth, the desired behavior is to search for the leftmost-best match
   1291 // (approximately, the same one that Perl would find), which is not
   1292 // necessarily the match ending earliest in the string.  Each time a
   1293 // match is found, it must be noted, but the DFA must continue on in
   1294 // hope of finding a higher-priority match.  In some cases, the caller only
   1295 // cares whether there is any match at all, not which one is found.
   1296 // The "want_earliest_match" flag causes the search to stop at the first
   1297 // match found.
   1298 //
   1299 // Fifth, one algorithm that uses the DFA needs it to run over the
   1300 // input string backward, beginning at the end and ending at the beginning.
   1301 // Passing false for the "run_forward" flag causes the DFA to run backward.
   1302 //
   1303 // The checks for these last three cases, which in a naive implementation
   1304 // would be performed once per input byte, slow the general loop enough
   1305 // to merit specialized versions of the search loop for each of the
   1306 // eight possible settings of the three booleans.  Rather than write
   1307 // eight different functions, we write one general implementation and then
   1308 // inline it to create the specialized ones.
   1309 //
   1310 // Note that matches are delayed by one byte, to make it easier to
   1311 // accomodate match conditions depending on the next input byte (like $ and \b).
   1312 // When s->next[c]->IsMatch(), it means that there is a match ending just
   1313 // *before* byte c.
   1314 
   1315 // The generic search loop.  Searches text for a match, returning
   1316 // the pointer to the end of the chosen match, or NULL if no match.
   1317 // The bools are equal to the same-named variables in params, but
   1318 // making them function arguments lets the inliner specialize
   1319 // this function to each combination (see two paragraphs above).
   1320 inline bool DFA::InlinedSearchLoop(SearchParams* params,
   1321                                    bool have_firstbyte,
   1322                                    bool want_earliest_match,
   1323                                    bool run_forward) {
   1324   State* start = params->start;
   1325   const uint8* bp = BytePtr(params->text.begin());  // start of text
   1326   const uint8* p = bp;                              // text scanning point
   1327   const uint8* ep = BytePtr(params->text.end());    // end of text
   1328   const uint8* resetp = NULL;                       // p at last cache reset
   1329   if (!run_forward)
   1330     swap(p, ep);
   1331 
   1332   const uint8* bytemap = prog_->bytemap();
   1333   const uint8* lastmatch = NULL;   // most recent matching position in text
   1334   bool matched = false;
   1335   State* s = start;
   1336 
   1337   if (s->IsMatch()) {
   1338     matched = true;
   1339     lastmatch = p;
   1340     if (want_earliest_match) {
   1341       params->ep = reinterpret_cast<const char*>(lastmatch);
   1342       return true;
   1343     }
   1344   }
   1345 
   1346   while (p != ep) {
   1347     if (DebugDFA)
   1348       fprintf(stderr, "@%d: %s\n", static_cast<int>(p - bp),
   1349               DumpState(s).c_str());
   1350     if (have_firstbyte && s == start) {
   1351       // In start state, only way out is to find firstbyte,
   1352       // so use optimized assembly in memchr to skip ahead.
   1353       // If firstbyte isn't found, we can skip to the end
   1354       // of the string.
   1355       if (run_forward) {
   1356         if ((p = BytePtr(memchr(p, params->firstbyte, ep - p))) == NULL) {
   1357           p = ep;
   1358           break;
   1359         }
   1360       } else {
   1361         if ((p = BytePtr(memrchr(ep, params->firstbyte, p - ep))) == NULL) {
   1362           p = ep;
   1363           break;
   1364         }
   1365         p++;
   1366       }
   1367     }
   1368 
   1369     int c;
   1370     if (run_forward)
   1371       c = *p++;
   1372     else
   1373       c = *--p;
   1374 
   1375     // Note that multiple threads might be consulting
   1376     // s->next_[bytemap[c]] simultaneously.
   1377     // RunStateOnByte takes care of the appropriate locking,
   1378     // including a memory barrier so that the unlocked access
   1379     // (sometimes known as "double-checked locking") is safe.
   1380     // The alternative would be either one DFA per thread
   1381     // or one mutex operation per input byte.
   1382     //
   1383     // ns == DeadState means the state is known to be dead
   1384     // (no more matches are possible).
   1385     // ns == NULL means the state has not yet been computed
   1386     // (need to call RunStateOnByteUnlocked).
   1387     // RunStateOnByte returns ns == NULL if it is out of memory.
   1388     // ns == FullMatchState means the rest of the string matches.
   1389     //
   1390     // Okay to use bytemap[] not ByteMap() here, because
   1391     // c is known to be an actual byte and not kByteEndText.
   1392 
   1393     MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering
   1394     State* ns = s->next_[bytemap[c]];
   1395     ANNOTATE_HAPPENS_AFTER(ns);
   1396     if (ns == NULL) {
   1397       ns = RunStateOnByteUnlocked(s, c);
   1398       if (ns == NULL) {
   1399         // After we reset the cache, we hold cache_mutex exclusively,
   1400         // so if resetp != NULL, it means we filled the DFA state
   1401         // cache with this search alone (without any other threads).
   1402         // Benchmarks show that doing a state computation on every
   1403         // byte runs at about 0.2 MB/s, while the NFA (nfa.cc) can do the
   1404         // same at about 2 MB/s.  Unless we're processing an average
   1405         // of 10 bytes per state computation, fail so that RE2 can
   1406         // fall back to the NFA.
   1407         if (FLAGS_re2_dfa_bail_when_slow && resetp != NULL &&
   1408             (p - resetp) < 10*state_cache_.size()) {
   1409           params->failed = true;
   1410           return false;
   1411         }
   1412         resetp = p;
   1413 
   1414         // Prepare to save start and s across the reset.
   1415         StateSaver save_start(this, start);
   1416         StateSaver save_s(this, s);
   1417 
   1418         // Discard all the States in the cache.
   1419         ResetCache(params->cache_lock);
   1420 
   1421         // Restore start and s so we can continue.
   1422         if ((start = save_start.Restore()) == NULL ||
   1423             (s = save_s.Restore()) == NULL) {
   1424           // Restore already did LOG(DFATAL).
   1425           params->failed = true;
   1426           return false;
   1427         }
   1428         ns = RunStateOnByteUnlocked(s, c);
   1429         if (ns == NULL) {
   1430           LOG(DFATAL) << "RunStateOnByteUnlocked failed after ResetCache";
   1431           params->failed = true;
   1432           return false;
   1433         }
   1434       }
   1435     }
   1436     if (ns <= SpecialStateMax) {
   1437       if (ns == DeadState) {
   1438         params->ep = reinterpret_cast<const char*>(lastmatch);
   1439         return matched;
   1440       }
   1441       // FullMatchState
   1442       params->ep = reinterpret_cast<const char*>(ep);
   1443       return true;
   1444     }
   1445     s = ns;
   1446 
   1447     if (s->IsMatch()) {
   1448       matched = true;
   1449       // The DFA notices the match one byte late,
   1450       // so adjust p before using it in the match.
   1451       if (run_forward)
   1452         lastmatch = p - 1;
   1453       else
   1454         lastmatch = p + 1;
   1455       if (DebugDFA)
   1456         fprintf(stderr, "match @%d! [%s]\n",
   1457                 static_cast<int>(lastmatch - bp),
   1458                 DumpState(s).c_str());
   1459 
   1460       if (want_earliest_match) {
   1461         params->ep = reinterpret_cast<const char*>(lastmatch);
   1462         return true;
   1463       }
   1464     }
   1465   }
   1466 
   1467   // Process one more byte to see if it triggers a match.
   1468   // (Remember, matches are delayed one byte.)
   1469   int lastbyte;
   1470   if (run_forward) {
   1471     if (params->text.end() == params->context.end())
   1472       lastbyte = kByteEndText;
   1473     else
   1474       lastbyte = params->text.end()[0] & 0xFF;
   1475   } else {
   1476     if (params->text.begin() == params->context.begin())
   1477       lastbyte = kByteEndText;
   1478     else
   1479       lastbyte = params->text.begin()[-1] & 0xFF;
   1480   }
   1481 
   1482   MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering
   1483   State* ns = s->next_[ByteMap(lastbyte)];
   1484   ANNOTATE_HAPPENS_AFTER(ns);
   1485   if (ns == NULL) {
   1486     ns = RunStateOnByteUnlocked(s, lastbyte);
   1487     if (ns == NULL) {
   1488       StateSaver save_s(this, s);
   1489       ResetCache(params->cache_lock);
   1490       if ((s = save_s.Restore()) == NULL) {
   1491         params->failed = true;
   1492         return false;
   1493       }
   1494       ns = RunStateOnByteUnlocked(s, lastbyte);
   1495       if (ns == NULL) {
   1496         LOG(DFATAL) << "RunStateOnByteUnlocked failed after Reset";
   1497         params->failed = true;
   1498         return false;
   1499       }
   1500     }
   1501   }
   1502   s = ns;
   1503   if (DebugDFA)
   1504     fprintf(stderr, "@_: %s\n", DumpState(s).c_str());
   1505   if (s == FullMatchState) {
   1506     params->ep = reinterpret_cast<const char*>(ep);
   1507     return true;
   1508   }
   1509   if (s > SpecialStateMax && s->IsMatch()) {
   1510     matched = true;
   1511     lastmatch = p;
   1512     if (params->matches && kind_ == Prog::kManyMatch) {
   1513       vector<int>* v = params->matches;
   1514       v->clear();
   1515       for (int i = 0; i < s->ninst_; i++) {
   1516         Prog::Inst* ip = prog_->inst(s->inst_[i]);
   1517         if (ip->opcode() == kInstMatch)
   1518           v->push_back(ip->match_id());
   1519       }
   1520     }
   1521     if (DebugDFA)
   1522       fprintf(stderr, "match @%d! [%s]\n", static_cast<int>(lastmatch - bp),
   1523               DumpState(s).c_str());
   1524   }
   1525   params->ep = reinterpret_cast<const char*>(lastmatch);
   1526   return matched;
   1527 }
   1528 
   1529 // Inline specializations of the general loop.
   1530 bool DFA::SearchFFF(SearchParams* params) {
   1531   return InlinedSearchLoop(params, 0, 0, 0);
   1532 }
   1533 bool DFA::SearchFFT(SearchParams* params) {
   1534   return InlinedSearchLoop(params, 0, 0, 1);
   1535 }
   1536 bool DFA::SearchFTF(SearchParams* params) {
   1537   return InlinedSearchLoop(params, 0, 1, 0);
   1538 }
   1539 bool DFA::SearchFTT(SearchParams* params) {
   1540   return InlinedSearchLoop(params, 0, 1, 1);
   1541 }
   1542 bool DFA::SearchTFF(SearchParams* params) {
   1543   return InlinedSearchLoop(params, 1, 0, 0);
   1544 }
   1545 bool DFA::SearchTFT(SearchParams* params) {
   1546   return InlinedSearchLoop(params, 1, 0, 1);
   1547 }
   1548 bool DFA::SearchTTF(SearchParams* params) {
   1549   return InlinedSearchLoop(params, 1, 1, 0);
   1550 }
   1551 bool DFA::SearchTTT(SearchParams* params) {
   1552   return InlinedSearchLoop(params, 1, 1, 1);
   1553 }
   1554 
   1555 // For debugging, calls the general code directly.
   1556 bool DFA::SlowSearchLoop(SearchParams* params) {
   1557   return InlinedSearchLoop(params,
   1558                            params->firstbyte >= 0,
   1559                            params->want_earliest_match,
   1560                            params->run_forward);
   1561 }
   1562 
   1563 // For performance, calls the appropriate specialized version
   1564 // of InlinedSearchLoop.
   1565 bool DFA::FastSearchLoop(SearchParams* params) {
   1566   // Because the methods are private, the Searches array
   1567   // cannot be declared at top level.
   1568   static bool (DFA::*Searches[])(SearchParams*) = {
   1569     &DFA::SearchFFF,
   1570     &DFA::SearchFFT,
   1571     &DFA::SearchFTF,
   1572     &DFA::SearchFTT,
   1573     &DFA::SearchTFF,
   1574     &DFA::SearchTFT,
   1575     &DFA::SearchTTF,
   1576     &DFA::SearchTTT,
   1577   };
   1578 
   1579   bool have_firstbyte = (params->firstbyte >= 0);
   1580   int index = 4 * have_firstbyte +
   1581               2 * params->want_earliest_match +
   1582               1 * params->run_forward;
   1583   return (this->*Searches[index])(params);
   1584 }
   1585 
   1586 
   1587 // The discussion of DFA execution above ignored the question of how
   1588 // to determine the initial state for the search loop.  There are two
   1589 // factors that influence the choice of start state.
   1590 //
   1591 // The first factor is whether the search is anchored or not.
   1592 // The regexp program (Prog*) itself has
   1593 // two different entry points: one for anchored searches and one for
   1594 // unanchored searches.  (The unanchored version starts with a leading ".*?"
   1595 // and then jumps to the anchored one.)
   1596 //
   1597 // The second factor is where text appears in the larger context, which
   1598 // determines which empty-string operators can be matched at the beginning
   1599 // of execution.  If text is at the very beginning of context, \A and ^ match.
   1600 // Otherwise if text is at the beginning of a line, then ^ matches.
   1601 // Otherwise it matters whether the character before text is a word character
   1602 // or a non-word character.
   1603 //
   1604 // The two cases (unanchored vs not) and four cases (empty-string flags)
   1605 // combine to make the eight cases recorded in the DFA's begin_text_[2],
   1606 // begin_line_[2], after_wordchar_[2], and after_nonwordchar_[2] cached
   1607 // StartInfos.  The start state for each is filled in the first time it
   1608 // is used for an actual search.
   1609 
   1610 // Examines text, context, and anchored to determine the right start
   1611 // state for the DFA search loop.  Fills in params and returns true on success.
   1612 // Returns false on failure.
   1613 bool DFA::AnalyzeSearch(SearchParams* params) {
   1614   const StringPiece& text = params->text;
   1615   const StringPiece& context = params->context;
   1616 
   1617   // Sanity check: make sure that text lies within context.
   1618   if (text.begin() < context.begin() || text.end() > context.end()) {
   1619     LOG(DFATAL) << "Text is not inside context.";
   1620     params->start = DeadState;
   1621     return true;
   1622   }
   1623 
   1624   // Determine correct search type.
   1625   int start;
   1626   uint flags;
   1627   if (params->run_forward) {
   1628     if (text.begin() == context.begin()) {
   1629       start = kStartBeginText;
   1630       flags = kEmptyBeginText|kEmptyBeginLine;
   1631     } else if (text.begin()[-1] == '\n') {
   1632       start = kStartBeginLine;
   1633       flags = kEmptyBeginLine;
   1634     } else if (Prog::IsWordChar(text.begin()[-1] & 0xFF)) {
   1635       start = kStartAfterWordChar;
   1636       flags = kFlagLastWord;
   1637     } else {
   1638       start = kStartAfterNonWordChar;
   1639       flags = 0;
   1640     }
   1641   } else {
   1642     if (text.end() == context.end()) {
   1643       start = kStartBeginText;
   1644       flags = kEmptyBeginText|kEmptyBeginLine;
   1645     } else if (text.end()[0] == '\n') {
   1646       start = kStartBeginLine;
   1647       flags = kEmptyBeginLine;
   1648     } else if (Prog::IsWordChar(text.end()[0] & 0xFF)) {
   1649       start = kStartAfterWordChar;
   1650       flags = kFlagLastWord;
   1651     } else {
   1652       start = kStartAfterNonWordChar;
   1653       flags = 0;
   1654     }
   1655   }
   1656   if (params->anchored || prog_->anchor_start())
   1657     start |= kStartAnchored;
   1658   StartInfo* info = &start_[start];
   1659 
   1660   // Try once without cache_lock for writing.
   1661   // Try again after resetting the cache
   1662   // (ResetCache will relock cache_lock for writing).
   1663   if (!AnalyzeSearchHelper(params, info, flags)) {
   1664     ResetCache(params->cache_lock);
   1665     if (!AnalyzeSearchHelper(params, info, flags)) {
   1666       LOG(DFATAL) << "Failed to analyze start state.";
   1667       params->failed = true;
   1668       return false;
   1669     }
   1670   }
   1671 
   1672   if (DebugDFA)
   1673     fprintf(stderr, "anchored=%d fwd=%d flags=%#x state=%s firstbyte=%d\n",
   1674             params->anchored, params->run_forward, flags,
   1675             DumpState(info->start).c_str(), info->firstbyte);
   1676 
   1677   params->start = info->start;
   1678   params->firstbyte = ANNOTATE_UNPROTECTED_READ(info->firstbyte);
   1679 
   1680   return true;
   1681 }
   1682 
   1683 // Fills in info if needed.  Returns true on success, false on failure.
   1684 bool DFA::AnalyzeSearchHelper(SearchParams* params, StartInfo* info,
   1685                               uint flags) {
   1686   // Quick check; okay because of memory barriers below.
   1687   if (ANNOTATE_UNPROTECTED_READ(info->firstbyte) != kFbUnknown) {
   1688     ANNOTATE_HAPPENS_AFTER(&info->firstbyte);
   1689     return true;
   1690   }
   1691 
   1692   MutexLock l(&mutex_);
   1693   if (info->firstbyte != kFbUnknown) {
   1694     ANNOTATE_HAPPENS_AFTER(&info->firstbyte);
   1695     return true;
   1696   }
   1697 
   1698   q0_->clear();
   1699   AddToQueue(q0_,
   1700              params->anchored ? prog_->start() : prog_->start_unanchored(),
   1701              flags);
   1702   info->start = WorkqToCachedState(q0_, flags);
   1703   if (info->start == NULL)
   1704     return false;
   1705 
   1706   if (info->start == DeadState) {
   1707     ANNOTATE_HAPPENS_BEFORE(&info->firstbyte);
   1708     WriteMemoryBarrier();  // Synchronize with "quick check" above.
   1709     info->firstbyte = kFbNone;
   1710     return true;
   1711   }
   1712 
   1713   if (info->start == FullMatchState) {
   1714     ANNOTATE_HAPPENS_BEFORE(&info->firstbyte);
   1715     WriteMemoryBarrier();  // Synchronize with "quick check" above.
   1716     info->firstbyte = kFbNone;	// will be ignored
   1717     return true;
   1718   }
   1719 
   1720   // Compute info->firstbyte by running state on all
   1721   // possible byte values, looking for a single one that
   1722   // leads to a different state.
   1723   int firstbyte = kFbNone;
   1724   for (int i = 0; i < 256; i++) {
   1725     State* s = RunStateOnByte(info->start, i);
   1726     if (s == NULL) {
   1727       ANNOTATE_HAPPENS_BEFORE(&info->firstbyte);
   1728       WriteMemoryBarrier();  // Synchronize with "quick check" above.
   1729       info->firstbyte = firstbyte;
   1730       return false;
   1731     }
   1732     if (s == info->start)
   1733       continue;
   1734     // Goes to new state...
   1735     if (firstbyte == kFbNone) {
   1736       firstbyte = i;        // ... first one
   1737     } else {
   1738       firstbyte = kFbMany;  // ... too many
   1739       break;
   1740     }
   1741   }
   1742   ANNOTATE_HAPPENS_BEFORE(&info->firstbyte);
   1743   WriteMemoryBarrier();  // Synchronize with "quick check" above.
   1744   info->firstbyte = firstbyte;
   1745   return true;
   1746 }
   1747 
   1748 // The actual DFA search: calls AnalyzeSearch and then FastSearchLoop.
   1749 bool DFA::Search(const StringPiece& text,
   1750                  const StringPiece& context,
   1751                  bool anchored,
   1752                  bool want_earliest_match,
   1753                  bool run_forward,
   1754                  bool* failed,
   1755                  const char** epp,
   1756                  vector<int>* matches) {
   1757   *epp = NULL;
   1758   if (!ok()) {
   1759     *failed = true;
   1760     return false;
   1761   }
   1762   *failed = false;
   1763 
   1764   if (DebugDFA) {
   1765     fprintf(stderr, "\nprogram:\n%s\n", prog_->DumpUnanchored().c_str());
   1766     fprintf(stderr, "text %s anchored=%d earliest=%d fwd=%d kind %d\n",
   1767             text.as_string().c_str(), anchored, want_earliest_match,
   1768             run_forward, kind_);
   1769   }
   1770 
   1771   RWLocker l(&cache_mutex_);
   1772   SearchParams params(text, context, &l);
   1773   params.anchored = anchored;
   1774   params.want_earliest_match = want_earliest_match;
   1775   params.run_forward = run_forward;
   1776   params.matches = matches;
   1777 
   1778   if (!AnalyzeSearch(&params)) {
   1779     *failed = true;
   1780     return false;
   1781   }
   1782   if (params.start == DeadState)
   1783     return false;
   1784   if (params.start == FullMatchState) {
   1785     if (run_forward == want_earliest_match)
   1786       *epp = text.begin();
   1787     else
   1788       *epp = text.end();
   1789     return true;
   1790   }
   1791   if (DebugDFA)
   1792     fprintf(stderr, "start %s\n", DumpState(params.start).c_str());
   1793   bool ret = FastSearchLoop(&params);
   1794   if (params.failed) {
   1795     *failed = true;
   1796     return false;
   1797   }
   1798   *epp = params.ep;
   1799   return ret;
   1800 }
   1801 
   1802 // Deletes dfa.
   1803 //
   1804 // This is a separate function so that
   1805 // prog.h can be used without moving the definition of
   1806 // class DFA out of this file.  If you set
   1807 //   prog->dfa_ = dfa;
   1808 // then you also have to set
   1809 //   prog->delete_dfa_ = DeleteDFA;
   1810 // so that ~Prog can delete the dfa.
   1811 static void DeleteDFA(DFA* dfa) {
   1812   delete dfa;
   1813 }
   1814 
   1815 DFA* Prog::GetDFA(MatchKind kind) {
   1816   DFA*volatile* pdfa;
   1817   if (kind == kFirstMatch || kind == kManyMatch) {
   1818     pdfa = &dfa_first_;
   1819   } else {
   1820     kind = kLongestMatch;
   1821     pdfa = &dfa_longest_;
   1822   }
   1823 
   1824   // Quick check; okay because of memory barrier below.
   1825   DFA *dfa = ANNOTATE_UNPROTECTED_READ(*pdfa);
   1826   if (dfa != NULL) {
   1827     ANNOTATE_HAPPENS_AFTER(dfa);
   1828     return dfa;
   1829   }
   1830 
   1831   MutexLock l(&dfa_mutex_);
   1832   dfa = *pdfa;
   1833   if (dfa != NULL) {
   1834     ANNOTATE_HAPPENS_AFTER(dfa);
   1835     return dfa;
   1836   }
   1837 
   1838   // For a forward DFA, half the memory goes to each DFA.
   1839   // For a reverse DFA, all the memory goes to the
   1840   // "longest match" DFA, because RE2 never does reverse
   1841   // "first match" searches.
   1842   int64 m = dfa_mem_/2;
   1843   if (reversed_) {
   1844     if (kind == kLongestMatch || kind == kManyMatch)
   1845       m = dfa_mem_;
   1846     else
   1847       m = 0;
   1848   }
   1849   dfa = new DFA(this, kind, m);
   1850   delete_dfa_ = DeleteDFA;
   1851 
   1852   // Synchronize with "quick check" above.
   1853   ANNOTATE_HAPPENS_BEFORE(dfa);
   1854   WriteMemoryBarrier();
   1855   *pdfa = dfa;
   1856 
   1857   return dfa;
   1858 }
   1859 
   1860 
   1861 // Executes the regexp program to search in text,
   1862 // which itself is inside the larger context.  (As a convenience,
   1863 // passing a NULL context is equivalent to passing text.)
   1864 // Returns true if a match is found, false if not.
   1865 // If a match is found, fills in match0->end() to point at the end of the match
   1866 // and sets match0->begin() to text.begin(), since the DFA can't track
   1867 // where the match actually began.
   1868 //
   1869 // This is the only external interface (class DFA only exists in this file).
   1870 //
   1871 bool Prog::SearchDFA(const StringPiece& text, const StringPiece& const_context,
   1872                      Anchor anchor, MatchKind kind,
   1873                      StringPiece* match0, bool* failed, vector<int>* matches) {
   1874   *failed = false;
   1875 
   1876   StringPiece context = const_context;
   1877   if (context.begin() == NULL)
   1878     context = text;
   1879   bool carat = anchor_start();
   1880   bool dollar = anchor_end();
   1881   if (reversed_) {
   1882     bool t = carat;
   1883     carat = dollar;
   1884     dollar = t;
   1885   }
   1886   if (carat && context.begin() != text.begin())
   1887     return false;
   1888   if (dollar && context.end() != text.end())
   1889     return false;
   1890 
   1891   // Handle full match by running an anchored longest match
   1892   // and then checking if it covers all of text.
   1893   bool anchored = anchor == kAnchored || anchor_start() || kind == kFullMatch;
   1894   bool endmatch = false;
   1895   if (kind == kManyMatch) {
   1896     endmatch = true;
   1897   } else if (kind == kFullMatch || anchor_end()) {
   1898     endmatch = true;
   1899     kind = kLongestMatch;
   1900   }
   1901 
   1902   // If the caller doesn't care where the match is (just whether one exists),
   1903   // then we can stop at the very first match we find, the so-called
   1904   // "shortest match".
   1905   bool want_shortest_match = false;
   1906   if (match0 == NULL && !endmatch) {
   1907     want_shortest_match = true;
   1908     kind = kLongestMatch;
   1909   }
   1910 
   1911   DFA* dfa = GetDFA(kind);
   1912   const char* ep;
   1913   bool matched = dfa->Search(text, context, anchored,
   1914                              want_shortest_match, !reversed_,
   1915                              failed, &ep, matches);
   1916   if (*failed)
   1917     return false;
   1918   if (!matched)
   1919     return false;
   1920   if (endmatch && ep != (reversed_ ? text.begin() : text.end()))
   1921     return false;
   1922 
   1923   // If caller cares, record the boundary of the match.
   1924   // We only know where it ends, so use the boundary of text
   1925   // as the beginning.
   1926   if (match0) {
   1927     if (reversed_)
   1928       *match0 = StringPiece(ep, text.end() - ep);
   1929     else
   1930       *match0 = StringPiece(text.begin(), ep - text.begin());
   1931   }
   1932   return true;
   1933 }
   1934 
   1935 // Build out all states in DFA.  Returns number of states.
   1936 int DFA::BuildAllStates() {
   1937   if (!ok())
   1938     return 0;
   1939 
   1940   // Pick out start state for unanchored search
   1941   // at beginning of text.
   1942   RWLocker l(&cache_mutex_);
   1943   SearchParams params(NULL, NULL, &l);
   1944   params.anchored = false;
   1945   if (!AnalyzeSearch(&params) || params.start <= SpecialStateMax)
   1946     return 0;
   1947 
   1948   // Add start state to work queue.
   1949   StateSet queued;
   1950   vector<State*> q;
   1951   queued.insert(params.start);
   1952   q.push_back(params.start);
   1953 
   1954   // Flood to expand every state.
   1955   for (int i = 0; i < q.size(); i++) {
   1956     State* s = q[i];
   1957     for (int c = 0; c < 257; c++) {
   1958       State* ns = RunStateOnByteUnlocked(s, c);
   1959       if (ns > SpecialStateMax && queued.find(ns) == queued.end()) {
   1960         queued.insert(ns);
   1961         q.push_back(ns);
   1962       }
   1963     }
   1964   }
   1965 
   1966   return q.size();
   1967 }
   1968 
   1969 // Build out all states in DFA for kind.  Returns number of states.
   1970 int Prog::BuildEntireDFA(MatchKind kind) {
   1971   //LOG(ERROR) << "BuildEntireDFA is only for testing.";
   1972   return GetDFA(kind)->BuildAllStates();
   1973 }
   1974 
   1975 // Computes min and max for matching string.
   1976 // Won't return strings bigger than maxlen.
   1977 bool DFA::PossibleMatchRange(string* min, string* max, int maxlen) {
   1978   if (!ok())
   1979     return false;
   1980 
   1981   // NOTE: if future users of PossibleMatchRange want more precision when
   1982   // presented with infinitely repeated elements, consider making this a
   1983   // parameter to PossibleMatchRange.
   1984   static int kMaxEltRepetitions = 0;
   1985 
   1986   // Keep track of the number of times we've visited states previously. We only
   1987   // revisit a given state if it's part of a repeated group, so if the value
   1988   // portion of the map tuple exceeds kMaxEltRepetitions we bail out and set
   1989   // |*max| to |PrefixSuccessor(*max)|.
   1990   //
   1991   // Also note that previously_visited_states[UnseenStatePtr] will, in the STL
   1992   // tradition, implicitly insert a '0' value at first use. We take advantage
   1993   // of that property below.
   1994   map<State*, int> previously_visited_states;
   1995 
   1996   // Pick out start state for anchored search at beginning of text.
   1997   RWLocker l(&cache_mutex_);
   1998   SearchParams params(NULL, NULL, &l);
   1999   params.anchored = true;
   2000   if (!AnalyzeSearch(&params))
   2001     return false;
   2002   if (params.start == DeadState) {  // No matching strings
   2003     *min = "";
   2004     *max = "";
   2005     return true;
   2006   }
   2007   if (params.start == FullMatchState)  // Every string matches: no max
   2008     return false;
   2009 
   2010   // The DFA is essentially a big graph rooted at params.start,
   2011   // and paths in the graph correspond to accepted strings.
   2012   // Each node in the graph has potentially 256+1 arrows
   2013   // coming out, one for each byte plus the magic end of
   2014   // text character kByteEndText.
   2015 
   2016   // To find the smallest possible prefix of an accepted
   2017   // string, we just walk the graph preferring to follow
   2018   // arrows with the lowest bytes possible.  To find the
   2019   // largest possible prefix, we follow the largest bytes
   2020   // possible.
   2021 
   2022   // The test for whether there is an arrow from s on byte j is
   2023   //    ns = RunStateOnByteUnlocked(s, j);
   2024   //    if (ns == NULL)
   2025   //      return false;
   2026   //    if (ns != DeadState && ns->ninst > 0)
   2027   // The RunStateOnByteUnlocked call asks the DFA to build out the graph.
   2028   // It returns NULL only if the DFA has run out of memory,
   2029   // in which case we can't be sure of anything.
   2030   // The second check sees whether there was graph built
   2031   // and whether it is interesting graph.  Nodes might have
   2032   // ns->ninst == 0 if they exist only to represent the fact
   2033   // that a match was found on the previous byte.
   2034 
   2035   // Build minimum prefix.
   2036   State* s = params.start;
   2037   min->clear();
   2038   for (int i = 0; i < maxlen; i++) {
   2039     if (previously_visited_states[s] > kMaxEltRepetitions) {
   2040       VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions
   2041         << " for state s=" << s << " and min=" << CEscape(*min);
   2042       break;
   2043     }
   2044     previously_visited_states[s]++;
   2045 
   2046     // Stop if min is a match.
   2047     State* ns = RunStateOnByteUnlocked(s, kByteEndText);
   2048     if (ns == NULL)  // DFA out of memory
   2049       return false;
   2050     if (ns != DeadState && (ns == FullMatchState || ns->IsMatch()))
   2051       break;
   2052 
   2053     // Try to extend the string with low bytes.
   2054     bool extended = false;
   2055     for (int j = 0; j < 256; j++) {
   2056       ns = RunStateOnByteUnlocked(s, j);
   2057       if (ns == NULL)  // DFA out of memory
   2058         return false;
   2059       if (ns == FullMatchState ||
   2060           (ns > SpecialStateMax && ns->ninst_ > 0)) {
   2061         extended = true;
   2062         min->append(1, j);
   2063         s = ns;
   2064         break;
   2065       }
   2066     }
   2067     if (!extended)
   2068       break;
   2069   }
   2070 
   2071   // Build maximum prefix.
   2072   previously_visited_states.clear();
   2073   s = params.start;
   2074   max->clear();
   2075   for (int i = 0; i < maxlen; i++) {
   2076     if (previously_visited_states[s] > kMaxEltRepetitions) {
   2077       VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions
   2078         << " for state s=" << s << " and max=" << CEscape(*max);
   2079       break;
   2080     }
   2081     previously_visited_states[s] += 1;
   2082 
   2083     // Try to extend the string with high bytes.
   2084     bool extended = false;
   2085     for (int j = 255; j >= 0; j--) {
   2086       State* ns = RunStateOnByteUnlocked(s, j);
   2087       if (ns == NULL)
   2088         return false;
   2089       if (ns == FullMatchState ||
   2090           (ns > SpecialStateMax && ns->ninst_ > 0)) {
   2091         extended = true;
   2092         max->append(1, j);
   2093         s = ns;
   2094         break;
   2095       }
   2096     }
   2097     if (!extended) {
   2098       // Done, no need for PrefixSuccessor.
   2099       return true;
   2100     }
   2101   }
   2102 
   2103   // Stopped while still adding to *max - round aaaaaaaaaa... to aaaa...b
   2104   *max = PrefixSuccessor(*max);
   2105 
   2106   // If there are no bytes left, we have no way to say "there is no maximum
   2107   // string".  We could make the interface more complicated and be able to
   2108   // return "there is no maximum but here is a minimum", but that seems like
   2109   // overkill -- the most common no-max case is all possible strings, so not
   2110   // telling the caller that the empty string is the minimum match isn't a
   2111   // great loss.
   2112   if (max->empty())
   2113     return false;
   2114 
   2115   return true;
   2116 }
   2117 
   2118 // PossibleMatchRange for a Prog.
   2119 bool Prog::PossibleMatchRange(string* min, string* max, int maxlen) {
   2120   DFA* dfa = NULL;
   2121   {
   2122     MutexLock l(&dfa_mutex_);
   2123     // Have to use dfa_longest_ to get all strings for full matches.
   2124     // For example, (a|aa) never matches aa in first-match mode.
   2125     if (dfa_longest_ == NULL) {
   2126       dfa_longest_ = new DFA(this, Prog::kLongestMatch, dfa_mem_/2);
   2127       delete_dfa_ = DeleteDFA;
   2128     }
   2129     dfa = dfa_longest_;
   2130   }
   2131   return dfa->PossibleMatchRange(min, max, maxlen);
   2132 }
   2133 
   2134 }  // namespace re2
   2135